Computationally Defining ‘Pateroller’ via

Contextual Vocabulary Acquisition

Nan Meng
Nov 24, 2008

CSEG663: Advanced Knowledge Representation & Reasoning

Abstract

The contextual vocabulary acquisition (CVA) project is aimedd increasing our
understanding of how readers obtain a meaning of an unknown word froraxtgcont
developing algorithms to implement the theory, and then in telpjriy humans in reading
comprehension. In this paper, we use the SNePS knowledge reptieseata reasoning
system to represent the information in a text passaae ctimtains the unfamiliar word
‘pateroller’, combined with background knowledge obtained from thaKtaloud” protocol
practiced with human subjects, to compute a meaning for trd ‘pateroller’ from its
context. The SNePS agent Cassie is given the representdtitime passage and the
background knowledge to make inference about a world containing exdipat’ object.
Then we run the noun algorithm to ask Cassie what propositiongnade about the
unknown word. In this paper, the human ‘think-aloud’ protocol is ridwst. The
representations of the passage and the background knowledgeeaxeFgnally, the result is
shown, problems and future work are also discussed.

1. Introduction

Contextual Vocabulary Acquisition (CVA) is the active, deldie acquisition of word

meanings from text by reasoning from contextual cues, whichdadbackground knowledge,
and hypotheses developed from prior encounters with the word, but wéktemal sources
of help such as dictionaries or people (Rapaport, 2005). Thenfasved in reading and
vocabulary acquisition is that people learn most of the wordspamases frequently by
making inferences and drawing conclusions from the context,aohsié being taught or
seeking external sources of help such as dictionaries aad mtople. In other words, when
people encounter an unknown word, they tend to guess a meaningafowrdrd all by
themselves in the first place by reasoning from availaditernation they have in their mind.
The information includes both the reader’s “mental modéithe word’s “textual context”,
which is the information drawn from the surrounding texts ofuhknown word, and the
reader’s prior knowledge, which is the reader’s knowledge ofwhbdd together with
hypotheses developed from prior encounters with the unknown word (Rea@jis). Each
time the unknown word is encountered, new inferences are madiog aew information

and eliminating inappropriate hypotheses.

The objectives of the CVA project include increasing our wtdading of the contextual
vocabulary acquisition process, using the observations to formooyputational theory of
CVA, developing computer programs that implement and testhbisry, and developing a
curriculum to improve students’ abilities to use CVA.The computational implementation

of the CVA project is based on the SNePS knowledge represeraatibreasoning system,

[1] http://www.cse.buffalo.edu/~rapaport/CVA/cvadeption.html
Copyright © 2002 by William J. Rapaport (rapaporg@.buffalo.edu)
title: Contextual Vocabulary Acquisition: descripti
date of last access: Nov/24/2008

which is “a programming language whose primary data strudcsusemantic network (a
labeled directed graph), with commands for building such netwarké$irsding nodes in such

a network given arbitrary descriptions” (Shapiro and Rapaport, 1995).

In this particular project, we use SNePSUL, the SNePSlasguage, to represent our
text passage and background knowledge. Then we give our representatiopstao the
SNePS computational agent named Cassie. By using the SNeR&tslard case frames,
which will be described in detail shortly, we can ask @assiuse the noun algorithm that
will then give a dictionary-like definition for the unknown woghteroller’. In this paper, we
are mainly concerned with finding the different ways of représg information in the text

passage and background knowledge in SNePS.

2. The Passage and the Unknown Word

Our passage is provided by Dr. Michael Kibby, and is taken framrisbn, Tony. (1987,

2004). Beloved. New York: Vintage. The original passage isefotlowing:

“On a riverbank in the cool of a summer evening two womeryglte under a shower of
silvery blue. They never expected to see each other ag#nms world and at that moment
couldn’t care less. But there on a summer night surrounded by biuéhésr did something

together appropriately and well. A pateroller passing would Isnrggered to see two

throwaway people, two lawless outlaws—a slave and a bangfot woman with unpinned
hair—wrapping a ten-minute-old baby in the rags they wore. Bytateroller came and no
preacher. The water sucked and swallowed itself beneath ffteere was nothing to disturb

them at their work. So they did it appropriately well.”

The unknown word within this passage is the noun ‘pateroller’. Betue original
passage from the book, additional background information is needietit@ richer context,

and is provided by Dr. Michael Kibby as the following statersent

“The story takes place in the South and in Ohio in the prd-pst-Civil War days.
Sethe is a runaway, female slave who is about to givetbitier fourth child. The other three
children have already escaped are in southern Ohio. Setifecmrse, very afraid, because
if she is caught by the law, not only will she be returmeler master, but she will be beaten,
perhaps even crippled so she could not run again.

“As Sethe is running, she meets Amy, a young, white ¢gd aunning away from her
sharecropping parents’ home. She is headed for Boston, in seavelvetf They befriend
each other as they walk toward Ohio and, for Sethe, freedairfoa Amy, escape. The slip
quietly through the nights in the forests and pastures, shurnmaidg to avoid being seen by
anyone for fear of being caught. After several nights mahey, come to the Ohio river and
steal a boat to cross the river. Minutes before they rdect®hio shore, Sethe—with Amy’s
help—qgives birth to her baby. This scene is ten minutes Eterthey have just reached the

Ohio shore and tied up to a tree.”

It is hard to find the definition of the noun “paterollen’ a formal dictionary, but the
definition can be found on the Internet, given as follows: todles’ is a term derived from
the word ‘patrollers’, a reference to the men who patroiker highways and byways in

search of runaway slavey.

3. The Human Protocol

To acquire the background knowledge needed for reasoning about tmingned the
unknown word, experiments are carried out first with human ssgbjetto don't know the
meaning of that word presumably, by showing them the passaasking them to figure
out a meaning for that word, and then tell all the inforamafi.e. background knowledge and
contextual information) they used in order to get that meanig.keep a record of
everything piece of information they used. In this experimahthe information the human
subjects used to understand the unknown word is called the ‘tloin#-grotocol. In our
project, two people participate in the experiment; one emtlisubject A) is a 19-year-old
female college student, the other one (subject B) is ee&fBgld male lawyer who has a lot

of reading experience. The following are their ‘think-aloud’ protgco

[1] http://www.geocities.com/Heartland/Woods/35@tH htm
authors: Dan and Nathan Lee, Southeast Louisiarind History Association

title: 19th Century Amusements: Games & Toys
date of last access: Nov/25/2008

Subject A: “The pateroller would have sniggered at black peaptepoor people. It
made me think about prejudice, anti-black, and wealthy.” “Ttesagge also mentioned that
‘no pateroller came and no preacher’, so the pateroller nhighgimilar to a preacher, a

farther, or a priest, something related to the church.” ‘@dteroller might be a man, because
he would have sniggered at two women.”

However, after some serious thought, except the feelingsl labove, subject A was not

able to give a definition for our unknown word.

Subject B: “I first noticed the time period, Civil Warhigh was about from 1860 to 1865
and was mainly about slavery, also where the story happenetie8o@hio. Then | started
to think what people were around there. | also noticed th&trws involved, so paterollers
might be on ways or water.” “I noticed the word ‘sniggering’hdk the reason of
sniggering? What type of person would be sniggering? They rogylhigh and mighty law
person, since the two people in this story were ‘lawlesswsitl@o it might have something
to do with the law, like they catch somebody’s slave and rethay, get paid. It's like
modern time bounty hunters.” “The ‘preacher’ is mentioned, so they snight have
something to do with religion whether preachers are usedke @ contrast to paterollers or
not is not clear.”

Finally, the subject gave the word ‘pateroller’ a meaniingt he thought the most
plausible: “somebody who makes money hunting down and returning runawag.sM/e

notice how close this definition is to the correct meaninguofword.

Apparently, as an experienced reader, subject B was “comgputith much more
information than subject A was when they were both trymgutderstand the word. In
addition, subject B was able to gather more information footh the passage and his own
experience (background knowledge). What is also interesting is shaulgect B was
attracted by the occurrences of ‘water’ in the contextyag also trying to give his unknown
word other definitions, such as “people on the water doing transpaitaBiven the correct
meaning of the word, we know that subject B was really distaby the appearances of
‘water’ in the passage, however, what he did was a gengd example of contextual
vocabulary acquisition as he was using every possible piecéoofiation in the context to
figure out a meaning of the word. Moreover, subject B's CVA@seavas quite successful as
he was able to give a very close definition as his bdstabne meanwhile still considering
other less possible definitions as candidates. It might be wwattioning that to understand
a word or to do reasoning, besides the background knowledge andteahieformation, a
mechanism to decide which piece of information or knowledgeoie relevant and useful

might also be necessary.

In our approach, not all the information from the text passagettandthink-aloud’
protocol are used, since much of the knowledge are not usefiigémmng out the most
appropriate meaning of our unknown word, so we trim the passage akgrduex
knowledge leaving only helpful information. This will be dise@gsn more details in the

next section.

4. SNePS Representation
4.1 SNePS case frames

There are several standard case frames that can be mambbgithe noun algorithm. [1] We
use the following ones in our representation.

agent/act/action

agent/act/action/object

lex

member/class

object/proper-name

object/property

object/rel/possessor

synonym/synonym

For a simple example, here is the SNePS semantic netejrksentation and the semantics
of the following standard case frame.

member/class

Semantics: [[m]] is the proposition that [[i]] is a membéthe class [[j]].

[1] http://www.cse.buffalo.edu/~rapaport/CVA/cvapesces.html
Copyright © 2002-2006 bWilliam J. Rapaporfrapaport@cse.buffalo.edu

title: Contextual Vocabulary Acquisition: resources
date of last access: Dec/01/2008

We also use the following case frames from the SNeB& fcame dictionary. [1] The syntax
and semantics for these case frames can be found in thimdrg.
forall/ant/cq

min/max/arg

In addition, we use the following non-standard case frame tegepr composite class
concepts that consist of a modifier component and a head compganesiave master.

class-mod/class-head

class—mod class—head

Semantics: [[c]] is the concept of the class expressedinpining the modifier concept [[m]]

and the head concept [[h]].

Another non-standard case frame we use is as follows, whith rispresent the indirect
object information in action related propositions.

agent/act/action/object/indobj

[1] http://mwww.cse.buffalo.edu/sneps/Bibliographiplibgraphy.html#Manuals
author: Stuart C. Shapiro
title: The SNePS Research Group Bibliography
date of last access: Dec/01/2008

Semantics: [[m]] is the proposition that agent [[i]] perferaction [[j]] directly to object [[k]]

and indirectly to object [[l]].

4.2 Background Knowledge Representation

As we follow our human ‘think-aloud’ protocol, some information frdra human subjects
turns out to be less useful for the reasoning about our unknown wortheGother hand,
some critical information is missing in the reasoning ch@fi want to call the reasoning
steps a ‘chain’ because all the information we provide tssi€aas background knowledge
and passage information should be able to form a set of priopssihat is then followed
step by step from the primitive propositions (i.e. informatiold by the passage) to the
expected propositions (i.e. propositions about a meaning of the unknown wedgfore,
our work is to do the knowledge engineering by selecting thodatmamd information that

are most useful and relevant to our particular task, anasageneral as possible.”

The complete SNePSUL representation of our background knowledgem@asponding

semantic network diagrams is given in Appendix A. In thdowahg part, we give the
‘English-like’ description of the background knowledge we telk<i® together with our

explanations and discussions.

With the first five rules, we tell Cassie the genarhtionships among slaves, slave
masters, and bounty hunters, and tell Cassie their possibinsa@nd corresponding
consequences that are useful for the reasoning about our unknowriNwticd. that there are
a huge number of rules or facts about the entities (i.e.ssl@eeinty hunters) in the world of
the passage; however, we are only telling Cassie thoseorufasts that we are interested in.
For example, to continue our reasoning with further rules, wentgeested in whether the
bounty hunters are getting rewards, so that they mightagetyhand snigger, but we are not
interested in whether the slave masters are malaralée which is not closely related to the

meaning of our unknown word.

RULEZX: If ais a slave master, amds a slave, ant is a’s slave, thera puts bounty orb.
RULEZ2: If a puts bounty otb, andc returnsb to a, thenc gets rewards (frora).

RULES3: If aiis a bounty hunter, themwants bounty.

RULE4: If a is a bounty hunter, anld puts bounty orc, anda seesc, thena catchesc.

RULES: If ais a bounty hunter, armputs bounty o, anda catche<, thena returnsc to b.

One of the things we are trying to do in this project isrfitg out a way to represent and

reason about the class concepts consisting of the modifidreamadcomponents. For example,

for the slave master concept, the class modifier &/&s] and the class head component is
‘master’. Our approach to this problem is using thass-mod/class-head case frame
introduced earlier, where the class concepts are expressednynow the modifier and
head components, however, how we shall combine the two componemsytber words,
what kind of relationship we shall give them, still remaassa problem. Maybe there exist a
fixed number of patterns between all modifier and head gaitghat’s not the main topic of
this paper, and shall be considered a future work. In pre@dAspapers, people argued that
under certain circumstances, instead of using a modifier-basel frame, some complex

class concepts are better expressed as single entitiedgi@, 2003).

The next three rules deal with the action of sniggerimdjies consequence. Notice that
here we are trying to relate the action of sniggerirnty #ie action of getting benefit, so that
with further rules about bounty hunters and their actions, possking benefit and reward;
we can indicate the identity of the bounty hunter from it®aadf sniggering. Since in the
passage it is the pateroller who might be sniggering, wéhrules we build according to the

human protocol, our goal is to draw the relationship betweetreeofiar and a bounty hunter.

RULES®G: If a sniggers, thea is being smug and mean.

RULE?Y: If a sniggers, thea laughs for him/herself.

RULES: If a laughs for him/herself, themgets some benefit.

Also notice that we are trying to make our rules as @gérsey possible. That is why

instead of combining RULE7 and RULES8 by telling Cassie a likk “If a sniggers, thea
gets some benefit.”, which is not general enough since peopjgesrior a lot of different
reasons, we break the rules apart so that hopefully our rugsnhall situations. However,
we have to admit that we cannot assert many general haleksdld in every situation, simply
because there are not many of them in the real world angtexte always exist. Therefore,

our goal is to make the rules hold in most situations.

The following four rules tell Cassie how to reason about thetdared indirect objects of
actions. RULE9 and RULE10 intuitively tell Cassie that a giebject may be represented
by many different names, so that Cassie can express jhaet @ an action with told
synonymous terminologies. With these rules Cassie willdbe ta know that if someone is
getting bounty, then he/she is getting reward or benefit. RUL&H RULE12 tell Cassie
that if an agent applies an action to a whole class of ghithgn that agent will apply the
action to a member of that class. These two rules®@a$sie to reason about those facts such
as since bounty hunters return slaves, and Sethe is a #lamebounty hunters will also

return Sethe.

RULEDQ9: If a takes actioract directly onb, andb andc are synonyms, themtakes actioract
directly onc.

RULE10: If a takes action act directly dnindirectly ond, andb andc are synonyms, thea
takes actioract directly onc indirectly ond.

RULEL11: If a takes actioract directly onc, andb is a member of class thena takes action

act directly onb.
RULE12: If a takes actioract directly onc indirectly ond, andb is a member of clags then

a takes actioract directly onb indirectly ond.

The last rules tell Cassie the relationship betweendtienaof wanting and the status of
having some expectation, among other facts. Here we connggesng and expectation by
analyzing the motivation behind sniggering, that is peoplegenigvhen they are getting
something they expect. Then with RULEL17, we tell Cassie lmwohnect the action of
getting bounty and the status of being a bounty hunter. This caewedvas the last step in

our reasoning chain.

RULE13: If a wantsb, anda getsb, thena is happy.

RULE14: Ifeisa's expectation, themis an expectation, aradwantse.
RULE15: If a wantse, thene is a's expectation.

RULE16: If a sniggers, and is a's expectation, theagetse.

RULEL7: If a gets bounty, thea is a bounty hunter.

4.3 Passage Representation

There is a lot of information in our passage, but only a smaliopoof it is very useful to

figure out a meaning of our unknown word. Thus we eliminate exfoanation and only

represent those pieces that are crucial for our purposeeSontmed version of the passage

is as follows:

“Sethe is a slave.”
“Sethe and Amy are outlaws.”

“A pateroller passing would have sniggered to see twowsitla

We then use several propositions to represent the informatiolacim ef the three
sentences. Here we list our SNePSUL representation. SontBeotemantic network

representations are given in Appendix B.

In the representations of the first sentence, we build two nodessesting the concept
of someone named Sethe and the concept of a slave nesgtectively. Then we tell Cassie
that Sethe is the master’s slave by usingathect/rel/possessor case frame. In this way, we
fully represent all the information in the first sentenceluding the existence of a slave
master who owns Sethe. This information is expressed inyplanid is also useful for our

reasoning.

; There is someone named Sethe.

(describe (add object #sethe
proper-name (build lex "Sethe"))
= someone-is-named-sethe)

; Sethe is a slave.

(describe (add member *sethe
class (build lex "slave™))
= sethe-is-a-slave)

; Someone is a slave master.
(describe (add member #master
class (build class-mod (build lex "slave")
class-head (build lex "master")))
= someone-is-a-slavemaster)

; Sethe is the master's slave.
(describe (add object *sethe
rel (build lex "slave")

possessor *master)
= sethe-is-masters-slave)

The representation of the second sentence is straightfoiWarfirst build a node
representing the concept of someone named Amy. Then tsileGhat Sethe and Amy are

outlaws.

; There is someone named Amy.
(describe (add object #amy

proper-name (build lex "Amy")))
; Sethe and Amy are outlaws.

(describe (add member (*sethe *amy)
class (build lex "outlaw™)))

The representation of the third sentence needs some discéssimefore, we first build
the node representing the pateroller. Then we tell Cdssti¢hte pateroller sees Sethe and

Amy, which is not really the case. The same kind of problem also encountered by

previous CVA researcherd, where they wanted to reason about the consequence of

absorbing extreme sports into the Olympics juggernaut, howeigenat the case that

extreme sports are indeed absorbed. Thus in order to reasonteboomsequence, they

simply asserted that the antecedent holds. Therefore, hespresent our sentence using the

same technique by telling Cassie that the pateroller deeSetae and Amy. So Cassie will

believe that the pateroller also sniggers, which will tinggger our following reasoning

steps.

; "pateroller” is an unknown word.
(describe (add object (build lex "pateroller”)
property (build lex "unknown™)))

; Someone is a pateroller.
(describe (add member #pt
class (build lex "pateroller")))

; The pateroller sees Sethe and Amy.

(describe (add agent *pt
act (build action (build lex "see™)
object (*sethe *amy))))

; If a pateroller p sees Sethe and Amy, then p will
(describe (add forall $p
&ant ((build member *p
class (build lex "pateroller"))
(build agent *p
act (build action (build lex "see")
object (*sethe *amy))))

[1] http://www.cse.buffalo.edu/~rapaport/CVA/Juggernavi/
author: Matthew Watkins
title: CVA project, Juggernaut, by Matthew Watkins
date of last access: Dec/05/2008

snigger.

cq ((build agent *p
act(buildaction (buildlex"snigger™))))))

5 Results

After telling Cassie the SNePSUL representation of hhekground knowledge and our
passage, we call the noun algorithm to define the unknown wortgliat’, and obtain the
following results:

N

--> defineNoun "pateroller")

Definition of pateroller:
Possible Class Inclusions: m15, bounty hunter,

PossibleActions:seebounty,seeoutlawslave,se eoutlaw,snigger,
laugh, catch bounty, catch outlaw slave, return bou nty, return
outlawslave,getb1,getbounty,getbenefit,get reward,getoutlaw
slave, want b1, want bounty, want benefit, want rew ard,
Possible Properties: happy, smug, mean,

nil

Here the node m15 represents the complex class concept of hontgy, and the node
bl represents the pateroller’'s expectation. We are alsogyte compound class name
“bounty hunter” because we tried to assert some rules thataaon about the
classs-modifier andclass-head components, and put the two parts together to form the

compound class name. The rule we used is as follows:

; The concept of bounty hunter, has proper-name "bo unty hunter"
(describe (add object (build class-mod (build lex " bounty™)
class-head (build lex "hunter™))

proper-name (build lex "bounty\ hunter")))

However, this rule is not a good practice, sinceotbect/proper-name case frame is not

appropriate for the concept of bounty hunter and the term “bounty hunter”.

Here we are facing some problem that previous researcBersraiountered, since when
we were trying to obtain additional properties of paterqglieestell Cassie that “i& returnsb,
andb is a slave, thea is evil.” When we tell Cassie to describe all giepositions she
believes, we can find the following asserted propositions,iwgtiow that Cassie believes
that the pateroller returns Sethe, Sethe is a slave, andtioever returns a slave is evil. So
it should be the case that Cassie also includes ‘evilpassible property of pateroller after

invoking the noun algorithm, but she doesn't.

(m178!(act(m177 (action(m7 (lexreturn))) (objec tb2[Sethe))))
(agent b6[pateroller]))

(m71! (class (m1 (lex slave))) (member b2[Sethe]))

(m35! (forall v21 v20)
(&ant (p44 (class (m1 (lex slave))) (member v21))

(p43 (act (p42 (action (m7 (Ilex return))) (object v21))) (agent
v20)))
(cq (p45 (object v20) (property (m34 (lex evil)))))

Previous researchers solve this problem by re-adding thengxistdes (Xu, 2004). This
can also be done by explicitly asking Cassie to find the pyop&gateroller, using the
SNePSind commanddescribe (find (property- object) *pt) . Then if we

call the noun algorithm again, Cassie will include ‘exf’a possible property.

6 Conclusion and Future Work

In this paper, we ask the SNePS agent Cassie to use the afganmthm to give a
dictionary-like definition for the unknown word ‘pateroller’ by tellifger the necessary
background knowledge and context information represented in SNePSUltatass. Cassie
is able to figure out possible actions and properties of aqgtlareappropriately. However,

some problems are observed during the project.

The first problem is the difficulty of making general rulesour background knowledge
base. Our current approach to this problem is providing Cas#ierules that meet our
purpose, which means, the rules are very much limited byidhdil projects, and a
researcher working with word A may define some rules inkiewledge base that are
contradictory to the some rules defined by another researdrking with word B. Part of
the reason is because we are not able to rule out all tleptexts efficiently, and cannot
precisely represent the phrases such as ‘probably’ and ‘ngrimatiur system. Future work
may consider integrating a technique like circumscription tilorepresentation to deal with

exceptions.

The next problem is the representation and reasoning of thecindbgcts of actions.
Since the current version of noun algorithm does not recognize the
agent/act/action/object/indobj case frame, when Cassie is asked to define the unknown word,
she is not able to extract information from the indirect obperhponent of the asserted

propositions. Future work may consider adding this facility to the atgorithm. However,

if the only concern is to obtain an appropriate meaning for the unkmveerd, we can
simplify our knowledge base and information in the passage,liamdate the indirect object

components to get around the problem.

Some other problems include the issue with forward infererergiomed earlier, where
Cassie ignores some propositions in her knowledge base whejivebdahe definition, and
we have to remind her about those beliefs explicitly; andotlbblem of expressing complex
class concepts such as “slave master” or “toy gun”.eSthe last problem is still an active
one, for now we might just handle it using ailiass-modifier/class-head case frame and

leaving the relationship between the modifier and the heaga@oents implicit.

Long terms goals may include integrating the CYC knowledge Baseo the CVA
project to facilitate the background knowledge representation, séage applying natural
language processing tools on the given passages to conveseritences to SNePSUL
expressions that Cassie can process directly. Howeveendyrthese intents are still very

demanding and challenging.

[1] http://www.cyc.com/cyc/opencyc/overview
author: Cycorp, Inc.

title: Overview of OpenCyc
date of last access: Dec/5/2008

Appendix A: SNePSUL representation of background knowledge

Slave masters put bounties on their slaves.

(describe (add forall ($sm $sl)
&ant ((build member *sm class (build class-mod (build lex "slave")
class-head (build lex "master")))
(build member *sl class (build lex "slave"))
(build object *sl rel (build lex "slave") possessor *sm))

cq ((build agent *sm
act (build action (build lex "put")
object (build lex "bounty")
indobj *s1)))) = master-put-bounty-on-slve)

If A puts bounty on STH and B returns STH to A, then B gatgards from A.

(describe (add forall ($a $b $sth)

&ant ((build agent *a
act (build action (build lex "put")
object (build lex "bounty")
indobj *sth))

(build agent *b

act (build action (build lex "return")
object *sth
indobj *a)))

cq((build agent *b
act (build action (build lex "get")
object (build lex "reward")
indobj *a)))) = bounty-return-reward)

R—
object/ action ‘pbject

Bounty hunters want bounty.

(describe (add forall $b
ant ((build member *b class (build class-mod (build lex "bounty™)
class-head (build lex "hunter"))))
cq ((build agent *b
act (build action (build lex "want")
object (build lex "bounty"))))) = bounty-hunter-want-bounty)

ml8!

forall

The concept of bounty hunter, has proper-name "bounty hunter”

(describe (add object (build class-mod (build lex "bounty™)
class-head (build lex "hunter"))
proper-name (build lex "bounty\ hunter")))

object ‘proper-name

The concept of slave master, has proper-name "slave master"

(describe (add object (build class-mod (build lex "slave")
class-head (build lex "master"))
proper-name (build lex "slave\ master")))

If Ais a bounty hunter, and B puts bounty on C, and A catches CAthetinrns C to B (and

gets bounty from B).

(describe (add forall ($a $b $c)
&ant ((build member *a class (build class-mod (build lex "bounty")
class-head (build lex "hunter")))
(build agent *b
act (build action (build lex "put")
object (build lex "bounty")
indobj *c))
(build agent *a
act (build action (build lex "catch")
object *c)))
cq((build agent *a
act (build action (build lex "return")
object *c
indobj *b)))))

If Ais a bounty hunter, and B puts bounty on C, and A sees C, thattiAes C.

(describe (add forall ($a $b $c)
&ant ((build member *a class (build class-mod (build lex "bounty™)
class-head (build lex "hunter")))
(build agent *b
act (build action (build lex "put")
object (build lex "bounty")
indobj *c))
(build agent *a
act (build action (build lex "see")
object *c)))
cq((build agent *a
act (build action (build lex "catch")
object *c)})))

If Areturns C to B, then B gets C, and B gets C from A.

(describe (add forall ($a $b $c)
ant ((build agent *a
act (build action (build lex "return")
object *c
indobj *b)))
cq (build min 2 max 2

arg ((build agent *b
act (build action (build lex "get")
object *c))
(build agent *b
act (build action (build lex "get")
object *c
indobj *a))))))

If A sniggers, then A laughs for him/herself.

(describe (add forall $a
ant ((build agent *a
act (build action (build lex "snigger"))))
cq ((build agent *a
act (build action (build lex "laugh")
indobj *a)))))

If A laughs for him/herself, then A gets some benefit.

(describe (add forall $a
ant ((build agent *a
act (build action (build lex "laugh")
indobj *a)))
cq (build agent *a
act (build action (build lex "get")
object (build lex "benefit")))))

ant
forall

action ction ‘Qbject
lex eX [Sh

< (2 Comen]

If Atakes action ACT directly on B, B and C are synonythen A takes action ACT directly

on C.

(describe (add forall ($a $b $c $act)
&ant ((build synonym *b synonym *c)
(build agent *a
act (build action *act
object *b)))
cq (build agent *a

act (build action *act
object *c))))

forall

orall

If A takes action ACT directly on B indirectly on D, B aare synonyms, then A takes

action ACT directly on C indirectly on D.

(describe (add forall ($a $b $c $d $act)
&ant ((build synonym *b synonym *c)
(build agent *a

act (build action *act
object *b
indobj *d)))

cq(build agent *a
act (build action *act

object *c
indobj *d))))

If A takes action ACT directly on C, and B is a membeclabs C, then A takes action ACT

directly on B.

(describe (add forall ($a $b $c $act)
&ant ((build member *b class *c)
(build agent *a
act (build action *act
object *c)))
cq (build agent *a

act (build action *act
object *b))))

forall

orall

If Awants B, and A gets B, then A is happy.

(describe (add forall ($a $b)

&ant ((build agent *a
act (build action (build lex "want")
object *b))

(build agent *a

act (build action (build lex "get")
object *b)))

cq (build object *a
property (build lex "happy™))))

object property

If something E is A's expectation, then E is an expectadion A wants E.

(describe (add forall ($a $e)
ant (build object *e
rel (build lex "expectation")
possessor *a)
cq (build min 2 max 2
arg ((build member *e
class (build lex "expectation"))
(build agent *a

act (build action (build lex "want")
object *e))))))

If Awants E, then E is A's expectation.

(describe (add forall ($a $e)
ant (build agent *a
act (build action (build lex "want")
object *e))
cq (build object *e
rel (build lex "expectation")
possessor *a)))

POSSESS0r

If A sniggers, and something E is A's expectation, theata §.

(describe (add forall ($a $e)
ant (build agent *a
act (build action (build lex "snigger")))
cq (build min 2 max 2
arg ((build object #expectation
rel (build lex "expectation")
possessor *a)
(build agent *a

act (build action (build lex "get")
object *expectation))))))

foral q

act

action pOossessor el
G GG e (o

lex ction “pbject ex
ONC

EX

If A gets bounty, then Ais a bounty hunter.

(describe (add forall $a
ant ((build agent *a
act (build action (build lex "get")
object (build lex "bounty"))))
cq (build member *a
class (build class-mod (build lex "bounty")
class-head (build lex "hunter")))))

forall @

member

lass-head " synonym %{ynonym

lass

lex ex ex lex

Appendix B: Semantic network diagrams of the passage

There is someone named Sethe. Sethe is a slave.

object ‘proper-name class ‘member

‘Pateroller’ is an unknown word.

object ‘property

Appendix C: Script of Running Demo

Starting image “/util/acl/composer’
with no arguments

in directory "/home/csgrad/nanmeng/'
on machine “localhost'.

;;; Installing locale patch, version 1.

International Allegro CL Enterprise Edition

8.1 [Linux (x86)] (Oct 27, 2008 11:52)

Copyright (C) 1985-2007, Franz Inc., Oakland, CA, U

This development copy of Allegro CL is licensed to:
[4549] University at Buffalo

;; Optimization settings: safety 1, space 1, speed

;; For a complete description of all compiler switc

;; optimization settings evaluate (explain-compiler
Current reader case mode: :case-sensitive-lower
cl-user(1): ;; Setting (stream-external-format *ter
cl-user(2): :Id /projects/snwiz/bin/sneps

; Loading /projects/snwiz/bin/sneps.lisp

;;; Installing jlinker patch, version 1.

;;; Installing regexp2-s patch, version 1.

Loading system SNePS...10% 20% 30% 40% 50% 60% 70%
SNePS-2.7 [PL:1 2008/02/12 17:19:45] loaded.
Type “(sneps)' or “(snepslog)' to get started.
cl-user(3): (setf cl-user::*use-gui-show* nil)

nil

cl-user(4): (sneps)

Welcome to SNePS-2.7 [PL:1 2008/02/12 17:19:45]
Copyright (C) 1984--2007 by Research Foundation of
State University of New York. SNePS comes with ABSO
Type “(copyright)' for detailed copyright informati
Type “(demo)' for a list of example applications.

12/6/2008 16:28:51
* (demo "c2")

File /nome/csgrad/nanmeng/c2 is now the source of i

CPU time : 0.00

*

SA. All Rights Reserved.

1, debug 2.
hes given the current
-settings).

minal-io*) to :utf-8.

80% 90% 100%

LUTELY NO WARRANTY!
on.

nput.

. FILENAME: c2

; DATE: from Sep 30 2008 to

; PROGRAMMER: Nan Meng

;; this template version: snepsul-template.demo-200
; Lines beginning with a semi-colon are comments.

; Lines beginning with "A" are Lisp commands.

; All other lines are SNePSUL commands.

To use this file: run SNePS; at the SNePS prompt
(demo "c.demo" :av)

; Make sure all necessary files are in the current
; or else use full path names.

61005.txt

(*), type:

working directory

; Turn off inference tracing.
; This is optional; if tracing is desired, then del ete this.
N

--> setq snip:*infertrace* nil)

nil

CPU time : 0.00

*
; Load the appropriate definition algorithm:
;; UNCOMMENT THE ONE YOU *DO* WANT

A

(
--> load "/projects/rapaport/CVA/STN2/defun_noun.cl "
; Loading /projects/rapaport/CVA/STN2/defun_noun.cl
t

CPU time : 0.03
*;; Mload "~/defun_noun.cl")

: Clear the SNePS network:
(resetnet)

Net reset - Relations and paths are still defined

CPU time : 0.00

*

; OPTIONAL:
; UNCOMMENT THE FOLLOWING CODE TO TURN FULL FORWARNFERENCING ON:

;enter the "snip" package:
N

--> in-package snip)
#<The snip package>

CPU time : 0.00

*

; ;turn on full forward inferencing:
N

--> defun broadcast-one-report (represent)
(let (anysent)
(do.chset (ch *OUTGOING-CHANNELS* anysent)
(when (isopen.ch ch)
(setq anysent
(or (try-to-send-report represent ch)

anysent)))))
nil)
broadcast-one-report

CPU time : 0.00

*

; ;re-enter the "sneps" package:
N

--> in-package sneps)
#<The sneps package>

CPU time : 0.00

*

; load all pre-defined relations:
; (intext "/projects/rapaport/CVA/STN2/demos/rels")
VAY

--> load "~/rels")
; Loading /home/csgrad/nanmeng/rels

t
CPU time : 0.00
; BACKGROUND KNOWLEDGE:

*

;; Slave masters put bounties on their slaves.
(describe (add forall ($sm $sl)
&ant ((build member *sm class (build class-mod (build lex "slave")
class-head (build lex "master")))
(build member *sl class (build lex "slave™))
(build object *sl rel (build lex "slave") posses sor *sm))
cq((build agent *sm
act (build action (build lex "put™)
object (build lex "bounty")
indobj *sl)))) = master-put-bounty-on-slave)

(m6! (forall v2 v1)
(&ant (p3 (object v2) (possessor v1) (rel (m1 (lex slave))))
(p2 (class (m1)) (member v2))

(p1 (class (m3 (class-head (m2 (lex master))) (cl ass-mod (m1))))
(member v1)))

(cq
(p5

(act (p4 (action (m4 (lex put))) (indobj v2) (ob ject (m5 (lex bounty)))))
(agent v1))))

(m6?")
CPU time : 0.00

*

;; IFA puts bounty on something STHand B returns thatthingto A, then B gets
rewards (from A).

(describe (add forall ($a $b $sth)
&ant ((build agent *a
act (build action (build lex "put™)
object (build lex "bounty")
indobj *sth))
(build agent *b
act (build action (build lex "return™)
object *sth
indobj *a)))
cq((build agent *b
act (build action (build lex "get")
object (build lex "reward")
indobj *a)))) = bounty-return-reward)

(m10! (forall v5 v4 v3)
(&ant

(P9 (act (p8 (action (m7 (lex return))) (indobj v 3) (object v5)))
((a7gent v4))
p

(act (p6 (action (m4 (lex put))) (indobj v5) (ob ject (m5 (lex bounty)))))
(agent v3)))

(cq
(p11

(act (p10 (action (m8 (lex get))) (indobj v3) (o bject (m9 (lex reward)))))
(agent v4))))

(m10")
CPU time : 0.00

*

;; Reward and benefit are synonyms.
(describe (add synonym (build lex "reward") synonym (build lex "benefit")))

(m12! (synonym (m11 (lex benefit)) (m9 (lex reward)
(m12!)
CPU time : 0.00

*

;; Bounty and reward are synonyms.
(describe (add synonym (build lex "bounty") synonym

(m13! (synonym (m9 (lex reward)) (m5 (lex bounty)))
(m13!)
CPU time : 0.00

*

;; Bounty hunters want bounty.
(describe (add forall $b
ant ((build member *b class (build class-mod (bu
class-head (build lex "hunter"))))
cq ((build agent *b
act (build action (build lex "want")
object(buildlex"bounty™)))))=bounty-hunte

(m18! (forall v6)

(ant

(p12
(class (m15(class-head (m14 (lex hunter))) (cla
(member v6)))

(cq (p13 (act (m17 (action (m16 (lex want))) (obje

(ma18")
CPU time : 0.00

*
;; The concept of bounty hunter, has proper-name "b
(describe (add object (build class-mod (build lex "
class-head (build lex "hunter"))
proper-name (buildlex"bounty\hunter"))=bount

(m20!
(object (m15 (class-head (m14 (lex hunter))) (clas
(proper-name (m19 (lex bounty hunter))))

(m20")
CPU time : 0.01

*
(describe (add object (build class-mod (build lex "

class-head (build lex "master"))
proper-name (build lex "slave\ master")) = slave-

(m22!
(object (m3 (class-head (m2 (lex master))) (class-
(proper-name (m21 (lex slave master))))

(m221)
CPU time : 0.00

*

(describe (add forall ($a $c $n)
&ant ((build member *a class *c)
(build object *c proper-name *n))
cq ((build member *a class *n))) = member-class-

)

(build lex "reward")))
)

ild lex "bounty")

r-want-bounty)

ss-mod (m5 (lexbounty)))))
ct (m5)))) (agent v6))))

ounty hunter"
bounty")
y-hunter-proper-name)

s-mod (m5 (lex bounty)))))

slave™)

master-proper-name)

mod (m1 (lex slave)))))

proper-name)

(m23! (forall v9 v8 v7)

(&ant (p15 (object v8) (proper-name v9)) (p14 (cla
(cq (p16 (class v9) (member v7))))

(m22!

(object (m3 (class-head (m2 (lex master))) (class-
(proper-name (m21 (lex slave master))))

(m20!

(object (m15 (class-head (m14 (lex hunter))) (clas
(proper-name (m19 (lex bounty hunter))))

(m23! m22! m20!)
CPU time : 0.00

*

;;IfAisabountyhunter,andBputsbountyonC,
C to B (and gets bounty from B).
(describe (add forall ($a $b $c)
&ant ((build member *a class (build class-mod (b
class-head (build lex "hunter")))
(build agent *b
act (build action (build lex "put")
object (build lex "bounty")
indobj *c))
(build agent *a
act (build action (build lex "catch")
object *c)))
cq ((build agent *a
act (build action (build lex "return™)
object *c

indobj *b)))) = bounty-hunter-catch-return)

(m25! (forall v12 v11 v10)
(&ant (p21 (act (p20 (action (m24 (lex catch))) (o
19

(%ct (p18 (action (m4 (lex put))) (indobjv12) (
(agent v11))

(p17 (class (m15 (class-head (m14 (lex hunter)))
(member v10)))

c
((pqz3 (act (p22 (action (m7 (lex return))) (indobj
(agent v10))))

(m25!)
CPU time : 0.00

*

;; IFAisabounty hunter,and B puts bountyon C,
C.
(describe (add forall ($a $b $c)
&ant ((build member *a class (build class-mod (b
class-head (build lex "hunter™)))
(build agent *b
act (build action (build lex "put™)
object (build lex "bounty")
indobj *c))
(build agent *a
act (build action (build lex "see")
object *c)))
cq((build agent *a
act (build action (build lex "catch")
object *c)))) = bounty-hunter-see-catch)

(m27! (forall v15 v14 v13)
(&ant (p30 (act (p29 (action (M26 (lex see))) (obj
28

(%ct (p27 (action (m4 (lex put))) (indobj v15) (

ss v8) (member v7)))
mod (m1 (lex slave)))))

s-mod (m5 (lex bounty)))))

andAcatchesC,thenAreturns

uild lex "bounty")

bject v12))) (agent v10))
object (M5 (lex bounty)))))
(class-mod (m5))))

v11) (object v12)))

and Asees C,thenAcatches

uild lex "bounty™)

ect v15))) (agent v13))
object (m5 (lex bounty)))))

(agent v14))

(p26 (class (m15 (class-head (m14 (lex hunter)))
(member v13)))

(cq (p32 (act (p31 (action (m24 (lex catch))) (obj

(m27")
CPU time : 0.00

*

;; If Areturns C to B, then B gets C, and B gets C
(describe (add forall ($a $b $c)
ant ((build agent *a
act (build action (build lex "return™)
object *c
indobj *b)))
cq (build min 2 max 2
arg ((build agent *b
act (build action (build lex "get")
object *c))
(build agent *b
act (build action (build lex "get")
object *c
indobj *a))))) = return-get-from)

(m28! (forall v18 v17 v16)

(ant

(p34 (act (p33 (action (M7 (lex return))) (indobj
(agent v16)))

cq

(P39 (min 2) (max 2)

(arg

(p38 (act (p37 (action (m8 (lex get))) (indobj
(agent v17))

(p36 (act (p35 (action (M8)) (object v18))) (ag

(m28!")
CPU time : 0.00

*

;; If A sniggers, then A is happy (smug).
(describe (add forall $a
ant (build agent *a
act (build action (build lex "snigger")))
cq ((build object *a property (
(build lex "smug")
(build lex "mean™))))))

(m33! (forall v19)
(ant (p40 (act (m30 (action (M29 (lex snigger)))))
(cq (p41 (object v19) (property (m32 (lex mean)) (

(m33Y)
CPU time : 0.01

*

(describe (add forall ($a $b)
&ant ((build agent *a
act (build action (build lex "return™)
object *b))
(build member *b class (build lex "slave")))
cq ((build object *a property (build lex "evil")

(m35! (forall v21 v20)

(&ant (p44 (class (m1 (lex slave))) (member v21))
(p43 (act (p42 (action (m7 (lex return))) (object
(cq (p45 (object v20) (property (m34 (lex evil))))

(class-mod (m5))))
ect v15))) (agent v13))))

from A.

v17) (object v18)))

v16) (object v18)))
ent v17))))))

(agent v19)))
m31 (lex smug))))))

)

)\;21))) (agent v20)))

(m35!)
CPU time : 0.00

*

;; If A sniggers, then A laughs for him/herself.
(describe (add forall $a
ant ((build agent *a
act (build action (build lex "snigger"))))
cq ((build agent *a
act (build action (build lex "laugh™)
indobj *a)))) = snigger-laugh-for)

(m37! (forall v22)
(ant (p48 (act (m30 (action (M29 (lex snigger)))))
(cq (p50 (act (p49 (action (m36 (lex laugh))) (ind

(m37Y)
CPU time : 0.01

*

;; If A laughs for him/herself, then A gets some be
(describe (add forall $a
ant ((build agent *a
act (build action (build lex "laugh™)
indobj *a)))
cq (build agent *a
act (build action (build lex "get")
object (build lex "benefit")))) = laugh-for-ge

(m39! (forall v23)
(ant (p52 (act (p51 (action (m36 (lex laugh))) (in
c

((pqs3 (act (m38 (action (M8 (lex get))) (object (M
(agent v23))))

(m39))
CPU time : 0.01

*

;;[fAtakesactionACTdirectlyonB,BandCare
ACT directly on C.
(describe (add forall ($a $b $c $act)
&ant ((build synonym *b synonym *c)
(build agent *a
act (build action *act
object *b)))
cq (build agent *a
act (build action *act
object *c))) = action-synonym-direct)

(m40! (forall v27 v26 v25 v24)

(&ant (p56 (act (p55 (action v27) (object v25))) (
(p54 (synonym v26 v25)))

(cq (p58 (act (p57 (action v27) (object v26))) (ag
(m13! (synonym (m9 (lex reward)) (m5 (lex bounty)))
(m12! (synonym (m11 (lex benefit)) (m9)))

(M40! m13! m12!)
CPU time : 0.00

*

;; If Atakes action ACT directly on B indirectly o
then A takes action ACT directly on C indirectly on
(describe (add forall ($a $b $c $d $act)

(agent v22)))
obj v22))) (agent v22))))

nefit.

t-benefit)

dobj v23))) (agent v23)))
11 (lex benefit)))))

synonyms, then Atakesaction

agent v24))
()ant v24))))

n D, B and C are synonyms,
D.

&ant ((build synonym *b synonym *c)
(build agent *a
act (build action *act
object *b
indobj *d)))
cq (build agent *a
act (build action *act
object *c
indobj *d))) = action-synonym-direct-indirect)

(m42! (forall v32 v30 v29 v28)

(&ant (p65 (act (p64 (action v32) (object v29))) (

(p59 (synonym v30 v29)))

(cq (p67 (act (p66 (action v32) (object v30))) (ag

(m41! (forall v32 v31 v30 v29 v28)

(&ant (p61 (act (p60 (action v32) (indobj v31) (ob
59

(cq (p63 (act (p62 (action v32) (indobj v31) (obje
(m40! (forall v27 v26 v25 v24)

(&ant (p56 (act (p55 (action v27) (object v25))) (
(p54 (synonym v26 v25)))

(cq (p58 (act (p57 (action v27) (object v26))) (ag
(m13! (synonym (m9 (lex reward)) (m5 (lex bounty)))
(m12! (synonym (m11 (lex benefit)) (m9)))

(m42! m41! m40! m13! m12!)
CPU time : 0.01

*

;; If A takes action ACT directly on C, and B is a
takes action ACT directly on B.
(describe (add forall ($a $b $c $act)
&ant ((build member *b class *c)
(build agent *a
act (build action *act
object *c)))
cq(build agent *a
act (build action *act
object *b))) = action-member-direct)

(m43! (forall v36 v35 v34 v33)

(&ant (p70 (act (p69 (action v36) (object v35))) (
(p68 (class v35) (member v34)))

(cq (p72 (act (p71 (action v36) (object v34))) (ag

(m43!)
CPU time : 0.00

*

;; If A takes action ACT directly on C indirectly o
class C, then A takes action ACT directly on B indi
(describe (add forall ($a $b $c $d $act)
&ant ((build member *b class *c)
(build agent *a
act (build action *act
object *c
indobj *d)))
cq (build agent *a
act (build action *act
object *b
indobj *d))) = action-member-direct-indirect)

(m45! (forall v41 v39 v38 v37)

(&ant (p79 (act (p78 (action v41) (object v39))) (
(p73 (class v39) (member v38)))

(cq (p81 (act (p80 (action v41) (object v38))) (ag

(m44! (forall v41 v40 v39 v38 v37)

agent v28))

ent v28))))

ject v29))) (agent v28))
ct v30))) (agent v28))))
agent v24))

()ant v24))))

member of class C, then A
agent v33))

ent v33))))

n D, and B is a member of

rectly on D.

agent v37))
ent v37))))

(&ant (p75 (act (p74 (action v41) (indobj v40) (ob
73

p
(cq (p77 (act (p76 (action v41) (indobj v40) (obje
(m43! (forall v36 v35 v34 v33)
(&ant (p70 (act (p69 (action v36) (object v35))) (
(p68 (class v35) (member v34)))
(cq (p72 (act (p71 (action v36) (object v34))) (ag

(m45! m44! m43!)
CPU time : 0.01

*

;; If A wants B, and A gets B, then A is happy.
(describe (add forall ($a $b)
&ant ((build agent *a
act (build action (build lex "want")
object *b))
(build agent *a
act (build action (build lex "get")
object *b)))
cq (buildobject*aproperty (buildlex"happy")

(m47! (forall v43 v42)

(&ant (p85 (act (p84 (action (M8 (lex get))) (obje
(p83 (act (p82 (action (m16 (lex want))) (object
(cq (p86 (object v42) (property (m46 (lex happy)))

(m47!)
CPU time : 0.05

*

;; Ifsomething Eis A's expectation, then Eis an
(describe (add forall ($a $e)

ant (build object *e rel (build lex "expectation

cq (build min 2 max 2

arg ((build member *e class (build lex "expecta
(build agent *a
act (build action (build lex "want")
object *e))))) = expect-want)

(m49! (forall v45 v44)
(ant (p135 (object v45) (possessor v44) (rel (m48

(((;)q139 (min 2) (max 2)
(arg (p138 (act (p137 (action (m16 (lex want)))
(p136 (class (m48)) (member v45))))))

(m49y)
CPU time : 0.00

*

;; If Awants E, then E is A's expectation.
(describe (add forall ($a $e)
ant (build agent *a
act (build action (build lex "want")
object *e))
cq (build object *e rel (build lex "expectation”
want-expect)

(m50! (forall v47 v46)

(ant (p141 (act (p140 (action (m16 (lex want))) (o
(cq (p142 (object v47) (possessor v46) (rel (m48 (
(m50!")

CPU time : 0.01

ject v39))) (agent v37))
ct v38))) (agent v37))))
agent v33))

ent v33))))

))=want-get-happy)

ct v43))) (agent v42))
\)/;‘33))) (agent v42)))

expectation, and Awants E.
") possessor *a)

tion"))

(lex expectation)))))

(objectv4b))) (agentv44))

) possessor *a)) =

bjectv47))) (agent v46)))
lex expectation))))))

*

;» If A sniggers, and something E is A's expectatio
(describe (add forall ($a $e)
ant (build agent *a
act (build action (build lex "snigger")))
cq (build min 2 max 2
arg ((build object #expectation rel (build lex
possessor *a)
(build agent *a
act (build action (build lex "get")

n, then A gets E.

"expectation™)

object *expectation))))) = snigger-get-expect)

(m52! (forall v49 v48)
(ant (p143 (act (m30 (action (m29 (lex snigger))))

((::)q146 (min 2) (max 2)
(arg (p145 (act (m51 (action (m8 (lex get))) (ob
(p144 (object bl) (possessor v48) (rel (m48 (le

(m521)
CPU time : 0.03

*

;; If A gets bounty, then A is a bounty hunter.
(describe (add forall $a
ant ((build agent *a
act (build action (build lex "get")
object (build lex "bounty"))))
cq (build member *a class (build class-mod (buil
class-head (build lex "hunter)))) =
want-bounty-bounty-hunter)

(m54! (forall v50)
t
(((’E)nﬂl (act (m53 (action (M8 (lex get))) (object (
(agent v50)))

(%ql?z (class (m15 (class-head (m14 (lex hunter)))
(member v50))))
(m13! (synonym (m9 (lex reward)) (m5)))

(m54! m13!)
CPU time : 0.10

*

; CASSIE READS THE PASSAGE:

;; Sethe is a runaway female slave.

: There is someone named Sethe.

(describe (add object #sethe proper-name (build lex
someone-is-named-sethe)

(m68! (object b2) (proper-name (m67 (lex Sethe))))
(m68!)

CPU time : 0.02

*

: Someone is named John.
(describe (add object #john proper-name (build lex

(m70! (object b3) (proper-name (m69 (lex John))))

) (agent v48)))

ject bl))) (agent v48))
X expectation))))))))

d lex "bounty")

mb5 (lex bounty)))))

(class-mod (m5))))

"Sethe")) =

"John")))

(m70")
CPU time : 0.00

*

: Sethe is a slave.
(describe (add member *sethe class (build lex "slav

(m71! (class (m1 (lex slave))) (member b2))
(m71!)
CPU time : 0.01

*

; Someone is a slave master.
(describe (add member #master
class (build class-mod (build lex "slave™)
class-head (build lex "master"))) = someone-is-

(m73! (class (m21 (lex slave master))) (member b4))
(m72!(class (m3(class-head (m2 (lexmaster))) (cl
(member b4))

(m73! m72!)
CPU time : 0.00

*

: Sethe is the master's slave.
(describe (add object *sethe rel (build lex "slave"
sethe-is-masters-slave)

(m84! (act (m83 (action (m4 (lex put))) (object (m1
(agent b4))

(m82! (act (m81 (action (m4)) (indobj b2) (object (
(agent b4))

(m80! (act (m79 (action (m4)) (object (m9)))) (agen
(m78! (act (m77 (action (m4)) (object (m5 (lex boun
(m76! (act (m75 (action (m4)) (indobj b2) (object (
(m74! (object b2) (possessor b4) (rel (m1 (lex slav

(m84! m82! m80! m78! m76! m74!)
CPU time : 0.01

*

;; A pateroller passing would have sniggered to see
lawless outlaws --- a slave and a barefoot white wo
wrapping a ten-minute-old baby in the rags they wor

; There is someone named Amy
(describe (add object #amy proper-name (build lex "

(m86! (object b5) (proper-name (M85 (lex Amy))))
(m86!)
CPU time : 0.01

*

; "pateroller" is an unknown word.
(describe(addobject(buildlex"pateroller")prop

(m89! (object (m87 (lex pateroller))) (property (m8
(m89")
CPU time : 0.00

e")) = sethe-is-a-slave)

a-slavemaster)

ass-mod (m1(lexslave)))))

) possessor *master) =

1 (lex benefit)))))
m9 (lex reward)))))
t b4))

ty))))) (agent b4))

m5)))) (agent b4))
e)))

two throwaway people, two
man with unpinned hair ---
e.

Amy")))

erty(buildlex"unknown")))

8 (lex unknown))))

*

; Someone is a pateroller.
(describe (add member #pt class (build lex "paterol

(m90! (class (m87 (lex pateroller))) (member b6))
(moo!)
CPU time : 0.00

*

(describe (add agent *pt
act (build action (build lex "see")
object (*sethe *amy))))

(m96! (act (m95 (action (Mm26 (lex see))) (object b2
(m94! (act (m93 (action (M26)) (object b5))) (agent
(m92! (act (m91 (action (m26)) (object b5 b2))) (ag

(m96! m94! m92!)
CPU time : 0.01

*

; If a pateroller A sees Sethe and Amy, then A will
(describe (add forall $p
&ant ((build member *p class (build lex "paterol
(build agent *p
act (build action (build lex "see")
object (*sethe *amy))))
cq((build agent *p
act (build action (build lex "snigger"))))))

(m126! (min 2) (max 2)

(arg (m125 (class (m48 (lex expectation))) (member
(m121! (act (m120 (action (m16 (lex want))) (obje
(m124! (min 2) (max 2)

(arg (m123 (class (Mm48)) (member (M9 (lex reward))
(m117! (act (m116 (action (m16)) (object (m9))))
(m122! (object (m11)) (possessor b6) (rel (m48)))
(m119! (object (m9)) (possessor b6) (rel (m48)))
(m118! (min 2) (max 2)

(arg(m110! (act(m17 (action (m16)) (object (M5 (
(m61! (class (m48)) (member (m5)))))

(m115! (object b6) (property (m46 (lex happy))))
(m114! (object (m5)) (possessor b6) (rel (m48)))
(m113! (act (m112 (action (m24 (lex catch))) (objec
(m111! (class (m19 (lex bounty hunter))) (member b6
(m109! (class (m15 (class-head (m14 (lex hunter)))
(member b6))

(m2108! (act (m53 (action (m8 (lex get))) (object (m
(m107! (act (m106 (action (m8)) (object (m9)))) (ag
(m105! (act (m38 (action (m8)) (object (m11)))) (ag
(m104! (min 2) (max 2)

(arg (m103 (object bl) (possessor bb6) (rel (m48)))
(m102 (act (m51 (action (m8)) (object b1))) (agen
(m101! (act (m100 (action (m36 (lex laugh))) (indob
(m99! (object b6) (property (m32 (lex mean)) (m31 (
(m98! (act (m30 (action (m29 (lex snigger))))) (age

(m97! (forall v51)

(&ant (p294 (act (m91 (action (m26 (lex see))) (ob
(p293 (class (m87 (lex pateroller))) (member v51)
(cq (p295 (act (m30)) (agent v51))))

(m92! (act (m91)) (agent b))

(m90! (class (m87)) (member b6))

(m126!m124!m122Im121/m119!m118!m117!m115!ml
m108! m107! m105! m104! m101! m99! m98! m97! m92!

ler")))

))) (agent b6))
b6))
ent b6))

snigger.

ler"))

(m11 (lex benefit))))
ct (m11)))) (agent b6))))

)
(agent b6))))
lex bounty))))) (agent b6))

t b2))) (agent b6))
(class-mod (m5))))

5)))) (agent b6))
ent b6))
ent b6))

t b6))))

j b6))) (agent b6))
lex smug))))

nt b6))

je)():t b5 b2))) (agentv51))

14!m113!'m111!'m110! m109!
m90! m61!)

CPU time : 0.19

*

; Sethe and Amy are outlaws.
(describe (add member (*sethe *amy) class (build le

(m2130! (class (m127 (lex outlaw))) (member b5))
(m2129! (class (M127)) (member b2))
(m2128! (class (m127)) (member b5 b2))

(m130! m129! m128!)
CPU time : 0.00

*
N

--> defineNoun "pateroller")

8628736 bytes have been tenured, next gc will be gl
See the documentation for variable excl:*global-gc-
information.

Definition of pateroller:

Possible Class Inclusions: m15, bounty hunter,
Possible Actions: see bounty, see outlaw slave, se
catch bounty, catch outlaw slave, return bounty, re
get bounty, get benefit, get reward, get outlaw sla
want benefit, want reward,

Possible Properties: happy, smug, mean,

nil

CPU time : 2.04
*
End of /home/csgrad/nanmeng/c2 demonstration.

CPU time : 2.57

*

x "outlaw™)))

obal.
behavior* for more

e outlaw, snigger, laugh,
turn outlaw slave, get b1,
ve, want b1, want bounty,

References

Rapaport, William J. (2005), "In Defense of Contextual VocatyuAcquisition: How to Do
Things with Words in Context", in A. Dey et al. (ed®)oceedings of the 5th International
and Interdisciplinary Conference on Modeling and Using Context (Context-05) (Berlin:

Springer-Verlag Lecture Notes in Artificial Intelligen8854): 396-409.

Shapiro, Stuart C. and Rapaport, William J. (1995), "An Intradoncio a Computational
Reader of Narrative", in Judith Felson Duchan, Gail Aud@r, & Lynne E. Hewitt (eds.),
Deixis in Narrative: A Cognitive Science Perspective (Hillsdale, NJ: Lawrence Erlbaum

Associates): 79-105.

Goldfain, Albert (2003), "Computationally Defining "HarbingeravContextual Vocabulary

Acquisition”, [http://www.cse.buffalo.edu/~rapaport/CVA/Harbinbarbinger.html]

Xu, Jun (2004), "Computationally Defining 'Ceilidh’ from Contextu&ues"”,

[http://www.cse.buffalo.edu/~rapaport/CVA/ceilidh.html]

