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Abstract

This paper describes a computational implementation of an algorithm to define an ”unknown”
verb based on the information in the context it appears in and any applicable background knowledge
that the reader brings to bear. First, it describes some related research that has taken place and how
it may be applied to the Contextual Vocabulary Acquisition (CVA) project. Next, it describes the
process taken to enhance the current implementation of the CVA verb algorithm. This begins with
an analysis of what information best conveys verb meaning, focusing on dictionary definitions as a
model. It then moves on to how this information can be retrieved from the context of a verb and
how it can be used to categorize the verb or determine its relationship to other ‘known’ actions. Next
it describes the computational implementation of this algorithm and the results after applying it to
a sequence of passages represented in the SNePS knowledge representation and reasoning system
(Shapiro & Rapaport 1987). Lastly, it outlines some of the remaining issues left for future research in
the CVA of verbs.

1 Introducing CVA

CVA is defined as the ‘active, deliberate acquisition of word meanings from text by reasoning from
contextual clues, prior knowledge, language knowledge, and hypotheses developed from prior en-
counters with the word, but without external sources of help such as dictionaries or people’ (Rapaport
& Kibby 2002). The goal of the CVA project is twofold: to develop and implement algorithms to
define an unknown noun, verb, or adjective from the semantic representation of a sentence, and to
develop a curriculum to enhance vocabulary learning. The results of the research in each of these
areas is then cycled back to the other to further the development of each goal.

1.1 Previous CVA research

Previous research on CVA is made up of a very diverse body of literature including computational
implementations and psychological studies. One of the goals of our research is to unify this large
disparate body of literature and incorporate elements of both disciplines into our algorithms.

Over the past few decades, a number of similar approaches have been developed for computational
CVA. Each of these systems has strengths that we are hoping to mirror and weaknesses that we are
hoping to improve upon.
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1.1.1 Granger (1977)

Richard H. Granger’s system, called Foul-Up, is probably the earliest computational system designed
to use contextual information to define an unknown word. The system works in conjunction with
scripts, which represent stereotypical, domain-specific information and which serve as a set of ex-
pectations for a particular context. When the system comes across an unknown word, Foul-Up will
attempt to place it in a slot representing a concept that the unknown word may fall under in the context
of the script.

Foul-Up employs Roger Shank’s theory of conceptual dependency to model events and define
actions in terms of 10 primitive acts. The system uses the class inclusions of the verb’s arguments
as well as any prepositions relating them to match the verb to a specific primitive act. Using this
information, the system can then match the unknown word to a known concept in the script.

Although the system is extremely limited by its reliance on domain-specific scripts, there are some
elements that we have found to be worth borrowing for our own system, namely, verb categorization
based on prepositions and argument classes.

1.1.2 Wiemer-Hastings (1998)

Peter Wiemer-Hastings et al.’s system, Camille, is capable of inferring verb meanings from context
by inferring the semantic and syntactic constraints of the verb’s arguments and predicate structure. It
then uses these clues to place the unknown verb in a predefined ontology.

Many of the ideas that Wiemer-Hastings et al. describe have already been incorporated, or planned
for in our algorithm. These include the following:

• Determining the syntactic frame (i.e. transitive, intransitive, ditransitive).

• Identifying reflexive construction.

• Determining that there is a syntactic subject (agent).

• Determining that there is a syntactic object.

• Determining that there is an indirect object.

• Determining the actors and object’s semantic categories.

• Identifying ‘with’ construction (i.e., identifying instruments)

1.1.3 van Daalen-Kapteins and Elshout-Mohr (1981)

In addition to computational CVA, our work is built on numerous other research projects on the
psychological aspects of CVA. Much research has been done on vocabulary learning, dating back to
Werner and Kaplan, 1950. Some of the methodology employed by the CVA project stems from a
more recent paper, by van Daalen-Kapteins and Elshout-Mohr, 1981.

The research done by Marianne Elshout-Mohr and Maartje M. van Daalen-Kapteijns provides a
strong theoretical background for the CVA project. Their work centered on analyzing the ability of
different readers to determine the meaning of an unknown word from context. The results of this
research shed some light on the methods by which a ‘good’ reader can deduce word meanings from
context.
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Their findings showed that readers employ a model that provides a structure for information re-
trieval and modification of a current hypothesis in the task of word learning. As new information is
added, good readers typically apply it to their hypothesized model of the word’s meaning, while poor
readers may simply discard the model and create a new one based on the newest information. With
good readers, unless a serious contradiction occurs, the model remains relatively intact.

Summary

The large amount of research that has gone into CVA from various disciplines provides a strong the-
oretical foundation for the work we are doing. Psychological reseach on CVA has shown that there is
a basis by which certain readers learn words with greater ease than others. The techniques employed
may therefore be implemented in both computational systems and language learning curricula. Pre-
vious computational research provides plenty of evidence that we are indeed working with a tractable
problem with a sound methodology.

2 Analyzing Verb Meaning

In order to develop an algorithm to retrieve a word’s meaning from context it is first necessary to know
what types of information to look for as well as where to find it. Since the ultimate goal of the compu-
tational portion of the CVA project is to have an algorithm output a well-formed definition of an un-
known word, the best source to determine the components needed for such an output can be found in a
dictionary. Below are some examples of definitions (retrieved from http://dictionary.reference.com/)for
words that have been the focus of previous CVA research.

Augur: To predict, especially from signs or omens.

Comport: To conduct or behave (oneself) in a particular manner

Foist:

a. To pass off as genuine, valuable, or worthy

b. To impose (something or someone unwanted) upon another by coercion or trick-
ery.

c. To force onto another

Perambulate:

a. To walk through.

b. To walk about; roam or stroll.

cripple: To disable, damage, or impair the functioning

fold: (itr.)

a. To close, especially for lack of financial success; fail.

b. To give in; buckle.

proliferate:

a. To grow or multiply by rapidly producing new tissue, parts, cells, or offspring.

b. To increase or spread at a rapid rate.

pry:
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a. To raise, move, or force open with a lever.

b. To obtain with effort or difficulty.

quail:
a. To shrink back in fear; cower.

b. To cause to fail in spirit or power; to quell; to crush; to subdue.

From the examples above, we can find seven major types of information present in dictionary defini-
tions. These are listed in order of significance as follows:

1. Similar actions: All verbs are defined in terms of other verbs. These similar actions
are usually potential sister classes or superclasses of the verb being defined.

2. Manner/Modifiers: These are components that constrain the similar action in such a
way as to narrow the meaning down closer to that of the unknown verb. These often
take the form of prepositions or prepositional phrases, representing elements such
as:

(a) physical movement within the event space (e.g. ‘through’).

(b) Source and/or destination (e.g., ‘upon’).

(c) Properties of the agent (e.g., ‘in fear’).

(d) Properties of the object (e.g., ‘as genuine’).

(e) Specific method of performance or other corequisite acts (e.g., ‘by rapidly pro-
ducing new tissue’, ‘by coercion or trickery’).

3. Effects/Results: This includes the intention of the action. (e.g., [to cause to] ‘fail in
spirit or power’).

4. Causes/Enablement: This includes states of affairs that cause the action (e.g. ‘lack of
financial success’) or other actions for which the unknown action is the result.

5. Instruments: The class membership of any physical object that the agent is using to
accomplish the action. This is typically identifiable as any physical object appended
to the predicate by ‘with’.

6. Object/Indirect Object: The class membership of the syntactic object or indirect object
of the verb.

7. Agent: The class membership of the agent of the action. Most of the time it is assumed
that the agent is human, so this information is often not present in a definition.

Overall, the least common pieces of information present in dictionary definitions of verbs are the
class of the object and agent. For the vast majority of verbs, these are inherited from the superclass of
the verb(s) given in the definition. Only if the verb requires arguments of a narrower class than those
of its superclass is this information is required.

An effective verb definition algorithm would need to return these seven elements in order to form a
meaningful definition of an unknown verb. The next section will describe how some of these elements
can be retrieved from a verb’s context.

2.1 Identifying Components of Meaning in Context

The context surrounding a verb can be broken down into two parts: the immediate context and the
wider context. The immediate context contains the verb and its arguments and any prepositions
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linking them. The immediate context will also contain any additional modifiers of the action, such as
adverbs or adverbial adjuncts that add information to the event occurring.

The relevant pieces of information that can be retrieved from the immediate context for the defi-
nition are: object and indirect object types; the agent type; any instruments; and any prepositions that
determine motion, transfer, or the spatial relationships of the verb’s arguments. Additionally, once
we know all the arguments that the verb subcategorizes for, we can use that information to retrieve
potential similar actions that subcategorize for the same items.

The wider context of the verb may span several sentences and include many ambiguous types of
information. Often the wider context of the unknown verb may represent either the development of a
description of a state or a causal chain of events which the unknown action is part of. It is difficult to
develop a general set of rules that relate this information to the unknown action because the structure
and content can vary greatly.

Sometimes the wider context will contain background knowledge or domain-specific rules of
inference that may apply only within the context itself. These are often the types of things that a
generic rule of inference cannot account for. Instead, it may be up to the parser (or the researcher
representing the passage in SNePS) to identify this information. For example, consider the passage:

‘Bob made sure he had his wallet on him. He wanted toMaria dinner’

From this context, a reader may assume that the mention of ‘wallet’ in the first sentence presup-
poses that the unknown action has a requirement of money. This information however, would come
from the readers background knowledge that wallets contain money and that a person needs to have
their wallet in their immediate possession in order to use that money. In this case, the act of having
money enables the unknown action to take place. Verbs that require money are typically those closely
related to ‘buy’ or ‘sell’. By reminding himself who has the money in this context, a reader may be
able to narrow down the unknown verb to ‘buy’.

Another type of context that may provide useful information is a conjoined event. An example of
two types of conjoined events follows:

a. It rained in Dallas and snowed in New York.
b. I woke up and ate breakfast.

In (a), we may interpret that the two events occurred with respect to a single point in time, whereas
in (b) we can infer that the two events occurred in sequence. In each of these examples, the informa-
tion provided by one action puts a restriction on the possible state of the arguments or action in the
second predicate.

In (a), we can tell that the two events share some components of meaning, namely ‘precipitation’.
In this context, the two actions subcategorize for the same class of object (a location) and both make
use of the existential ‘it’. These clues may presuppose some degree of simultaneity of the two events,
which may therefore indicate a shared, higher-level verb class.

In (b), there are several clues that the two actions are not occurring simultaneously. The first is
that both actions are being performed by the same agent. Most people would not assume that the
agent is doing both actions at the same time, but doing one and then the other.

Presuming that a reader of passage (b) did not know the meaning of ‘ate’ but did know the meaning
of ‘woke’, he might assume at the least that a requirement of ‘ate’ is that the agent must be awake.
Further cultural knowledge might lead the reader to map the verb into his own knowledge of the
sequence of events that may follow waking up.
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Unfortunately the ease of retrieving a component of meaning of a verb from context is inversely
proportional to the capacity of the information it carries. Similar actions are the most difficult to
determine, due to the complexity of the inferences required and the ambiguity of the information that
those inferences can be derived from. On the other hand, predicate structure and argument types can
be acquired from a passage with great accuracy and detail.

2.2 Verb Categorization

If we can classify an unknown verb into one of a small set of primitive verb classes, we may be able
to compromise between the need for a descriptive output and the absence of descriptive input.

Categorizing a verb based on a set of features is a simple task computationally and could also
be converted to a simple curriculum. Students could easily be taught the meanings of a small set of
primitive acts as well as a set of rules to determine whether a new verb is related in meaning to one or
more of them. The same formula could be applied in the verb algorithm.

One framework that is applicable to CVA is Roger Shank’s (1974) theory of conceptual depen-
dency (CD). CD defines a set of 12 primitive acts from which, the theory claims, any action can be
formed. These acts are defined as follows:

PTRANS: physical transfer of location of an object.

ATRANS: The abstract transfer of ownership, possession, or control of an object.

MTRANS: The mental transfer of information between agents.

MBUILD: The mental construction of a thought or new info between agents.

CONC: The conceptualizing or thinking about an idea by an animal.

ATTEND: The act of focusing attention of a sense organ toward an object.

GRASP: The act of grasping of an object by an actor for manipulation.

PROPEL: The applicaton of physical force to an object.

MOVE: The movement of a body part of an agent by that agent.

INGEST: The taking in of an object (food, air, water...) by an animal.

EXPEL: The expulsion of an object by an animal.

SPEAK: The act of producing sound, including non-communicative sounds.

The features used to determine whether an action is composed of a specific primitive act include
predicate structure and thematic roles, both of which are easily accessible in the context of an un-
known verb.

3 Implementation

The research on the computational implementation of CVA currently involves testing and enhancing
the existing definition algorithms for nouns, verbs, and adjectives. Testing is done by creating a
representation of a passage containing an ‘unknown’ word in the SNePS knowledge representation
and reasoning system. The strength of SNePS lies in its ‘reasoning’ abilities, and thus provides a
powerful framework on which to implement various theories of CVA.
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A representation of a passage in SNePS will consist of three things: Background knowledge con-
taining common sense facts relating to the ‘known’ concepts in the passage, a set of background rules
embodying a set of common sense inferences possessed by a typical reader of the passage, and the
representation of the passage itself. As each part of the passage is added to the SNePS network,
inferences are generated based on any predefined rules and background knowledge, generating new
propositions. The algorithm then searches the entire SNePS network and processes the relevant infor-
mation needed to construct a possible definition of the unknown word.

3.1 Overview of Previous Implementations

3.2 CVA @ UB Timeline

1995 Karen Ehrlich creates algorithms for defining nouns and verbs. The verb algorithm
retrieves the verb’s predicate structure and causal/enablement information. Future
work is to include in the output a primitive act of which the unknown verb is a type.

2002 Rajeev Sood enhances Ehrlich’s verb algorithm to address information from direct
and indirect objects and resolves some coding issues from her version. Future work
includes developing a concept of basic level categories that verbs may fit into, iden-
tifying reflexive usage of verb, and keeping track of the state of the known ‘world’
before and after the action takes place in order to define results of the unknown ac-
tion.

2002 Justin DelVecchio rewrites the verb algorithm. This version focuses on predicate
structure, basic and top level categories of each predicate, and superclasses of the
unknown verb. Future recommended work includes reviewing Hastings and Lytenins
(1994) work on predicate information, implementing a formal structure for indirect
objects, and reviewing Beth Levin’s work on representing verbs in a hierarchy.

2003 Adel Ahmed works on a passage containing the verb ‘cripple’ in order to test the
verb algorithm. Some modifications he suggests are including properties of the un-
known verb and grouping common objects under a single superclass.

2003 Chris Becker works on a passage containing the verb ‘pry’. Suggested modifica-
tions as a result of this work include the inclusion of information about instrument
usage and prepositions that occur in the immediate context.

2003 Masashi Sato works on a passage containing the verb ‘fold’, and modifies the verb
algorithm to return properties of the unknown verb. Future recommended modi-
fications include allowing the verb algorithm to search for class membership and
superclasses of the arguments of the unknown verb as well as retrieving synonyms
of the unknown verb.

2003 Ananthakrishnan Ugrasenan Santha works on a passage containing the verb ‘pro-
liferate’. Future recommended modifications include extending the search for cause
and effect in the network and processing sequences of actions.

2004 Chris Becker and Lunarso Sutanto rewrite the verb algorithm with emphasis on
modular program design to allow future researchers to more easily make further en-
hancements. The algorithm returns information from the arguments of the unknown

7



verb as well as cause, effect, properties, and possible synonyms. Future recom-
mended work includes implementing a classification system based on conceptual
dependency primitive categories, addressing the role of morphology in identifying
word meaning, testing for reflexivity, and implementing further rules to determine
possible verb synonymy.

3.3 Current Implementation of the Verb Algorithm

This section will serve as a reference for future work on the verb algorithm and will outline the
structure and describe the functions and flow of control that takes place. The overall design of the
verb algorithm is implemented in two parts. The first part is a set of generic inference rules and
background knowledge, written in SNePSUL. These rules are loaded into the system before any other
information is added, and generate inferences as information is added from the context of the unknown
word. The second part is the verb definition algorithm, which is written in Lisp. This part serves to
retrieve and summarize relevant information stored in the SNePS network.

The verb algorithm is designed as a set of two modules that perform a specific set of tasks for each
stage of execution. There are two main phases of execution: the data input and collection phase, and
the data processing and output phase. The entire flow of control is maintained in the list *ProcessList*
in the file defunverb.cl. This list contains each function call in the order of execution. The function
defineVerb must be called by the user to initiate the verb algorithm. This function takes the verb as an
argument, defines the variable *OutputFrame* as the list of features to return values for, and executes
the elements of *ProcessList*.

3.3.1 Data Collection

The goals for the data collection module of the verb algorithm were twofold. The first was to stan-
dardize the structure of certain representations pertinent to the meaning of the unknown verb. The
second was to do this in such a way that modifications and additions could be made at a later time
with a minimum amount of plodding through code and subsequent debugging.

The verb algorithm is currently coded to retrieve information from the following paths in the
SNePS network.

Tables 3 and 4 list further information that is retrieved by the verb algorithm along with the path
from which it retrieves this data. The function evaluateFindList in the data collection module then
iterates through the list of paths and evaluates each path with the SNePS ‘find’ command. The output
of this is stored in the associative list *Found-List*.

3.3.2 Data Processing

The next phase of execution uses the information stored in *Found-List* to determine the values for
each field of the resultant definition frame for the unknown verb.

This phase is centered around the function assemble-data, which calls the appropriate functions
to retrieve and assemble the data for the verb definition frame. These function calls are as follows:
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Argument retrieved Path from verb lex node
verb (lex)
act (action lex)
agent (agent- act action lex)
object (object- action lex)
indirect object (indobj- action lex)
‘from’ argument (from- action lex)
‘to’ argument (to- action lex)
instrument (instrument- act action lex)
‘with’ argument (with- action lex)

Table 1: Arguments of the Verb. These paths are defined in the variable *ArgsToFind* in the data collection
module. For each of these arguments, the algorithm retrieves the relations listed in table 2

Relation retrieved Path from argument
lex (lex-)
superclasses (lex- superclass- subclass (kstar (compose

superclass- subclass))))
class membership (lex- class- member)
superordinate (lex- superclass- subclass (kstar (compose

superclass- subclass)) class- member)
properties (lex- property- object)

Table 2:Relations of arguments of the verb. These paths are defined in the variable *ArgRelsToFind* in the data
collection module.

1. Retrieve features that are directly connected to the unknown verb, namely properties
and superclasses if present.

2. Retrieve the conceptual-dependency primitive category of the unknown verb.

3. Determine the list of similar actions. This list is compiled from the following:

(a) Equivalent actions defined in the SNePS network.

(b) Similar actions defined in the SNePS network.

(c) Actions in background knowledge that share the same conceptual de-
pendency primitive category as the unknown verb.

(d) Other actions performed on the same object of the unknown verb in
context or based on background knowledge.

(e) Other actions performed with the same instrument as the unknown verb
in context or based on background knowledge.

(f) If none of the above contain any data, then retrieve other actions per-
formed by the same agent in context or based on background knowledge.

(g) Sort the list formed by all of the above based on frequency of connect-
edness to the unknown verb in the SNePS network.

(h) Lastly, remove dissimilar actions from the above list.
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Relation retrieved Path from verb lex node
Facts that cause the action (lex- cause- effect act action lex)
Facts that are the effect of the action (lex- effect- cause act action lex)
Synonyms (lex- synonym- synonym (kstar (compose synonym- synonym)) lex)
Similar actions (lex- similar- similar (kstar (compose similar- similar)) lex)
Equivalent actions (lex- equiv- equiv (kstar (compose equiv- equiv)) lex)
Actions performed by the same agent (lex- action- act- agent agent- act action lex)
Actions performed on the same object (lex- action- object object- action lex)
Actions performed by the object (lex- action- act- agent object- action lex)
Actions performed with the same instrument (lex- action- act- instrument instrument- act action lex)
Facts for which the action is the antecedent (lex- action- act- ant- cq act action lex)
Facts for which the action is the consequent (lex- action- act- cq- ant act action lex)
Actions for which the action is the cause (lex- action- act- cause- effect act action lex)
Actions for which the action is the effect (lex- action- act- effect- cause act action lex)

Table 3: Additional data retrieved by the verb algorithm. These paths are defined in the variable *MiscItem-
sToFind* in the data collection module.

Relation retrieved Path from verb
Dissimilar actions (lex- dissimilar- dissimilar (kstar (compose dissimilar- dissimilar)) lex)
CD primitive act (lex- cdcat- class lex)
Verbs with the same CD category (lex- class- cdcat cdcat- class lex)

Table 4:Paths new to the current version of the verb algorithm. These paths are defined in the variable *MiscItem-
sToFind* in the data collection module.

4. Retrieve elements of the ‘manner’ in which the unknown action is performed. Cur-
rently this retrieves and returns the following:

(a) Whether there is transfer of location to or from the object.

(b) Whether there is an attribute that the agent is performing the action
‘with’.

(c) Whether the agent is using an instrument.

5. Retrieve actions or single-node facts which caused the unknown action.

6. Retrieve actions or single-node facts which resulted from the unknown action.

7. Retrieve the transitivity of the unknown verb.

(a) This uses the result of a call to the function find-subcategorization
which composes a list of the relations branching from the unknown ac-
tion.

(b) The list returned from find-subcategorization is matched against lists
which correspond to the types of transitivity (intransitive, transitive, di-
transitive) and returns the correct one of the three.

8. Retrieve the most common superclass among all objects that the unknown verb occurs
with.
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9. Retrieve the most common superclass among all indirect objects that the unknown verb
occurs with.

10. Retrieve the most common superclass among all instruments that the unknown verb
occurs with.

11. Retrieve the most common superclass among all agents that the unknown verb occurs
with.

One function used by many of the functions called by assemble-data, which I will describe in
further detail, is the function return-basic-level-element. This function takes a list of base nodes in the
SNePS network and determines the most common superclass among each of their class hierarchies.
Since it is unlikely that each node in the input list has a single common superclass, the function returns
a sorted list of classes based on their frequency of commonness among the hierarchies of all the base
nodes.

This function is also used to determine the most common element among each of the sublists that
make up the similar action list, which in effect returns the action with the greatest connectedness to the
unknown action since each base node in this instance represents a different argument or relationship
to the unknown verb.

Once the data are assembled into the associative list *Verb-Frame-List*, the function outputVerbFrame
iterates through each feature-value pair and prints out those with a non-empty value. The output will
contain any of the following features that the algorithm retrieved a value for:

• Similar actions in order from most probable to least probable

• Manner

• Properties of the verb

• Class membership of the verb

• Superclasses of the verb

• Superordinates of the verb

• Causes

• Effects

• Transitivity

• Object class

• Indirect object class

• Instrument class

• Agent class

The ultimate goal is to have the algorithm return a complete dictionary-like definition of an un-
known word. This will require having both the components of meaning as well as a natural language
engine to construct it. The current form of the output satisfies the first half of these requirements.

3.4 Additional Branches of Work

3.4.1 Verb categorization with conceptual dependency primitive acts

The implementation of verb categorization is done in two parts. The first stage uses a set of inference
rules that match certain structures in the SNePS network. If it finds a particular structure containing
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certain classes of arguments, it will assign the verb a CD category with the case frame: (class cd-cat).
When the verb algorithm is executed, it retrieves this case frame and returns the CD category. It will
also take this information and retrieve other verbs with the same CD category, which it will store in
the list of similar actions.

An example of an inference rule that determines a verb’s CD category is as follows:

(describe (assert forall ($A $B $C $D $E $F $G)
&ant (

(build agent *A act
(build action *B object *C to *D))

(build member *A class *E)
(build member *C class *F)
(build member *D class *E)
(build subclass *E superclass *entity)
(build subclass *F superclass *physical_object)

)
cq (build class *B cd_cat *PTRANS)))

This rule basically states that if an entity performs an act with respect to a physical object ‘to’
another entity, then one component of meaning of the unknown verb must be ‘the transfer of physical
location of an object’.

Currently there are inference rules for the following primitive acts. These rules are stored in the
knowledge file.

PTRANS: physical transfer of location of an object
ATRANS: The abstract transfer of ownership, possession, or control of an object
MTRANS: The mental transfer of information between agents
MBUILD: The mental construction of a thought or new info between agents
GRASP: The act of grasping of an object by an actor for manipulation
PROPEL: The applicaton of physical force to an object
MOVE: The movement of a body part of an agent by that agent
INGEST: The taking in of an object (food, air, water...) by an animal

3.4.2 Negation

Negation is a feature that has previously not been touched on in either the noun or verb algorithms.
I’ve found, however, that it may potentially be useful, if only to prevent incorrect information from
being returned as part of a definition. The implementation of this currently applies to negation of the
(similar similar) case frame linking two actions.

First, the inference rule shown below is applied, which constructs a ‘dissimilar’ case frame linking
the non-similar actions.

(describe (assert forall ($A $B)
ant (build min 0 max 0 arg (build similar *A similar *B))
cq (build dissimilar *A dissimilar *B)))

The verb algorithm then retrieves instances of the (dissimilar dissimilar) path and removes the
nodes it retrieves from the similar actions list.
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3.4.3 Recommendations from Past Research

The following work that was recommended by past researchers has been implemented in the current
version of the verb algorithm.

• Categorize the unknown verb based on a primitive act. (Ehrlich)

• List the arguments of the verb in the form of basic level categories. (Sood)

• Implement a formal structure for indirect objects (Del Vecchio)

• Return properties of the unknown verb. (Ahmed)

• Retrieve instrument usage. (Becker)

• Retrieve prepositions (Becker)

• Retrieve class membership and superclasses of the unknown verb (Sato)

• Retrieve additional representations of cause and effect (Santha)

• Classify the verb based on CD primitive acts (Becker & Sutanto)

• Construct rules to determine possible verb synonymy (Becker Sutanto)

The following issues brought up by past researchers have not yet been addressed. Below are my
recommendations for future work in these areas.

Track the state of the world before and after the action (Sood)

The basic idea behind this is a good one; by determining which changes took place in the world when
the action took place, we can infer what the action accomplished. The drawback of this, however, is
that this information is not likely to occur in many contexts. This task should therefore be left in the
hands of any researcher working on a context where this is applicable. It would most likely require a
completely separate algorithm in order to be effective.

Processing sequences of actions using the ‘snsequence’ relation (Santha)

This would require augmenting the verb algorithm to retrieve instances of a structure such as:

(build action snsequence
object1 (build act (build action *contaminate

object *theproduct))
object2 (build act (build action *proliferate))
object3 (build act *attainlargenums)))

While not difficult to retrieve, processing this structure within the verb algorithm would be tedious,
the final result of which would most likely be to presume that each successive act causes the next. If
that is determined to be a valid assumption by a researcher using this structure, then it would probably
be more efficient to create an inference rule that can match this structure and link each act with a cause
effect case frame.
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Address the role of morphology in CVA (Becker Sutanto)

Much further research would need to be done on the role of morphology in CVA before any aspect
of it is implemented in the verb algorithm. Most likely the implementation would embody some
knowledge base of morphemes and the primitive acts they represent. Additional case frames would
need to be established to define the internal context of a word and the paths formed by these case
frames would need to be added to the verb algorithm.

Identify reflexive usage of verbs (Becker Sutanto)

This would be fairly simple to implement. The function that would need to be added to the data
processing module would retrieve the list of all known agents and objects; if the intersection of these
lists is not null, then the actionmaybe reflexive. If the intersection is not null and the set-difference
of the two lists is null, then the actionmustbe reflexive. The possible outputs of this function should
be along the lines of one of the following:

• May be done to oneself.

• Can only be done to oneself.

• Is not done to oneself.

3.5 Support File Changes

The support files for CVA demos include the rels file, which defines all the necessary relations, and
the paths file, which defines path-based relations. These files are called at the start of each demo in
order to load a standard set of data. In addition to the above two, I have created a new ‘knowledge’
file to be loaded alongside them.

3.6 The Knowledge File

Outside of the verb algorithm, the biggest change I’ve made to the template of the CVA demo is the
construction of a knowledge file. The purpose of this file is to contain generic background rules and
knowledge for use in each CVA demo. This file current contains the following:

• Top level noun categories for use by inference rules. In order to be applicable, each
physical entity defined in a demo file must be a subordinate of one of these top level
categories.

• Conceptual dependency primitive categories. Currently there are multiple instances
of each CD category which correspond to the separate rules that must fire to apply
the category to a verb.

• A set of rules that define the structures and top level argument classes in order for a
verb to be placed in a CD category.

• The following inference rules of verb similarity:

– For each negation of a similar similar case frame, construct a dissimilar- dissim-
ilar case frame.

– For all agents, actions, and objects, actions performed on the same object by the
same agent are similar.
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– For all superclasses of each verb argument, actions performed on these same set
of classes are similar.

– For all verbs and all CD categories, any two verbs that share the same CD cate-
gory are similar.

3.7 Demos

Demos for the CVA project consist of a representation in SNePSUL code of a passage containing an
‘unknown’ word. The researcher constructing the demo must consider two important questions when
determining what to represent:

• What clues would a good reader use from the context to hypothesize a meaning for the unknown
word?

• What background knowledge is necessary for a reader to understand the unknown word in a
passage?

The task of the researcher is therefore to accurately represent the appropriate information that
a reader would need to understand the unknown word from context. Once the representations are
entered into the SNePS network, the verb algorithm is called to attempt to define the unknown verb.
If it successfully returns the elements of a usable definition of the unknown word, it serves as further
evidence that the algorithm best represents the CVA process that readers undertake. If it does not
retrieve the correct parts of a definition, then further work must be done to remedy the faults of either
the demo or the algorithm.

The next three sections will list the passages that were represented in SNePS and the verb algo-
rithm’s output for each of them.

3.8 Contexts of ‘perambulate’

This demo is contructed from six separate passages, some of which contain the verb ‘perambulate’,
and others which contain elements of those contexts. These passages were entered into SNePS, and
the verb algorithm executed after each was completed. From this sequence of examples, it is possible
to see how the addition of new information caused the verb algorithm’s hypothesized definition to
change. (Note: for each context listed, the segment within brackets is the segment that was repre-
sented in SNePS. The remainder of the context is provided for the reader’s convenience and in the
event that future work may be done on a more detailed representation of any of these passages.)

Context 1

[In the morning we rose to perambulate a city], which only history shews to have once
flourished, [and surveyed the ruins of ancient magnificence] of which even the ruins can-
not long be visible, unless some care be taken to preserve them; and where is the pleasure
of preserving such mournful memorials? (Johnson, 1775)

Output 1

verb:
lex: perambulate;
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property: unknown;
similar action: (rose survey)
transitivity: (transitive)
object: (city)
agent: (person)

Context 2

[We are going to attack a city and destroy it soon].

Output 2

verb:
lex: perambulate;
property: unknown;
similar action: (unmake activity destroy attack)
transitivity: (transitive)
object: (city)
agent: (person)

Context 3

[Nightly did the hereditary prince of the land perambulate the streets of his capital], dis-
guised, well armed, alone, or with a single confidential attendant. (Motley, 1578)

Output 3

verb:
lex: perambulate;
property: unknown;
similar action: (unmake activity destroy attack)
transitivity: (transitive)
object: (place)
agent: (person)

Context 4

Between Paris in peace and Paris today the most striking difference is lack of population.
Idle rich, the employees of the government, and tourists of all countries are missing. They
leave a great emptiness. [When you walk the streets] you feel either that you are up very
early, before any one is awake, or that you are in a boom town from which the boom has
departed. (Davis, 1915)

Output 4

verb:
lex: perambulate;
property: unknown;
similar action: (unmake activity destroy attack walk survey

perceive move)
transitivity: (transitive)
object: (place)
agent: (person)
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Context 5

Ideas came to her chiefly when she was in motion. [She liked to perambulate the room]
with a duster in her hand, with which she stopped to polish the backs of already lustrous
books, musing and romancing as she did so. (Woolf, 1919)

Output 5

verb:
lex: perambulate;
property: unknown;
similar action: (unmake activity destroy attack walk survey

perceive move)
transitivity: (transitive)
object: (place)
agent: (person)

Context 6

[Athena crossed the room to the other bed].

Output 6

verb:
lex: perambulate;
property: unknown;
similar action: (unmake activity move crossed attack destroy

walk survey perceive)
transitivity: (transitive)
object: (place)
agent: (person)

In each subsequent definition of ‘perambulate’, we can see how or whether the new information
from the latest passage caused the verb algorithm to return a different output. Context 1 establishes
the actions in the context as similar actions due to the fact that these are the only actions that SNePS
‘knows’ about.

Context 2 ‘teaches’ it a new pair of verbs that can occur in the context of the same arguments that
are found in context 1 (i.e., ‘city’). This causes the algorithm to conclude that ‘unmake’ and ‘activity’
(superclasses of ‘attack’ and ‘destroy’) are the closest known actions to ‘perambulate’.

Context 3 presents ‘perambulate’ in the context of a new object (‘streets’). Now that the algorithm
has seen both ‘city’ and ‘streets’ occur as objects, it determines that the most likely object is a ‘place’.

Context 4 presents what we know to be a possible synonym of perambulate (‘walk’) in a similar
context. This causes the algorithm to add ‘move’ and ‘walk’ to the list of possible similar actions.

Context 5 reinforces the notion that an agent can perambulate a ‘place’. However it does not result
in a change in definition.

Context 6 presents another possible synonym of perambulate (‘crossed’) in a similar context.
Since the algorithm has now seen two other subclasses of the verb ‘move’ in similar contexts as
perambulate, ‘move’ moves up the list of possible similar actions.

This demo serves to represent a possible situation that may occur in actual vocabulary learning,
namely, the encoutering of examples that lead to false conclusions and others that reinforce the correct
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conclusion of the meaning of an unknown word. Overall, however, it is most likely that a majority of
contexts a reader may encounter will reinforce or narrow down the correct conclusion, thus leading
to the correct result over time. In this respect, the fact that the algorithm correctly added emphasis
to ‘move’ as a similar action in the end proves that the algorithm satisfactorily reproduces the results
that a human vocabulary learner might with solely their knowledge of these contexts.

3.9 Conceptual Dependency Categories

This demo shows the use of the CD primitive act inference rules to categorize an unknown verb and
the ability of the verb algorithm to retrieve them. The example sentences that were represented and
the verb algorithm outputs are listed below:
Example 1

"Chris gave the book to john"

verb:
lex: gave;
CD-CAT: (PTRANS(1a))
transitivity: (transitive)

Example 2

"Chris drove from main street to maple"

verb:
lex: drove;
CD-CAT: (PTRANS(3) PTRANS(2b))
similar action: (gave)
transitivity: (intransitive)

Example 3

"Chris went to the office"

verb:
lex: went;
CD-CAT: (PTRANS(3))
similar action: (drove)
transitivity: (intransitive)

Example 4

"Chris showed John the story"

verb:
lex: showed;
CD-CAT: (MTRANS(1b))
similar action: (drove went gave)
transitivity: (ditransitive)
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Example 5

"Chris told John that Mary saw Bill"

verb:
lex: told;
CD-CAT: (MTRANS(2))
similar action: (showed)
transitivity: (ditransitive)

Example 6

"Chris sent John the package"

verb:
lex: sent;
CD-CAT: (PTRANS(4))
similar action: (showed told)
transitivity: (ditransitive)

Example 7

"The business offered stock to its shareholders"

verb:
lex: offered;
CD-CAT: (MBUILD ATRANS)
transitivity: (transitive)

Example 8

"Bill waved his hands"

verb:
lex: waved;
CD-CAT: (MOVE(1))
transitivity: (transitive)

Example 9

"I thought of a plan"

verb:
lex: thought;
CD-CAT: (MBUILD ATRANS)
similar action: (offered)
transitivity: (transitive)

Example 10

"Chris ate a pomegranate."

19



verb:
lex: ate;
CD-CAT: (INGEST)
similar action: (sent thought drove went showed told gave)
transitivity: (transitive)

Example 11

"Chris took the cup in his hands"

verb:
lex: took;
CD-CAT: (GRASP)
similar action: (thought ate went showed told sent gave drove)
transitivity: (transitive)

Example 12

"John pushed the box onto the lift"
verb:

lex: pushed;
CD-CAT: (PROPEL)
transitivity: (transitive)

Although all the examples used in these tests are rigged to match a specific CD primitive act, this
examples serve the purpose of illustrating what elements are required in the context for the inference
rules to work. The following list summarizes which verbs were categorized with which primitive act:

1. gave: PTRANS

2. drove: PTRANS

3. went: PTRANS

4. showed: MTRANS

5. told: MTRANS

6. sent: PTRANS

7. offered: MBUILD ATRANS

8. waved: MOVE

9. thought: MBUILD ATRANS

10. ate: INGEST

11. took: GRASP

12. pushed: PROPEL

It should be noted that currently the inference rules for MBUILD and ATRANS match the same
argument structure and types. Syntactic clues alone are not enough to differentiate the two.

For some of the above verbs it can be seen that the verb algorithm assigned related similar actions,
while for others it did not. This is due to the fact that in the absence of any likely similar actions, the
algorithm reverts to retrieving any known actions that the agent performed.
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Some instances where it satisfactorily retrieved similar actions are in the cases of ‘showed’ and
‘told’, and ‘drove’ and ‘went’. Both of these resulted from the algorithm finding actions that shared
the same CD category.

3.10 Evaluation of Past Demos

The following section lists some of the previous contexts that were worked on along with the output
of running them with the current version of the verb algorithm.

3.10.1 A context of ‘augur’ (Becker 2004)

Context:

Suddenly the tempest redoubled. The poor young woman could augur nothing favorable
as she listened to the threatening heavens, the changes of which were interpreted in those
credulous days according to the ideas or the habits of individuals.

Output:

verb:
lex: augur;
property: unknown;
similar action: (interpret listen)
cause: (bad omen heavens instance of change tempest listen

interpret)
transitivity: (transitive)
object: (quality)
agent: (human)

3.10.2 A context of ‘cripple’ (Ahmed 2003)

Context:

Typhoon Vera killed or injured 218 people and crippled the seaport city of Keelung.

Output:

verb:
lex: cripple;
property: bad; unknown;
similar action: (kill injure kill_or_injure)
transitivity: (transitive)

3.10.3 A context of ‘fold’ (Sato 2003)

Context:

During the early 1930s, many small businesses folded(fold: to go out of business) OR
large corporations bought them up.

Output:
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verb:
lex: fold;
property: unknown; destructive to business;
similar action: (go out of business)
transitivity: (intransitive)
agent: (organization)

3.10.4 A context of ‘proliferate’ (Santha 2003)

Context:

Postfarm food processing, storage, and improper handling and cooking are major contrib-
utors to the chain of events that allows the pathogen to contaminate the product, proliferate
on or in the food, and attain the large numbers that cause disease.

Output:

verb:
lex: proliferate;
similar action: (multiply)
cause: (contaminate)
effect: (attain)
transitivity: (intransitive)

3.10.5 A context of ‘pry’ (Becker 2003)

Context:

If everything is unbolted, unscrewed, and unattached, pry the door panel from the door
using a wide, thin screwdriver”

Output:

verb:
lex: pry;

manner:
movement: from object;
using: instrument;
cause: (Everything being disconnected)
effect: (Something is removed)
transitivity: (transitive)
instrument: (screwdriver tool)

3.10.6 A context of ‘quail’ (Sutanto 2003)

Context:

The dark figure streaming with fire raced towards them. The orcs yelled and poured over
the stone gangways. Then Boromir raised his horn and blew. Loud the challenge rang
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and bellowed, like the shout of many throats under the cavernous roof. For a moment the
orcs *quailed* and the fiery shadow halted. Then the echoes died as suddenly as a flame
blown out by a dark wind, and the enemy advanced again.

Output:

verb:
lex: quail;
similar action: (yell advance)
transitivity: (intransitive)

4 Remaining Issues and Future Work

There are a number of potential areas of future work in the CVA project, especially in areas with
respect to verbs. Some general trends I’d like to see in the future are a greater emphasis on studying
and representing multiple contexts of the same verb to assess how the information from each can
enhance or refute assumptions from the other, and further work creating a general set of inference
rules to classify verbs based on features of their arguments. In the following sections, I will list some
of the specific tasks that I recommend for future researchers to work on.

4.1 Other Categorization Schemas

One branch of future work on the verb algorithm would be to implement another method of verb
categorization. Beth Levin’s verb classes would provide a much greater level of detail than that of
CD, but would take much more work to implement.

Another possibility would be to use Webster and Marcus’s (1989) theory of feature sets to build a
verb hierarchy in which new actions can be placed. Much of the information that is required by their
system is based on thematic roles, which matches very closely to the case frames we use. Examples
of some of the features used include ‘takes an object’, ‘takes an agent’, and ‘takes a theme’.

During execution, the algorithm would place the verb in some position in the verb hierarchy based
on the features present. As further contexts of the verb are added, the verb may move to a different
position in the hierarchy, if it finds that any of its established features are optional, or if new optional
features must be added.

Creating an implementation of this system should not be difficult since all of the features of the
verb are already present in the SNePS network. These features can be retrieved by the verb algorithm
and matched to a predefined hierarchy (e.g., via an association list with the features list as the key and
the verb class as the value).

Further refinement can be made by computing the ‘required’ and ‘optional’ features based on
evidence from multiple contexts. Using the intersection function on the list of all of the unknown
verb’s arguments would produce the list of required features, while the ‘set-difference’ of this required
features list and the complete list of arguments of the unknown verb would produce the list of optional
features. The different optional and required features lists could then be used to match the unknown
verb to a more specific verb category.
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4.2 Further Work on Background Knowledge and Inference Rules

Further work on CVA will most likely focus on enhancing the set of general rules and background
knowledge that may be employed to infer data pertinent to defining an unknown word.

In terms of background knowledge, further work on categorization methods will undoubtedly
require augmenting the number of top-level categories with which to define them.

As a note for future researchers, there have been some issues I have encountered while implement-
ing inference rules and background knowledge. First, in order to incorporate rules and background
knowledge in such a way that they will take effect, the rules must be ‘asserted’ first, and the proposi-
tions ‘added’ later. The inference rules are not applied if any of the necessary background knowledge
was ‘asserted’.

Another factor that someone may encounter a problem with during the construction of further
inference rules is unique variable binding. This feature prevents two variables from pointing to the
same node. An example where this might cause a problem is with a rule of subcategorization that is
not built to handle reflexivity. That is, if the rule is meant to match each of the verb’s arguments, but
two of those arguments are actually the same node, then the rule will not register a match. This can be
worked around by developing multiple rules, one of which handles the reflexive cases with a single
variable, and the other which handles all other cases.

Lastly, I should make a recommendation that since the amount of background knowledge and
inference rules can potentially be expanded a great deal, it would be advisable to develop a new form
of organization for this data (e.g., a background knowledge file and an inference rule file). Addition-
ally, within each of these files, some form of organization must be maintained (e.g., modularize by
categorization theory) .

4.3 Representing Prepositions

Another issue that has remained open-ended for some time now is the representation of prepositions.
Two contending formats of representing prepositions in SNePS are as follows:

• represent the preposition as a node with a ‘prep’ arc, and represent the argument of
the preposition as a separate node with an ‘arg’ arc.

• represent the argument of the preposition as a node with an arc labeled to represent
the actual preposition.

Each of these has its advantages and disadvantages. The former would appear to be more flexible,
while the latter would make it easier to organize in the verb algorithm. Currently I have chosen to
implement the second method for the following reasons:

• the verb algorithm retrieves information based on paths, not on the values at the end
of the path.

• Implementing the ‘prep’ arc would require that another level of processing take place
to separate the arguments for each type of preposition.

• Either way it will still be necessary to have a list of ‘known’ prepositions along with
methods of processing each of them, so the advantage of flexibility that the first
method has is somewhat nullified.
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• Prepositions are a closed class of words. The flexibility that the first method offers is
not really needed unless we expand into multilingual CVA, so there is only need for
a finite number of new relations to be defined.

Further work on prepositions will be needed if more specific verb categorization schemes are to
be implemented. Currently several of the CD category rules of inference utilize a ‘to’ arc to identify
movement between entities. This can eventually be expanded for different classes of prepositions such
as those representing spatial relationships (e.g. ‘in’, ‘on’, ‘at’), or corequisite properties or events (e.g.
‘with’, ‘by’, ‘as’, ‘during’).

4.4 Looking Ahead to Verb Algorithm 4.0

With the current version (3.1) of the verb algorithm completed, its functionality is now comparable to
that of the noun algorithm, which has for a long time been several stages ahead.

The next rendition of these algorithms should probably work on combining the two into one (and
then seeing if an adjective algorithm can be incorporated). In terms of design and ease of modifica-
tion, the current version of the verb algorithm would probably be the best to build from. The only
modifications necessary would be to define the set of paths that the algorithm must search through
to define an unknown noun, and to define the list of features of the noun definition frame. The only
functions that would need to be written (or moved over from the current noun algorithm) are those
which populate each of the noun definition frame’s features.

Once the complete functionality needed for the unified definition algorithm is hammered out, the
next step would be to convert the algorithm into SNeRE, integrating it with the cognitive agent of the
SNePS system.
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4.5 Conclusion

The current implementation of the verb algorithm now accomplishes what many previous researchers
of the CVA of verbs have wanted it to do. Based on the results of the verb demos it appears that the
algorithm is sound. There is still much future work to be done in CVA, however. Below, I outline the
main stages of the CVA process and the implementation needed to bring it to completion:

CVA Process Possible Implementation
1. Read the passage. A parser and grammar (ATN or LKB)
2. Retrieve background knowledge associ-
ated with each element of the passage.

Wordnet, Cyc

3. Combine known background knowledge
and information from the passage.

Context-specific inference rules, SNePS

4. Generate a set of generic inferences to de-
termine the word’s relationship to other ele-
ments in the network.

General inference rules, SNePS

5. Determine which information is relevant
to the meaning of the unknown word.

Word definition algorithm, SNeRE

6. Formulate a grammatical definition. SNeRE, SNaLPS, ATN, LKB.
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