CSE 740: Verb Algorithm Revision
Final Report

Lunarso Sutanto and Chris Becker

May 4, 2004

Contents

Introduction

Mbotivation and Goals

2.1 Imitial Goals L
2.2 The Verb Algorithm as of Early Spring 2004
2.3 Redesigning the Verb Algorithm
2.3.1 Readability oo
2.3.2 Modularityo
2.3.3 Upgradeability

Accomplishments This Semester

Verb Algorithm 3.0

4.1 Overall Design
4.1.1 Data Collection
4.1.2 Data Processing and Output

4.2 Overview of the Code
4.2.1 ConstructFindLists.cl
4.2.2 ConstructFoundLists.cl
4.2.3 Processing.cl 0oL
4.24 Output.cl
4.2.5 defunverb.clo

4.3 How to add new components
4.3.1 Coding Styleo
4.3.2 Adding new Functions

Sample of Results and Explanations

5.1 Cripple Run o

5.2 FoldRun

5.3 Proliferate Run

54 PryRuno

56 Quail Run

Future Work

6.1 Tracing e

6.2 Data Collection

6.3 Data Processing

6.4 Output

6.5 Determining Possible Verb Synonymy

12
15
15
18
20
21
21
22
22
22

22
23
27
28
29
33

Determining the Relationship between Conjoined actions. . . 37

Verb Classes e 37
6.7.1 Conceptual Dependency 38
Other Possible Future Work 40

Abstract

We started this semester with a desire to work on the verb algo-
rithm, though at the beginning we did not know how we would work
on it. As it turns out, we ended up overhauling the verb algorithm
entirely, aiming to make it smaller, more logically laid out and easier
to comprehend. We thought out a new design paradigm that we be-
lieve will make extending the algorithm quick and easy. And we laid
out the design ideas, recommend coding styles and set an example for
future designers to model after.

1 Introduction

The history of Contextual Vocabulary Acquisition in the University at Buf-
falo started with Karen Ehrlich’s original dissertation in 1995. The goal of
the project is to let a computational cognitive agent figure out the meaning
of words (nouns, verbs and adjectives) from context. The knowledge rep-
resentation and reasoning system used by is SNePS; Cassie is the cognitive
agent that uses SNePS as the system for her “mind”. The second part of
the goal is to extract the algorithms used in figuring out the meaning of
words and using them in the classroom to teach children to do contextual
vocabulary acquisition.

Contextual Vocabulary Acquisition (henceforth labelled CVA for the rest
of the paper) is performed using SNePS in 3 steps:

e Setting up background knowledge and background rules
e Representing the passage

e Processing the interaction between background rules and the passage,
and extracting the results

Note that there are 3 separate algorithms used for different word classes at
the third step: noun algorithm, verb algorithm and adjective algorithm.

Our work in this seminar revolves mainly in the third step of the CVA
process. We redesigned the verb algorithm that extracts the pertinent in-
formation about the unknown word from the interaction of the background
knowledge and the passage.

2 Motivation and Goals

Much of the previous work in this area was focused on the noun algorithm.
The state of the verb algorithm at the beginning of this semester was rudi-
mentary compared to the noun algorithm. Both the authors had done some
previous research work into doing CVA for verbs and both the authors had
found the verb algorithm lacking in its ability to report the meaning of the
unknown words. Thus begins this semester’s work in rewriting the verb
algorithm.

2.1 Initial Goals

At first, we started out feeling quite unclear as to what we should try to
achieve this semester. Since both of us have already done some work with

defining verbs before, this time we would like to work on the algorithm itself
rather than simply working with it. We are sure that there are improvements
that we could make for the verb algorithm and thus contribute in a more
useful manner to the CVA project overall.

Our original ideas about how we wanted to extend the verb algorithm
were:

1. Allow the algorithm to categorize and classify verbs

2. Make the algorithm report actors’ and objects’ features

2.2 The Verb Algorithm as of Early Spring 2004

The first step was to examine the verb algorithm as it stood. The latest
version (the one that we considered most feature-rich) was the algorithm
modified by Sato. The features of this algorithm include:

The main motivation behind the design of the previous verb algorithm
was to have it function well with information from multiple contexts. Nu-
merous functions were meant to determine the ‘most common’ of some set
of features. Additionally, the data structures used were designed to separate
information for each instance of the unknown verb. The main features of
this version of the algorithm are listed below.

a. For all agents, objects and indirect objects do the following;:

i. Report the most common superclasses from the bottom up.

ii. Report the most common superclasses from the top down.

b. Determine the most common type of transitivity based on the arguments
found for each instance of the verb’s usage in the SNePS network.

c. (Sato 2003) Identify properties of the unknown verb.

d. (Sato 2003) Identify synonyms of the unknown verb.

Overall, most of the computation in this algorithm went into determin-
ing the proper generalizations of the verb and its arguments using a variety
of means. The only information it really uses in this process is class mem-
bership and superclasses of the unknown verb.

However, the algorithm had some problems. It took us slightly over
a week to go through the algorithm because of its sheer size. The code
is well commented and its use of white space does help in understanding

it. However, the way the code is laid out and organized was rather hard
to understand. This was in a large part due to the additions that the
programmers made in order to allow the program to give more information
when it needs to be traced by LISP.

Furthermore, we determined that in order to add new features as we
originally planned meant adding code in several places in the program as
opposed to simply carving out one independent section. We thought that
this would get difficult to track and debug, especially since we would like to
work on implementing the changes simultaneously.

2.3 Redesigning the Verb Algorithm

We played with the idea of reworking the program from the ground up for
quite a while. It seems like the amount of time required to complete such
an undertaking was beyond our constraints. However, we did not relish the
idea of overcoming the present challenges in the (then) current version of the
program either. Finally we thought that perhaps the investment we make
in redesigning the code from the ground up will be worth it when we wan to
add new features in the future. Also, for all we knew, perhaps the amount
of time taken in rewriting the program might be just a little bit more than
the time to search the old code and understand it enough to modify it!

The goals of redesigning the algorithm are simple: we want to address
the flaws present in the current version of the program and we want to
improve its readability and ease of use.

In redesigning our version of the algorithm, we sought to maintain the
functionality of the old version while making it more efficient. One draw-
back is that our version currently does not differentiate between the usage
of multiple instances of the unknown verb in a representation. There is,
however, the proper infrastructure in place to incorporate this if needed.
However, our model seems to follow closely from van Daalen-Kapteijns and
Elshout-Mohr who posit the idea that a reader employs a model of an un-
known word which specifies how they incorporate new information and how
they apply the information in the model to additional uses of the unknown
word. As such, our algorithm may represent a similar model in that it de-
termines what information in all the represented contexts combined should
or shouldn’t be used.

2.3.1 Readability

We do not wish for anyone working on the algorithm in the future to spend
as much time as we did in learning the way the program works. To this end,
we:

e focused on making the flow of the program be as logical as possible

e ensured that future programmers would have to read as little code as
possible to get started

e added a lot of comments and explanations within the program
e cut down a lot of redundancies

e documenting our design thoroughly and pointing out clearly what
parts a programmer would need to know

We hope that these features would allow others coming after us to have
an easier time working with the verb algorithm.

2.3.2 Modularity

Another way to improve the readability was to make the program design
modular. This meant that functions are separated logically and that adding
new features does not mean having to add code in several different places
at once. Instead, new additions could be placed in just one independent
module. The main program that loads up the modules can run any combi-
nation of modules without them running into each other or getting hung up
because they relied on each other.

This also meant that future programmers would not need to encounter
modules that different authors wrote as they work on adding features to the
verb algorithm. Different coding styles within a program can throw off a
person trying to understand the content of the program. Instead, he can just
focus on the essential parts of the program and use the modules as reference
when he develops his addition.

2.3.3 Upgradeability

It should be clear by now that increased readability and a modular design
are stepping stones to making the program easy to upgrade. This is quite
an important design feature because it meant that future programmers can
implement new features and changes as quickly as possible, thus allowing

more to be done in the scope of a semester’s work. We hope that our efforts
will accelerate development of UB’s CVA project tremendeously.

3 Accomplishments This Semester

We are happy to report that most of our plans were carried out this semester.
We rewrote the algorithm from the ground up and still had time to imple-
ment the original additions that we wanted to make. This, we believe, is a
testament to how easy it is to upgrade the new version of the algorithm.

The functions implemented in the new verb algorithm and descriptions
of the data structures used are in the following section. In general, the
functionality of the old algorithm is completely reimplemented successfully
in our algorithm. Furthermore, the way our algorithm reports transitivity
is improved since the report is more complete and useful.

4 Verb Algorithm 3.0

4.1 Overall Design

The overall design of the verb algorithm is to be implemented in two parts.
One part, the verb definition algorithm, written in Lisp, serves to retrieve
and summarize information from the network; the second part, the inference
engine, to be written in SNePSUL, will contain a generic set of rules used to
make conclusions about represented actions. As of the writing of this paper,
we have completed the first part of this overall design. Specifications for the
second part are described in section 4.4.

The overall design of the verb definition algorithm is itself broken down
into a set of modules. These modules group together into the two phases of
execution of the algorithm, the first being data collection, the second being
data processing and output (summarization).

Figure 4.1 illustrates the overall design of the verb definition algorithm.

4.1.1 Data Collection

Our goals for the data collection component of the verb algorithm were
twofold. The first was to standardize the location of specific information in
the network. For this we needed to make sure the algorithm retrieved all the
relevant information present in previous verb demos. Fortunately the most
recently developed verb demos followed a fairly similar design. As such, the

defun_verh.cl
["ProcessList™

definevert iv &optional (trace 0))

ConstructFindLists.cl /
FArgsToFind™

[FArgRelsToFind* Frocessing.cl

["Find-List* [Fsubcat-list
[FMiscitemsToFind®

[FProcessingDataToFind™ subcategorization-test

transitivity-match (list)

constructFindList §

ConstructFoundLists.cl Cutput.cl
[FArgList®
["ArgsFound™ nenerate-Generalizations §
["Found-List™ outputF oundList §
["MiscList recursive-Print (args)
["ProcessingDatalist*
[FRelsList”

constructArglist O
constructhisclist
constructProcessingDatalist §
constructRelsList
evaluateFindList (verk)
evaluateProcessingDatalist fverb)

Figure 1: Overall Design of the Verb Definition Algorithm

10

X
<indirect object>

Figure 2: This illustrates the arguments of the verb that the verb algorithm
currently searches for. The algorithm stores the argument nodes (e.g. ml,
m2, m3, m4, m5, m6, m7, m&) in the list *ArgsFound* located in Construct-
FoundLists.cl

algorithm only needs to evaluate a single path for each piece of information
it needs to retrieve.

We also had to take into consideration the fact that many future verb
demos might require additional case frames to best represent information
in a particular context. This brings us to our second goal, which was to
modularize data collection in such a way that new case frames could be
added without having to modify any additional code.

As of the writing of this paper, the verb definition algorithm searches
for the information illustrated in figures 4.2-4.5. This information is divided
into several categories. First there are the arguments of the verb. These
include object, indirect object, from-object, to-object, and with-object. It
also searches for arguments of the action as a whole, agent and instrument.
These are illustrated in figure 4.2. The paths for these arguments are located
in the list *ArgsToFind* in ConstructFindLists.cl.

For each argument of the action and act specified above, the verb al-
gorithm searches for the attributes property, class membership, superclass,
and superordinate. The last item, superordinate, is defined as the super-
class of the membership class. I included this specific path after I found it
to be present in one or more verb demos. These case frames are illustrated
in figure 4.3, using “agent” as the example argument. The paths for these
attributes are stored in the list *ArgRelsToFind* in ConstructFindLists.cl.
Upon execution, the function constructFindList, in ConstructFindLists.cl

11

property

lex lex lex

Figure 3: For each argument in figure 4.2, the algorithm retrieves the at-
tributes illustrated here. The algorithm will store the contents of the lex
nodes (e.g. superordinate,class, superclass, property) in the list *Found-
List* located in ConstructFoundLists.cl

combines the elements of both *ArgsToFind* and *ArgRelsToFind* to form
a single *Find-List* with the complete paths to each attribute of each ar-
gument. And example of a segment of the *Find-List* is illustrated later in
this paper in figure 4.6.

In addition to the above information, the verb algorithm also searches
for information independent of the specific arguments. These include case
frames for cause and effect, synonymy and equivalence, and other actions
performed in relation to some of the arguments of the target verb. These
paths are illustrated in figures 4.3, 4.4, and 4.5.

4.1.2 Data Processing and Output

Data processing and output are two components that are closely linked since
the whole idea of this part is to produce readable information. We decided
it would be best to decouple these two components for the sake of flexibility
and ease of modification.

Currently, the data processing component (i.e. the functions located
in the file Processing.cl) consists of two functions; one to determine the
argument types of the verb, and the other to determine the transitivity.
We also plan on including a function to determine reflexivity of the verb,
however as of now this function is not integrated into the algorithm.

The file Output.cl currently consists of two functions that return data in
the list, *Found-List* in a readable format. One function simply prints out
a list of all the data that was retrieved. Another function generates a set
of generalized sentences using the verb in conjunction with the information
retrieved for each argument of the verb.

12

lex

<antecedent>

action action action

< < <>

lex lex lex

Figure 4: Illustration of the paths for cause - effect, and ant - c¢q that are
evaluated by the verb algorithm. The algorithm will store the contents of
the lex nodes (e.g. effect, cause, antecedent, consequent, cause action, effect
action) in the list *Found-List* located in ConstructFoundLists.cl

similar svnonvim SVRONnvIN

Figure 5: Paths for equiv, similar, and synonym case frames evaluated by
the verb algorithm. The algorithm will store the contents of the lex nodes
(e.g. equiv action, similar action, synonym) in the list *Found-List* located
in ConstructFoundLists.cl

13

<other actions by object>

Figure 6: Actions retrieved by the verb algorithm that are related to var-
ious arguments of the verb. The algorithm will store the contents of the
lex nodes (e.g. other actions w/ instr, other actions on object, other ac-
tions by object, other actions by agent) in the list *Found-List* located in
ConstructFoundLists.cl

An example output of the current version of the verb algorithm appears
below in figure 4.6.

* * x Defining the verb quail * * *

Arguments of the verb:
(agent)

Transitivity: intransitive

* * * Basic Findings * * *

possible synonym of quail is:
halt,
quail,

possible actions performed by agent of quail is:
quail,
yell,
advance,

14

possible superclass of agent is:
orcs,

* * x generalizations from this context * * x*

Something that is a subclass of {orcs} can quail

4.2 Overview of the Code

The purpose of this section of the paper will be to explain the function of
each component in the verb algorithm so that future students may use this
as a reference when first looking at the code.

4.2.1 ConstructFindLists.cl

This file contains the initial data used by the verb algorithm to retrieve
information from the SNePS network. The lists contained in this file can be
added to without having to modify code in any other function. Here are the
data structures:

LIST *ArgsToFind*

This list contains SNePS paths from the target verb’s lex arc to the various
arguments of the act and action. The following shows the content of the
list.

(setf *ArgsToFind* (list

> (verb (lex))

’(act (action lex))

> (agent (agent- act action lex))

>(object (object- action lex))

> (indobj (indobj- action lex))

’>(from (from- action lex))

’(to (to- action lex))

’(instrument (instrument- act action lex))
>(with (with- action lex))

As illustrated above, *ArgsToFind* is an association list with the argu-
ment name as the key and the path as the value.

15

LIST *ArgRelsToFind*

This list contains SNePS paths from the target verb’s argument nodes to
each attribute linked to it. Like the list *ArgsToFind* above, *ArgRel-
sToFind* is also an association list, with the attribute names as the key and
the path as the value. Here is the contents of the list:

(setf *ArgRelsToFind* (list

> (superclass (lex- superclass- subclass))

> (membership (lex- class- member))

> (superordinate (lex- superclass- subclass class- member))
> (property (lex- property- object))

Upon execution, each path in *ArgRelsToFind* is appended to each path
in *ArgsToFind*. This complete list is the *Find-List*, which is described
in more detail later in this paper.

LIST *EvalList*

This list is not yet fully implemented. It’s purpose, if needed, is to hold
complex SNePSUL statements to be evaluated separately from the rest of
the elements in the other lists. The following shows one possible content of
the data structure:

(setf *EvallList* (list

’(examplel (first (1list #3! ((find (act action lex) “verb
(act object) ~object (agent) ~agent)))))

> (example2 (first (list #3! ((find (act action lex) ~“verb
(agent) ~agent))))))

The *EvalList* is an association list. When this is fully implemented,
“examplel” and “example2” would be replaced by descriptive key values
that will be used to retrieve the statement to evaluate.

LIST *Find-List*

This list represents a complete list of paths which will later be iterated
through and evaluated as part of a SNePS find statement. The evaluation
of this is illustrated below.

16

(find (<path from *Find-List*>) verb)

The data returned by the find statement is then stored in the list *Found-
List*, which is structured the same as the *Find-List* except that instead
of paths, the cdr of each association list contains the returned data.

(agent
((superclass (lex- superclass- subclass agent- act action lex))
(membership (lex- class- member agent- act action lex))
(superordinate (lex- superclass- subclass class- member agent- act
action lex))
(property (lex- property- object agent- act action lex))))
(object
((superclass (lex- superclass- subclass object- action lex))
(membership (lex- class- member object- action lex))
(superordinate (lex- superclass- subclass class- member object-
action lex))
(property (lex- property- object object- action lex))))

The structure of *Find-List* is a double association lists with the verb
arguments as the key for a second association list with the attribute name
as its key and full path from the verb’s lex arc to the attribute’s lex arc as
the value.

LIST *MiscItemsToFind*

This list contains paths similar to the above lists, except the paths contained
in *MiscItemsToFind* are not combined with paths from any other list.
The elements of this list are merely appended to the *Find-List*. This list
contains the paths for an miscellaneous items that we would need to be
returned in the final output.

LIST *ProcessingDataToFind*

This list serves the same function as the *Find-List*, except that the infor-
mation retrieved upon its evaluation will be stored in a separate list from
the *Found-List*, which will not be returned as output, but instead just
made available to the processing functions.

17

FUNCTION constructFindList

This function combines the contents of *ArgsToFind*, *ArgRelsToFind*,
and *MiscltemsToFind* into a single list, *Find-List* which will be eval-
uated in the function evaluateFindList in the file ConstructFoundLists.cl.
This function combines *ArgsToFind* and *ArgRelsToFind* into a double
association list with the verb’s argument (e.g. agent, object, etc) as the key,
and another association list as the value, which contains the argument’s at-
tribute as the key and the full path from the verb’s lex arc to the attribute’s
lex arc as the value. It also appends the list *MiscltemsToFind* to *Find-
List* so that it is the central storage for all information the verb algorithm
must retrieve and output.

4.2.2 ConstructFoundLists.cl

This file contains functions that use the lists from the file ConstructFindLists
to actually retrieve information from the SNePS network and store it in a
central data structure. This file also contains helper functions and several
other global lists that assist in this process. The helper functions, which will
be described in greater detail below, are used to construct lists of keys for
each association list so that the values of these lists can be easily accessed.
The presence of these functions allows us to modify and add to the lists in
the file ConstructFindLists.cl without having to modify any additional code.

FUNCTION constructArgList
LIST *ArgList*

This function creates the list *ArgList* which contains the keys of the as-
sociation list *ArgsToFind*. An example of the contents of *ArgList* is
illustrated below.

(verb act agent object indobj from to with)

This list is used to iterate through in order to quickly access all the
elements in the association lists *ArgsToFind*, *Find-List*, *ArgsFound*,
and *Found-List*, which all use the same elements as keys.

FUNCTION constructEvallndexList
LIST *EvallndexList*

This function creates the list *EvallndexList* containing the keys of the
association list *Evallist*. This is used to quickly access the contents of

18

EvalList and *EvalData*. Note that this function is not currently in use.

FUNCTION constructMiscList
LIST *MiscList*

This function creates the list *MiscList* containing all the keys of the as-
sociation list *MiscltemsToFind*. *MiscList* is used to quickly access the
elements in the association lists *Find-List* and *Found-List*.

FUNCTION constructProcessingDataList
LIST *ProcessingDataList*

This function creates the list *ProcessingDataList* containing all the keys
of the association list *ProcessingDataToFind*. *ProcessingDatalist* is
used to quickly access the elements in the association lists *Processing-
DataToFind* and *ProcessingData*. The purpose of these lists is to retrieve
and store data to be used solely by any of the processing functions. These
lists are currently not in use.

FUNCTION constructRelsList
LIST *RelsList*

This function creates the list *RelsList* which contains the keys of the as-
sociation list *ArgRelsToFind*. The contents of this list are used to quickly
access the elements of the association lists *Find-List*, *ArgRelsToFind*,
and *Found-List*.

FUNCTION evaluateFindList
LIST *Found-List*

This function iterates through the *Find-List*, evaluates a find statement on
the paths stored within, and stored the data returned in the association list
Found-List. *Found-List* has the same relative structure of *Find-List*
so that data can easily be retrieved.

FUNCTION evaluateProcessingDataList
LIST *ProcessingData*

This function is not fully implemented in the algorithm. It evaluates the
contents of *ProcessingDatalist* from the file ConstructFindLists.cl, and
stores it in the association list *ProcessingData*. Unlike the contents of

19

Found-List, the contents of this list will not be automatically returned in
the final output. Instead the data in the association list *ProcessingData*
will be used by functions in the data processing component of the verb
algorithm.

FUNCTION evaluateEvalList
LIST *EvalList*

This function is not complete at this time. When finished, it will evaluate
the statements stored in the association list *EvalList* and store the results
in the association list *EvalData*.

4.2.3 Processing.cl

This file contains functions that process the data contained in the various
lists in the file ConstructFoundLists.cl. This section is currently a bit sparse,
but should fill up as future students work on the verb algorithm.

FUNCTION subcategorization-test
LIST *subcat-list*

This function identifies which arguments of those stored in *ArgList* are
actually arguments of the unknown verb. The types of the arguments found
are stored in the list *subcat-list*.

FUNCTION transitivity-match

This function uses the data gathered in *subcat-list* to return the transi-
tivity of the unknown verb. This is done by matching the contents of the
keys in the association list match-list, depicted below.

(defvar match-list (list

> ((agent object indobj) ditransitive)
> ((agent object) transitive)

> ((agent) intransitive)

))

FUNCTION reflexive-test

This function returns whether or not the unknown verb is used reflexively.
That is, whether the value of the agent is also the value of another argument

20

of the verb. As of the writing of this, this function is not yet integrated into
the verb algorithm code.

4.2.4 Output.cl

This file contains the output functions for the verb algorithm. Any addi-
tional processing modules that require a formatted output should have a
separate output function defined in this file to do so.

FUNCTION outputFoundList

This function outputs the all the data contained in *Found-List* that was
retrieved from the SNePS network. See figure 4.6 for an example output.

FUNCTION Generate-Generalizations
FUNCTION recursive-Print

These two functions work together to generate a set of generalized sentences
based on the information contained in *Found-List*. These functions iterate
through each type of argument in the verb’s immediate context. Together
they generate a sentence for each combination of attributes found for each
argument. This is an expansion from the types of generalized sentences
generated in the previous version of the verb algorithm. See figure 4.6 for
an example output.

4.2.5 defun verb.cl
This file contains the function and list from which all other functions in the
verb algorithm are called.

LIST *ProcessList*

This is perhaps the most important data structure in the verb algorithm. It
contains lists of all the functions to be called, in order, for the algorithm to
function. All function calls should be placed in this list.

FUNCTION defineVerb

This is the function called to define the unknown verb. It takes a single
symbol as its argument and sets it to the global variable 'verb’. This function
is also defined to take an optional parameter for tracing, initially set to 0.
However, at this time tracing is not yet implemented. The main purpose of

21

this function is to loop through *ProcessList* and evaluate each element.
This is what drives the entire verb algorithm.

4.3 How to add new components
4.3.1 Coding Style

The most important aspect to adding anything to the verb algorithm is
to make the code readable. This means every new piece of code should
be accompanied by an appropriate amount of comments explaining exactly
what a particular thing does, what uses it, and what it is used for.

For commenting style, I followed the method described at the following
website:

http://www.ittc.ku.edu/ hsevay/classes/eecsb49/style/commenting-style-
2.html

When adding a new function, be sure to provide the appropriate header
comments describing the parameters the new function takes as well as its
output. Also, as a courtesy to future students working on the verb algorithm,
include a note in the section at the top of the file labeled “Modification
History” on what was done.

4.3.2 Adding new Functions

New functions should be added in a way that best fits within the present
infrastructure. That is, functions should either define a set of data to find,
retrieve a set of data from a SNePS network, process previously retrieved
data, or output a set of data in a particular format. Functions should be
kept as decoupled as possible.

The most important aspect of the current design is that every function is
called from a central location. No function should be calling other functions
in the verb algorithm with the exception of that central function.

5 Sample of Results and Explanations

Complete test runs of the verb algorithm on words and contexts worked
on by students in the pasts are available in the appendix. Here we present
analysis on the results of those test runs.

22

5.1 Cripple Run

The complete results of running the new verb algorithm on the demo file for
the word “cripple” by Adel Ahmed is given in the appendix. Here we would
like to highlight and explain the results step by step. First off, here is the
results in complete form:

* % *x Defining the verb cripple * * *

Arguments of the verb:
(agent object)

Transitivity: transitive

* * * Basic Findings * * *

possible similar action of cripple is:
cripple,

possible actions performed by agent of cripple is:
cripple,
kill,
injure,
kill_or_injure,

possible actions performed on object of cripple is:
cripple,

possible property of verb is:
bad,
unknown,

possible membership of agent is:
windstorm,
typhoon,

23

possible property of agent is:
violent,

possible membership of object is:
port,
seaport,
area,
city,

possible property of object is:
municipal,
large,

* * x generalizations from this context * * x*

A {windstorm, typhoon} can cripple
A {port, seaport, area, city}

A {windstorm, typhoon} can cripple
Something with the properties {municipal, large}

Something with the properties {violentl} can cripple
A {port, seaport, area, city}

Something with the properties {violent} can cripple
Something with the properties {municipal, large}
nil

As outlined previously, the result output is formatted in a descriptive
way. At the time of this writing, only the default modules are used and that
is what the results above show. Basically, the algorithm will report on the
transitivity of the verb. After that, it will report about case frames that it
finds the verb in, the agent doing the verb in and the objects of the verb in.
Finally, it will report unifications and generalizations that it can find. All
other verbs will have a similar output format.

* x *x Defining the verb cripple * * *

24

Arguments of the verb:
(agent object)

Transitivity: transitive

The first section describes the transitivity of the verb. Here, it reports
‘cripple’ as transitive, because it finds that the verb is used within an agent-
act-object case frame.

* * * Basic Findings * * *

possible similar action of cripple is:
cripple,

The basic findings section describes things related to the agent doing the
verb, the verb itself and the object the verb is acted upon. The first thing
it reports here is what other actions are similar to cripple. The algorithm
will always report the verb itself, both here and in other findings later.

possible actions performed by agent of cripple is:
cripple,
kill,
injure,
kill_or_injure,

possible actions performed on object of cripple is:
cripple,

Next the algorithm will report on actions perfomed on the agent and
object performing ‘cripple’.

possible property of verb is:
bad,
unknown,

Another important part that the algorithm reports is the property of the
verb. To do this, the algorithm simply looks for the object-property case
frame that relates to the verb.

25

possible membership of agent is:
windstorm,
typhoon,

possible property of agent is:
violent,

Now the algorithm reports on the agent doing ‘cripple’. The pertinent
information to report are the agent’s class membership and property of the
agent. The search for this is performed simply by looking for the subclass-
superclass case frame and object-property case frame relating to the agent
doing ‘cripple’ respectively.

possible membership of object is:
port,
seaport,
area,
city,

possible property of object is:
municipal,

large,

Finally, the algorithm will report about the object that ‘cripple’ is per-
formed on, in a similar fashion to the report on the agent doing the verb.

* % *x generalizations from this context * * *
A {windstorm, typhoon} can cripple
A {port, seaport, area, city}

A {windstorm, typhoon} can cripple
Something with the properties {municipal, large}

Something with the properties {violent} can cripple
A {port, seaport, area, city}

Something with the properties {violentl} can cripple
Something with the properties {municipal, large}

26

Now, the algorithm will report on the unifications it can perform with
the classes of things that ‘cripple’ can be performed on. This is probably
the most interesting part for casual users of the algorithm, for it displays
the result in somewhat complete sentences.

There are some things that the algorithm can report that it has not yet
reported. These things come up on a need-to basis. Thus, if the algorithm
cannot find the case frames that it is looking for, it will not display that
incomplete result. We will see examples of these as we examine the other
demos.

5.2 Fold Run

Since we have already seen an outline of the results with ‘cripple’, here we
will only show the complete results for the verb ‘fold’ and point out the
interesting portions of the results.

* *x *x Defining the verb fold * * *

Arguments of the verb:
(agent)

Transitivity: intransitive

* *x *x Basic Findings * * *

possible synonym of fold is:
go out of business,
fold,

possible similar action of fold is:
fold,

possible actions performed by agent of fold is:
fold,
bankrupt,
dissolve,
fail,

27

possible property of verb is:
unknown,
destructive to business,

possible superclass of agent is:
organization,
small business,
business organization,

* * x generalizations from this context * * x*

Something that is a subclass of {organization, small business, business

‘Fold’ is reported here as an intransitive verb, because the algorithm
can only find it used with an agent-act case frame without object. This is
the only interesting difference between the run of the ‘fold’ verb with the
‘cripple’ verb.

5.3 Proliferate Run

* * x Defining the verb proliferate * * x*

Arguments of the verb:
(agent)

Transitivity: intransitive

* *x x Basic Findings * * *

possible similar action of proliferate is:
proliferate,

28

organizatic

possible equivalent action of proliferate is:
proliferate,
multiply,

possible actions performed by agent of proliferate is:
proliferate,
attain,
contaminate,

possible actions performed with instrument of proliferate is:
proliferate,

possible action that is the cause of proliferate is:
contaminate,

possible action that is the effect of proliferate is:
attain,

possible membership of agent is:
micro-organism,

pathogen,

possible superordinate of agent is:
micro-organism,

* * x generalizations from this context * * x*

A {micro-organism, pathogen} can proliferate

A {micro-organism} can proliferate

The new algorithm was run on the demo for the verb ‘proliferate’ and as
can be seen, there are no substantial differences in the results for this verb
as compared to the two that we have seen already.

5.4 Pry Run

* * x Defining the verb pry * * *

29

Arguments of the verb:
(agent object indobj instrument)

Transitivity:

ditransitive

* * * Basic Findings * * *

possible cause of pry is:

Everything being disconnected,

possible effect of pry is:
Something is removed,

possible synonym of pry is:

remove,

pry,

possible
pry,

possible
pry,

possible
pry,

possible
pry,

similar

actions

actions

actions

action of pry is:

performed by agent of pry is:

performed on object of pry is:

performed with instrument of pry is:

possible membership of agent is:
human,

30

possible membership of object is:
door panel,

possible superordinate of object is:
physical object,

possible membership of indobj is:
door,

possible superordinate of indobj is:
physical object,

possible membership of instrument is:
screwdriver,

possible superordinate of instrument is:
tool,

possible property of instrument is:
thin,
wide,

* * x generalizations from this context * * x*

A {human} can pry

A {door panel}

A {door}

with A {screwdriver}

A {human} can pry
A {door panel}

A {door?}

with A {tool}

A {human} can pry

A {door panel}
A {door}

31

with Something with the properties {thin, wide}

A {human} can pry

A {door panel}

A {physical object}
with A {screwdriver}

A {human} can pry
A {door panel}
A {physical object}
with A {tool}

A {human} can pry

A {door panel}

A {physical object}

with Something with the properties {thin, wide}

A {human} can pry

A {physical object}
A {door}

with A {screwdriver}

A {human} can pry
A {physical object}
A {door}
with A {tool}

A {human} can pry

A {physical object}

A {door}

with Something with the properties {thin, wide}

A {human} can pry
A {physical object}
A {physical object}
with A {screwdriver}

A {human} can pry

A {physical object}
A {physical object}

32

with A {tool}

A {human} can pry
A {physical object}
A {physical object}
with Something with the properties {thin, wide}

The algorithm result on pry is more interesting than what we have seen
already for the other demos. The first difference is that the verb is identified
as a ditranstive verb because the algorithm sees that it was used with an
agent-act-action-object-indirect object case frame. Also, here we see the
use of a non-standard case-frame, which is the instrument case frame. The
algorithm will treat it as something important and will report on it much
like how it reports on the agents and objects of the action. Apart from this,
the rest of the results are not unlike what we have seen before.

5.5 Quail Run

* *x *x Defining the verb quail * * *
Arguments of the verb:
(agent)

Transitivity: intransitive

* *x *x Basic Findings * * *

possible synonym of quail is:
halt,
quail,

possible similar action of quail is:
quail,

possible actions performed by agent of quail is:

quail,
yell,

33

advance,

possible actions performed with instrument of quail is:
quail,

possible superclass of agent is:
orcs,

* * * generalizations from this context * * *

Something that is a subclass of {orcs} can quail

Much of the same result output can be seen in the demo for ‘quail’ as
the others that we have examined so far. Here the algorithm is able to pick
out ‘halt’ as a synonym of ‘quail’, simply by using the synonym-synonym
case frame.

6 Future Work

Since all of our goals are completed, there is not any short term goals left
outstanding. Much of the future work should be focused on developing more
modules and doing actual research on how to develop the algorithm further
such that it can infer more useful information from the network.

6.1 Tracing

One of the reasons why the previous version of the verb algorithm was so
complex was so that a trace could be done to tell exactly what processes were
being called. Implementing it again on this version should not be difficult,
although the value of doing so may be somewhat diminished since much of
the functionality that was previously divided between several functions is
now centralized into just one or two.

However, we must first look back at the reason why tracing was imple-
mented in the first place. Basically, it was to be able to find out how the
verb algorithm decided on a particular definition for a verb. For one thing,
it is my opinion that this is something best answered by the inference rules

34

implemented in SNePS. Since the main purpose of the verb algorithm is to
pull information out of the network and summarize it, there is little it can
do to explain how that information came to be.

With the current state of the verb algorithm, it has some way to go before
it can provide an actual definition of a verb. Right now, the information it
prints out is in fact the kind of information that will tell us later on exactly
how it came up with a specific definition.

6.2 Data Collection
LIST *ProcessingDataToFind*

Information not to be outputted, but rather just for processing functions
to use. Currently no function uses this, and there are only two example
elements in this list. However, if it is determined that a new function needs
access to some additional information, then this might be of use.

Currently the infrastructure for this component is complete. The func-
tion evaluateProcessingDataList evaluates the elements of *ProcessingDataToFind*
and stores them in the list *ProcessingData*.

LIST *EvalList*

This is to be used to store complex statements to evaluate, which are unable
to be evaluated by the centralized evaluate functions. The *EvalList* will
contain full commands that will be evaluated in the function evaluateEval-
List, in ConstructFoundLists.cl. At the time of this writing, this function is
not yet fully written, however the infrastructure for it is in place.

6.3 Data Processing
FUNCTION Categorize-verb

This function should categorize a verb based on associated case frames and
superclass, superordinate, class membership, or other attributes of its ar-
guments. Implementing this would involve two things. One is to set up
a standard set of background knowledge containing a generic ontology for
which students working on demos will link the objects of their contexts to.
For a large scale standard ontology, I would suggest using WordNet:

http://www.cogsci.princeton.edu/ wn/

The second thing required to implement this function would be a data
structure containing predefined verb classes and the case frames and at-
tributes that define them. An example of such a structure is depicted below.

35

(setf *ClassList* (list

> (PTRANS1 (agent °‘causal agent’’) (object °‘physical object’’)

(to ‘‘location’’))

> (PTRANS2 (agent ‘‘causal agent’’) (from ‘‘location’’) (to ‘‘location’’))
> (PTRANS3 (agent °‘causal agent’’) (to ‘‘location’’))

> (MTRANS (agent ‘‘causal agent’’) (object ‘‘abstraction’’) (to ‘‘entity’’))
> (ATRANS (agent ‘‘abstraction’’) (object ‘‘abstraction))

> (MOVE1 (agent °‘causal agent’’) (object ‘‘external bodypart’’))

> (MOVE2 (agent ‘‘causal agent’’))

> (MBUILD (agent °‘causal agent’’) (object ‘‘abstraction’’))

> (INGEST (agent ‘‘causal agent’’) (object °‘substance’’))

> (GRASP (agent ‘‘causal agent’’) (object °‘physical object’’)

(instrument ‘‘external bodypart’’))))

The above is an example of possible data structure for verb categorization
(based on conceptual dependency)

One important thing to note regarding this possible system is that a
verb may be categorized under more than one category. Additionally, any
category that a verb is categorized under, based on these clues should be
designated as a possible category inclusion.

6.4 Output
FUNCTION generate-moreGeneralizations

The idea behind this function would be to print more generalized sentences
based on other information gathered in *Found-List*. An example of what
this should output is provided below.

‘‘A thing that can {<other action by agent>} can also <verb>’’
¢“{cause/ant} can cause <agent> to <verb>’’

‘‘the result of <agent> <verb>ing <args of verb> can be {effect/cq}’’
¢‘A <agent> can <synonym of verb> <args of verb>’’

‘‘A <agent> can <equiv of verb> <args of verb>’’

Implementing this would bring the verb algorithm another step closer
to printing a good definition of an unknown verb. With more contexts
and more demos, we will be able to deduce what types of information are
available for creating a possible dictionary definition of a verb.

36

6.5 Determining Possible Verb Synonymy

One rule that may be implemented either in SNePS or in the verb algorithm
should use a standard set of qualifications to compute whether one action
is a possible synonym of another. One possibility is to construct it using
a thresh case frame to determine whether two actions share some critical
number of attributes. If that number is met then the rule will construct a
synonym - synonym link between the two actions.

6.6 Determining the Relationship between Conjoined actions

Fulfilling this goal will probably require extensive research. The idea behind
is to develop a rule to tell how two conjoined actions are related. Consider
the following examples:

a. “It rained in Dallas and snowed in New York”

b. “I put on my shoes and went outside”

Notice that in (a) the conjoined actions are occurring simultaneously.
They also share similar components (i.e. precipitation) and the arguments
are of the same class (i.e. city). In a context like this we can easily determine
whether two actions are similar.

Now, notice that in (b) the context represents two consecutive actions.
Also, the verbs take different classes of arguments as well as different num-
bers of arguments. In a context such as this we can easily tell whether one
action is the antecedent of another.

In both these cases the goal should be to make the resulting inference
available for output by the verb algorithm.

6.7 Verb Classes

The algorithm right now recognizes the subclass-superclass caseframe for
the verb itself. Thus, it will simply report whatever superclass the verb is
assigned to; however, no actual inference work is actually done within the
algorithm itself. What we would like to do in the future is to develop or
adapt (a much likelier situation) a theory of verb classifications for use in our
system. Two sources we have identified for possible adaptation are Roger
Schank’s Conceptual Dependency theory and Beth Levin’s Verb Classes.

37

6.7.1 Conceptual Dependency

Roger Schank developed a theory that actions are composed of at least one
primitive action. He identified a number of these primitive actions, which are
listed below (taken from http://www.cse.buffalo.edu/ rapaport /676 /F01/cd.html):

e PTRANS: physical transfer of location of an object

e ATRANS: abstract transfer of ownership, possession, or control of an
object

e MTRANS: mental transfer of information between agents

e MBUILD: mental construction of a thought or new info between agents
e ATTEND: act of focusing attention of a sense organ toward an object
e GRASP: grasping of an object by an actor for manipulation

e PROPEL: applicaton of physical force to an object

e MOVE: movement of a body part of an agent by that agent

e INGEST: taking in of an object (food, air, water...) by an animal

e EXPEL: expulsion of an object by an animal

e SPEAK: act of producing sound, including non-communicative sounds

Classifying verbs according to these classes tell us quite a number of
things about the meaning of the verb. The difficulty lies in developing a
method for actually classifying the verb itself according to the information
gained from the passage and background knowledge.

For example, let’s examine the verb category PTRANS. The theory
states that slots used for PTRANS are:

e ACTOR: a HUMAN (or animate obj) that initiates the PTRANS
e OBJECT: a PHYSICAL OBJECT that is PTRANSed

e FROM: a LOCATION at which the PTRANS begins

e TO: a LOCATION at which the PTRANS ends

38

The slots ACTOR and OBJECT are already defined in the standard
SNePS ACTOR-ACT-ACTION-OBJECT case frame. With the new algo-
rithm, adding the capability to recognize the FROM-TO case frame is quite
trivial. In this example then, classifying a verb as a PTRANS would in-
volve the grammar (or a human translating a passage to SNePS) using an
ACTOR-ACT-ACTION-OBJECT and FROM-TO case frames where ap-
propriate and then having a function that infers from the presence of a
FROM-TO that it is actually a PTRANS. The inferring function could be
implemented as a module for the algorithm or even as part of a set of stan-
dard background rules that is run against the network before the main body
of the algorithm is called.

This example shows just one example of how the Conceptual Dependency
theory can be developed for our project. The above example for PTRANS
is rather simplistic. There are probably situations where using a FROM-
TO case frame does not necessarily imply that the verb in question is a
PTRANS. Similarly, there are situations where a passage using a PTRANS
does not have a FROM-TO case frame. Also, we imagine that it probably
would take quite a lot more work to develop similar classification methods
for the other classes.

Conceptual Dependency is used widely in the field and in projects simi-
lar to ours. This gives us a wealth of knowledge in the way other researchers
have circumvented problems and also suggests how we can go about de-
veloping it for our work. However, there is a problem with Conceptual
Dependency literature in general: the classifications have a tendency to be
revised substantially from one paper to another! Not many researchers agree
on which set of rules to use. This is to a large extent due to the rather ar-
bitrary way the primitive actions are defined. Thus, we would have to do
quite a bit of research to determine what classes are going to be used and
adapt the theory as necessary

subsubsectionBeth Levin’s Verb Classes

Another option that we considered is based on Beth Levin’s work. Her
research involves studying verb usage and seeing how different verbs are used
in parts of speech in similar ways. The alternations and the way verbs can
be interchanged in speech can give substantial clues to their meaning.

Her work on verbs is rich. This richness and thoroughness is a two-edged
sword for us: our algorithm can learn a lot more from passages; however, the
amount of work required to implement the theory completely is daunting.
In any case, there is a lot of information that can be used in other ways
when we look at her theory.

39

Classifying verbs is a nice next step for our algorithm. The most im-
portant work right now is not in actually adding modules or modifying the
algorithm; instead, it is more useful for someone to study and determine
in what way to best develop the verb classification. With that in place,
extending the algorithm would be quite an easy matter.

6.8 Other Possible Future Work

Other possibilities for the verb algorithm is difficult to define clearly at this
point. Readings that we did during this semester suggests some options:
knowledge of lexicon and morphology.

Zernik (CITE) created a contextual vocabulary system that he calls
RINA. One important feature of this system is that it uses knowledge of
how the meanings of words can change when combined with other words.
He calls this knowledge of phrasal lexicon. We propose a similar method
to deduce the meaning of verbs: using knowledge of the lexicon supporting
the verb to figure out the meaning of the word. Right now, we do not have
any further ideas about how this should be done, but this is an interesting
project to do in the future nonetheless.

During our reading of Sternberg (CITE), we are reminded of a technique
to figure out the meaning of words: morphology. Sternberg calls this “De-
coding From Internal Context”. We remember using such a technique on
our GREs.

The gist of morphology is this: words can be broken down into its root,
prefix and suffix. The number of roots, prefixes and suffixes is comparatively
small and managable. These add features to a word. A simple example is
the prefix ‘un-’, which for instance we use in the word ‘undo’ or ‘uncommon’.
This prefix indicates that the word means opposite of what the root means.

Such an analysis method is very powerful, since it can give us a lot of
clues as to the meaning of the word. Much preliminary work though, has to
be performed on the grammar translating a passage into SNePS: how do we
make the grammar recognize a complex word and how to best represent it
in the network. After this, then we can generate a table which the algorithm
can match against to add a better understanding of the meaning of the word.

In summary, there is quite a few things that can be done to extend the
verb algorithm further. The most important resource that we need right
now are people willing to enlist themselves for the tasks.

40

Bibliography

Thorndike, Edward L. (1917), “Reading as Reasoning: A Study of Mistakes
in Paragraph Reading”, The Journal of Educational Psychology 8(6): 323-
332

Werner, Heinz, and Kaplan, Edith (1950), “Development of Word Mean-
ing through Verbal Context: An Experimental Study”, Journal of Psychol-
ogy 29: 251-257

Granger, Richard H. (1977), “Foul-Up: a Program that Figures Out
Meanings of Words from Context”, Proceedings of the 5th International
Joint Conference on Artificial Intelligence (IJCAI-77, MIT) (Los Altos, CA:
William Kaufmann): 67-68

van Daalen-Kapteijns, M.M., and Elshout-Mohr, M. (1981), “The Ac-
quisition of Word Meanings as a Cognitive Learning Process”, Journal of
Verbal Learning and Verbal Behavior 20: 386-399

Sternberg, Robert J.; Powell, Janet S.; and Kaye, Daniel B. (1983),
“Teaching Vocabulary-Building Skills: A Contextual Approach”, in Alex
Cherry Wilkinson (ed.), Classroom Computers and Cognitive Science (New
York: Academic Press): 121-143

Nagy, William E., and Anderson, Richard C. (1984), “How Many Words
Are There in Printed School English?”, Reading Research Quarterly 19(3,
Spring): 304-330

Schatz, Elinore Kress, and Baldwin, R. Scott (1986), “Context Clues
Are Unreliable Predictors of Word Meanings”, Reading Research Quarterly
21(4, Fall): 439-453

Johnson-Laird, Philip N. (1987), “The Mental Representation of the
Meanings of Words”, Cognition 25(1-2): 189-211

Zernik, Uri, and Dyer, Michael G. (1987), “The Self-Extending Phrasal
Lexicon,” Computational Linguistics 13: 308-327

Hastings, Peter M., and Lytinen, Steven L. (1994a), “The Ups and
Downs of Lexical Acquisition”, Proceedings of the 12th National Confer-
ence on Artificial Intelligence (AAAI-94, Seattle) (Menlo Park, CA: AAAI
Press/MIT Press): 754-759

William J. Rapaport and Karen Ehrlich (2000). A computational the-
ory of voculary acquisition. In L. Iwanska and Stuart C. Shapiro, editors,
Natural Language Processing and Knowledge Representation, pages 347375,
Menlo Park, CA. AAAI Press

William J. Rapaport and Michael Kibby (2002). Contextual vocabulary
acquisition: From algorithm to curriculum.

Stuart C. Shapiro and William J. Rapaport (1987). Sneps considered as

41

a fully intensional propositional semantic network. The Knowledge Frontier:
Essays in the Representation Knowledge.

Levin, Beth. 1993. English Verb Classes and Alternations. Chicago:
Chicago University Press

42

