SNePS and WordNet

Using WordNet as a Source of Background Knowledge in
Contextual Vocabulary Acquistion

Dmitriy Dligach
Department of Computer Science and Engineering; SNePS Research Group
State University of New York at Buffalo, Buffalo NY 14260

Abstract

Contextual Vocabulary Acquisition (CVA) is an interdisciplinary project which focuses
on developing a computational theory of vocabulary acquisition. Currently, the
background knowledge that is necessary for performing CVA is collected from human
readers and manually encoded into SNePS (the Knowledge Representation system used
in the CVA project). Therefore, using an external knowledge base such as CYC or
WordNet as a source of background knowledge presents an interesting research problem.

This paper discusses an approach to using WordNet as a source of background
knowledge for CVA. First, WordNet noun and verb relations are analyzed in order to
determine how they can be represented in SNePS. Next, an implemented WordNet
interface program is described that is capable of converting WordNet ontologies to
SNePSUL (SNePS user language). Finally, an example illustrating the usage of this
program in CVA is presented. A discussion of possible future research directions
concludes the paper.

1. Introduction

Brief SNePS and CVA Overview

This project is a part of a broader research effort conducted by the members of the SNePS
and CVA research groups. The purpose of the following two sectionsis to provide a
quick overview of SNePS and CVA and cite the literature that would be helpful to the
reader who is unfamiliar with these projects.

SNePS

SNePSis a propositional, semantic-network knowledge representation and reasoning
(KRR) system. From the outset, SNePS was conceived as a semantic network suitable for
representing natural language discourses, and the current version of the SNePS user
language (SNePSUL) offers ahigh level of expressibility comparable to that of natural
languages. Like any network, SNePS consists of a system of nodes interconnected by
arcs. What distinguishes SNePS from other semantic networks is that each proposition is
represented by a node (and not by an arc) and that nodes represent intensional concepts.
Thus, every SNePS node represents a single concept and every arc represents the relation
between the concepts that this arc connects. The content of the SNePS network is often
viewed as the mind of an artificial agent, who is affectionately referred to by the member
of the SNePS research group as Cassie (see Shapiro & Rapaport 1987).

CVA

Contextual Vocabulary Acquistion (CVA) is an interdisciplinary project whose main
objective is developing a computational theory of vocabulary acquisition from context.
The CVA project currently develops in two major directions: Al and Education. The Al
component focuses on creating an artificial agent capable of determining the meaning of
an unknown word from its context (Ehrlich 1995; Rapaport & Ehrlich 2000). The goal of
the educational component is transforming CVA agorithms into an educational
curriculum (Rapaport & Kibby 2002)

The CVA approach to learning from context is SNePS based. It follows this process:
First, Cassie reads a passage containing an unknown word: it is trandated into the
language of SNePS logic and programmed into SNePS. Next, background knowledge
that a human reader uses to learn the meaning of the unknown word is identified. Thisis
usually accomplished by means of collecting verba protocols from human readers who
are unfamiliar with the meaning of the word in question. Then, this background
knowledge is also trandated into a SNePS representation and programmed into SNePS.
After that, the SNePS reasoning engine draws the appropriate inferences from the

information available in the network. At this point, Cassie's mind contains, in the form of
a semantic network, al the information that is necessary to determine a meaning for the
unknown word. Finally, a (part-of-speech specific) CVA agorithm is executed. The
algorithm traverses the semantic network and collects all the information that is relevant
to the definition of the unknown word. This information is organized into such categories
as class memberships, actions, properties, synonyms, etc., and output to the user.

Motivation and Issues

The motivation behind this project is to automate (at least partialy) the process of
teaching Cassie the background knowledge that she needs in order to perform CVA.
Currently, this background knowledge is acquired by means of collecting verbal
protocols from humans and encoding it manually into SNePS. However, several large
external (nonSNePS based) repositories of knowledge exist, such as CY C and WordNet,
and these repositories can potentially be used as sources of background knowledge for
CVA. There are two important issues in using an external knowledge base (KB) asa
source of background knowledge:

1. Identifying relevant knowledge: Cassie must be able to identify the kinds of
knowledge that are relevant to computing a meaning for the given unknown word.
In other words, Cassie needs to be able to query an external KB to extract only the
knowledge that she needs for CVA. Of coursg, thisis not necessary if the entire
content of an external KB is imported into Cassie's mind. However, given the fact
that the sizes of both the CY C and WordNet KBs are quite large, an option of
importing the entire KB was ruled out to avoid a considerable increase in running
time of the CVA agorithms.

2. Representing knowledge: Cassie must learn the language in which the knowledge
is expressed in the external KB. Alternatively, the external knowledge can be
converted to SNePSUL, i.e. to the language that Cassie can understand. The
second option can be implemented by means of a program external to SNePS,
which would retrieve the knowledge from an external KB and convert it to
SNePSUL. Such a program can, if necessary, be incorporated into SNePS.

CYC vs. WordNet

For the purpose of this project, two alternative external KBs were considered: CYC, a
repository of commonsense knowledge developed by CY Corp, and WordNet, an
electronic lexical database developed by the Cognitive Science Laboratory at Princeton
University. Below, the pros and cons of using CY C vs. WordNet as a source of
background knowledge for CVA will be outlined.

There are several reasons why WordNet is a better choice as an external source of
background knowledge.

1. Identifying relevant knowledge in WordNet is more straightforward than in CY C: the
content of the CYC KB istopically grouped into microtheories (or contexts), that is, into
sets of assertions which share the same assumptions; searching for the relevant
background knowledge in CY C requires identifying the microtheories that are relevant to
the given context. Unfortunately, finding the right microtheory is more of an art than
science and thus is not easily automated (see more on this in section 8). At the same time,
given aword form (a single word or a collocation) and a semantic relation such as
hypernymy or meronymy, the WordNet KB can be searched to retrieve the word forms
that stand in this semantic relation to the word form in question. For example, given the
word form unicorn and the semantic relation of hypernymy, we can find out from
WordNet that unicorn belongs to the class of imaginary beings. Therefore, the lexica
content of the passage containing an unknown word, that is, the words and collocations
the passage is composed of, provide sufficient parameters that the WordNet KB can be
searched by.

2. Representing WordNet ontologies in SNePS is more straightforward than representing
CY C ontologies: the facts that only a finite number of semantic relations are defined in
WordNet and that these relations can be mapped to the standard CVA case-frames make
it possible to convert WordNet ontologies to SNePSUL. The CY C ontologies are
different in this respect: CY C alows for an unrestricted number of predicates, and thus a
CYC-to-SNePS dictionary of avariable and unpredictably large size would be necessary
for the task of converting CY C ontologies to the representations that are standard to
CVA. Additionally, the task of mapping CY C predicates to the standard CVA case-
frames is complicated by the fact that although some of the CY C predicates correspond to
the existing CVA case-frames (e.g., isa corresponds to the member/class case-frame;
genls corresponds to the subclass/superclass case-frame), most CY C predicates do not
have such mappings.

It must be noted that there is a downside to using WordNet ontologies as a source of
background knowledge: athough retrieving data and converting it to its SNePS
representation is more straightforward in the case of WordNet than in the case of CYC,
the knowledge obtained from WordNet is limited to the types of semantic relations that
are built in WordNet. Because WordNet was never intended to be a source of
commonsense knowledge, many facts, the knowledge of which is necessary for
determining a meaning for a word from context, are more likely to be found in CY C than
in WordNet. On the other hand, OpenCyc — the version of CY C that is currently freely
distributed by CY Corp —is far from being comprehensive. For example, the query (#$isa
?X #$Biological Species), which asks CY C to produce all entities that are biological
species, only comes up with a dog and a lion, whereas WordNet in response to the
equivaent query, produces a large list of animals.

Goals

Based on the analysis in the previous section, the WordNet KB was adopted as the source
of background knowledge for CVA. The goals of this project are, therefore,

1. To develop an approach to representing WordNet ontologies in SNePS

2. Design and implement a WordNet-to- SNePS interface, which would alow the
retrieval and conversion of WordNet ontologies to SNePSUL

3. Demonstrate how this interface can be used in CVA

What is to Follow

The remaining portion of this report contains

1. A brief overview of WordNet

2. A discussion of an approach to representing WordNet ontologies in SNePS

3. A description of an automated interface which is capable of retrieving data from
WordNet and converting it to SNePSUL

4. A description of the CVA demo that makes use of the WordNet-to-SNePS
interface

5. A description of possible future research directions

2. WordNet Overview

Searchable information in a conventional dictionary (most often word forms) is usualy
organized based on lexical principles—in order to look up aword, one has to perform an
alphabetic search. However, it is often useful to be able to look for information
conceptually, that is, based on its relationship to another piece of information. For
example, we may be interested in finding some of the components which constitute a
book. A conventional dictionary would not be very helpful: in order to find information
in it, we already have to know the spelling of the word form we are looking for.

In 1985, a group of researchers at Princeton University (Miller 1990) began to develop a
new type of dictionary, which later became known as WordNet. The goa of the WordNet
designers was to create an electronic dictionary, which would alow its users to perform a
semantic search A typical task such adictionary can be used for is the following:

Given aword formW and arelation R, find all word forms that stand in the relation Rto
the word form W.

For example, we can search for all word forms that stand in meronymy, (a part-of)
relation to the word book. This type of search can be performed in WordNet. The result
would tell us that a book has the following parts: pages, binding, etc.

Because our “mental dictionary” can perform a similar task, it was decided to adopt
modern psycholinguistic principles as a basis for the design of WordNet. In other words,

WordNet implements an ability that all humans possess — the ability to store and search
concepts based on relationships among them.

Because the WordNet KB stores concepts and relationships among them, the basic
building block of WordNet KB is a concept, and not a word form, asis the case with the
conventional dictionary. This basic building block is called a synset. In WordNet, each
concept is expressed by means of a synset — a set of one or more word forms —which
identifies that concept. The members of a synset are by convention enclosed in curly
brackets. For example, the word form book is polysemous — it is used to refer to (among
others) the following senses:

1. physical objects consisting of a number of pages bound together

2. the sacred writings of Islam revealed by God to the prophet Muhammad during
his life at Mecca and Medina

3. thesacred writings of the Christian religions

The following three synsets are used to identify each of the above senses:

1. {book, volume}

2. {Koran, Quran, al-Qur'an, Book}

3. {Bible, Christian Bible, Book, Good Book, Holy Scripture, Holy Writ, Scripture,
Word of God, Word}

Because a synset (and not a word form) is the basic building block of WordNet, all
relations in WordNet are defined for synsets, and not for individual word forms. Thus,
the meronymy search, which was mentioned before, actually referred only to the first
meaning of the word book. Obvioudly, if we perform a meronymy search for senses (2)
and (3), we should get a different result. Indeed, for sense (2), we get the synset {sura}
(one of the sections in the Koran), while for sense (3), we get the synsets {Old
Testament} and {New Testament}. Sometimes, the same synset is used to express multiple
concepts. In such cases, a short textual glossis used to differentiate concepts.

3. Representing Synsets

Concept/Word Case Frame

It was decided that a WordNet concept would be represented in SNePS as a base node.
Because synset members are verbal expressions of the lexicalized concept they represent,
an asserted SNePS node is created for each synset member with two arcs coming out of
it: the concept arc points to the base node and the word arc points to an expression used
to articulate the concept. Such a representation parallels the semiotic notion of asign,
which is viewed as afusion of a concept (signified) and its sound image/verbal
expression (signifier).

Thus, the proposition m:
(assert concept ¢ word w)

has the following semantics: [[m]] is the proposition that concept (or: synset) [[c]] is
expressed by word [[w]].

For example, for the concept
rock (n.) - alump or mass of hard consolidated mineral matter

which is expressed in WordNet by means of the synset { rock, stone}, the following
SNePS representation is used (the approach to forming base node names will be
explained in following section):

(assert concept #rock-stone-n-8824564
word "rock™)

(assert concept *rock-stone-n-8824564
word "stone™)

At the same time, a different concept
rock (v.) - move back and forth or sideways

which is expressed in WordNet by means of the synset { rock, sway, shake}, is
represented in SNePS as follows:

(assert concept #rock-sway-shake-v-1821183
word "rock")

(assert concept * rock-sway-shakev-1821183
word "sway")

(assert concept *rock-sway-shake-v-1821183
word "shake")

Base-Node Name Formation

There are severa considerations that are relevant to the issue of naming base nodes,
which represent WordNet concepts in SNePS.

1. The base-node name representing a concept must uniquely identify that concept.
Resolving this issue is necessary in order to avoid base-node name “collisions’ —
a situation when the same base node represents more than one WordNet concept.
If aneed to import large portions of the WordNet KB into SNePS were to arise in
the future, there would be a one-to-one relationship between SNePS base nodes
and WordNet concepts.

2. We must be able to generate base node names dynamicaly, e.g., by means of a
computer program. Finding a way to do so will facilitate the creation of a
WordNet to SNePS converter program.

The following possible solutions to the problem of forming base node names were
considered:

1. To smply concatenate all members of the synset. Unfortunately, this solution is flawed
because in some cases identical synsets represent more then one concept. For example,
WordNet contains the following information for the noun stone:

1. rock, stone -- (a lump or mass of hard consolidated mineral matter; "he
threw arock at me")

2. rock, stone -- (material consisting of the aggregate of minerals like those
making up the Earth's crust; "that mountain is solid rock”; "stone is abundant
in New England and there are many quarries")

[Output A]

The two senses of the noun stone (and therefore two different concepts) are represented
by the same synset {rock, stone}.

2. In WordNet, each sense of aword has a unique identifier called sense key (Beckwith,
Miller, & Tengi 1993). Using sense keys for base node names will not always work
either, because we might end up with two different base node names representing the
same concept. For example, WordNet search for the noun rock produces:

1. rock, stone -- (a lump or mass of hard consolidated mineral matter; "he
threw arock at me")

2. rock, stone -- (material consisting of the aggregate of minerals like those
making up the Earth's crust; "that mountain is solid rock”; "stoneis abund
ant in New England and there are many quarries')

[Output B]

Senses (1) and (2) of [Output A] represent the same concepts as the senses (1) and (2)
respectively of [Output B]. However, if we used sense keys as base node names, the base
node name we would generate for the first sense of the noun stone would be different
from the base node name for the noun rock, despite of the fact that they should represent
the same concept expressed by the synset {rock, stone}. The same is true for the second
senses of the nouns stone and rock.

3. It turns out that each synset can be uniquely identified by its offset in the database file
for the given part of speech (nouns, verbs, and adjectives are stored in different database
files). Therefore, the following strategy for naming base nodes can be used:

Suppose we are interested in some word X, which (as a noun) has three senses defined in
WordNet. These senses are expressed by synsets{ X, Y}, {X, Y} and {X, Z, W}, whose
offsets in the noun database file are respectively 12345, 45678, and 98987987.

The base node names for these senses will be formed by concatenating synset members
and attaching to them

a) apart of speech identifier (noun in this case)
b) synset offset

So, the base node names will ook like:

Sense 1: X-Y-n12345
Sense 2: X-Y-n-45678
Sense 3: X-Z-W-n-97987987

Additionally, because synset offsets are available at run time by means of a WordNet KB
search, base- node names can be generated “on the fly” as necessary.

For example, using this method, the following assertions can be generated when
searching for the first sense of either the noun stone or the noun rock.

(assert concept #rock-stone-n-8824564
word "rock")

(assert concept *rock-stone-n-8824564
word "stone™)

This solution is free from the limitations of the first two solutions and therefore was
adopted as the approach for generating base-node names.

4. Nouns in WordNet

Noun Relations in WordNet

A typical dictionary definition usually provides a superordinate for the term in question
along with the term’ s distinguishing features (Miller 1990). For example, the word tree is
defined by the MerriamWebster dictionary as “awoody perennial plant having asingle
usually elongate main stem generally with few or no branches on its lower part”. A
superordinate (woody plant) and distinguishing features (elongate main stem, branches)
can be singled out from this definition.

Superordinates (hypernyms) and distinguishing features (currently, only meronyms) are
also available in WordNet. WordNet currently stores information about the following
noun relations (Miller 1990):

Antonymy
Hypernymy
Hyponymy
Synonymy
Holonymy
Meronymy

ook owdpE

Antonymy and synonym are lexical relations, while hypernymy, hyponymy, meronymy,
and synonymy are semantic relations.

As was discussed before, the WordNet KB contains concepts and semantic relations
between them. Because concepts are represented as synsets, relations are represented as
pointers between synsets. It is natural to represent these pointers as SNePS case-frames.
In gererdl, the fact that some relation R holds between two synsets S1 and S2 can be
represented by a SNePS assertion:

(assert arcl Sl arc2 2)
where arcl/arc2 is the case- frame, which the relation R is mapped to.

Each relation along with its SNePS representation will be discussed in the following
sections.

Representing Antonymy

The WordNet antonymy relation can be straightforwardly mapped to the SNePS
antonym/antonym case- frame used in the CVA project. For example, one of the senses of
the noun day

day (n.) - the time after sunrise and before sunset whileit islight outside

which corresponds to the WordNet synset { day, daytime, daylight}, is represented in
SNePS as follows:

(assert concept #day-dayti me-daylight-n-14305860
word "day")

(assert concept * day-daytime-daylight-n-14305860
word "daytime")

(assert concept * day-dayti me-daylight-n-14305860
word "daylight™)

(assert concept #night-nighttime-dark-n-14307923

word "night")
(assert concept * night-nighttime-dark-n-14307923

10

word "nighttime")
(assert concept * night-nighttime-dark-n-14307923
word "dark")

(assert antonym * day-dayti me-daylight-n-14305860
antonym * night-nighttime-dark-n-14307923)

The first three assertions represent the synset { day, daytime, daylight} ; the next three
assertions represent the synset { night, nighttime, dark} ; finally, the last assertion
represents the fact that the synsets { day, daytime, daylight} and { night, nighttime, dark}
are in the antonymy relation with each other.

Representing Hyponymy and Hypernymy

WordNet hypernymy and hyponymy relations are defined as follows: “a concept
represented by the synset {x, x1, ...} issaid to be a hyponym of the concept represented
by the synset {y, y1, ...} if native speakers of English accept sentences constructed from
such framesas‘An x isa(kind of) y’” (Miller 1990). Hypernymy and hyponymy can be
mapped to the SNePS subclass/superclass case-frame For example, one of the senses of
the noun tree

tree (n.) - atall perennial woody plant having a main trunk and branches forming a
distinct elevated crown; includes both gymnosperms and angiosperms.

which corresponds to the WordNet synset {tree}, is represented in SNePS as follows:

(assert concept #tree-n-12352501
word "tree")

(assert concept #woody_plant-ligneous_plant-n-12351578
word "woody plant")

(assert concept *woody_plant-ligneous plant-n-12351578
word "ligneous_plant™)

(assert subclass * tree-n-12352501
superclass *woody_plant-ligneous_plant-n-12351578)

The above assertions can be interpreted to say that the WordNet concept {tree} isa
subordinate (or subclass) of the concept { woody_plant, ligneous_plant} .

Representing Meronymy and Holonymy

WordNet meronymy is defined as follows: “a concept represented by the synset {x, x1,
...} isameronym of a concept represented by the synset {y, y1, ...} if native speakers of

11

English accept sentences constructed from such framesas ‘A y has an x (asa part)’ or
‘Anxisapart of y'” (Miller 1990).

Both meronyms and holonyms in WordNet have three subtypes. substance, part, and
member. All three subtypes of meronyms and hypernyms are best mapped to the SNePS
part/whole case-frame. For example, a meronymy WordNet search for the noun tree
produces the following results:

Meronyms of noun tree
1 of 3 senses of tree

Sensel

tree
HAS SUBSTANCE: sapwood
HAS SUBSTANCE: heartwood, duramen
HAS PART: stump, tree stump
HASPART: crown, capitulum, treetop
HAS PART: limb, tree branch
HAS PART: trunk, tree trunk, bole
HASPART: burl

Thisinformation is represented in SNePS as the following set of assertions:

(assert concept #tree-n-12352501
word "tree")

(assert concept #sapwood-n-12346093
word "sapwood")

(assert whole *tree-n-12352501
part * sapwood-n-12346093)

(assert concept #heartwood-duramen-n-12346309
word "heartwood")

(assert concept * heartwood-duramen-n-12346309
word "duramen”)

(assert whole *tree-n-12352501
part * heartwood-duramen-n-12346309)

(assert concept #tree-n-12352501
word "tree")

(assert concept #stump-tree_stump-n-12359618
word "stump")

12

(assert concept * stump-tree_stump-n-12359618
word "tree_stump")

(assert whole *tree-n-12352501
part * stump-tree_stump-n-12359618)

(assert concept #crown-capitulum-treetop-n-12375616
word "crown")

(assert concept * crown-capitulum-treetop-n-12375616
word " capitulum™)

(assert concept * crown-capitulum-treetop-n-12375616
word "treetop™)

(assert whole *tree-n-12352501
part * crown-capitulum-treetop-n-12375616)

(assert concept #limb-tree_branch-n-12410108
word "limb")

(assert concept *limb-tree_branch-n-12410108
word "tree_branch")

(assert whole *tree-n-12352501
part *limb-tree_branch-n-12410108)

(assert concept #trunk-tree_trunk-bole-n-12411931
word "trunk™)

(assert concept *trunk-tree_trunk-bole-n-12411931
word "tree_trunk")

(assert concept *trunk-tree_trunk-bole-n-12411931
word "bole")

(assert whole *tree-n-12352501
part *trunk-tree_trunk-bole-n-12411931)

(assert concept #burl-n-12412160
word "burl")

(assert whole *tree-n-12352501
part * burl-n-12412160)

5. Verbs in WordNet

Verb Relations Available in WordNet

13

Three types of verb relations are available in WordNet (Fellbaum 1990). These relations
are

1. Lexica Entailment
2. Troponymy
3. Causation

The SNePS representation of lexical entailment, troponymy, and causation will be
discussed in the following three sections.

Lexical Entailment and Its SNePS Representation

Below is an excerpt from “English Verbs as a Semantic Net” (Fellbaum 1990:272), in
which the notion of lexical entailment between verbs is defined:

In logic, entailment, or strict implication, is properly defined for propositions; a
proposition P entails a proposition Q if and only if there is no conceivable state of
affairs that could make P true and Q false. Entailment is a semantic relation
because it involves reference to the states of affairs that P and Q represent. The
term will be generalized here to refer to the relation between two verbs V1 and
V2 that holds when the sentence Someone V1 logically entails the sentence
Someone V2; this use of entailment can be called lexica entailment. Thus, for
example, snore lexically entails sleep because the sentence He is snoring entails
He is deeping; the second sentence necessarily holds if the first one does.

Some examples of lexical entailment are

buy entails pay
snore entails deep
drive entailsride

Because there is no direct mapping between lexical entailment and any standard SNePS
case-frame, the new verb-concept/entails case-frame is introduced to represent lexical
entailment in SNePS. For example, the following set of assertions represents the fact that
{buy, purchase} entails{pay} and that {buy, purchase} entails{choose, take, select,
pick_out}:
(assert concept #buy-purchase-v-2143689

word "buy")
(assert concept * buy-purchase-v-2143689

word "purchase™)

(assert concept #pay-v-2186811
word "pay")

(assert verb-concept * buy-purchase-v-2143689

14

entails * pay-v-2186811)

(assert concept #choose-take-select-pick _out-v-652154
word "choose")

(assert concept * choose-take-select-pick_out-v-652154
word "take")

(assert concept * choose-take-select-pick _out-v-652154
word "select")

(assert concept * choose-take-select-pick _out-v-652154
word "pick_out™)

(assert verb-concept * buy-purchase-v-2143689
entails * choose-take-select-pick _out-v-652154)

Troponymy and Its SNePS Representation

To extend the notion of hyponymy from nouns to verbs, the creators of WordNet
introduced a new semantic relation called troponymy. Verbs V1 and V2 are troponyms if
V1isto V2 in some particular manner. The notions of troponymy and hypernymy in
application to verbs are used interchangeably in the WordNet literature.

For example: scribble and write are troponyms because WordNet defines scribble as
write down quickly without much attention to detail; i.e., to scribble is to writein some
particular manner (specifically quickly and without much attention to detail).

Troponymy and lexical entailment are related: troponymy is akind of entailment,
because every troponym V1 of a more genera verb V2 aso entails V2. An example from
Fellbaum 1990:275:

“Consider the pair limp-walk. The verbsin this pair are related by troponymy: to limp is
also to walk in a certain manner; limp isatroponym of walk. The verbs are also in an
entaillment relation: the statement He is limping entails He is walking, and walking can be
said to be a part of limping.”

Whether a pair of verbsin an entailment relation are also in atroponymy relation is
determined by the temporal relationship between these verbs. For every pair of
troponyms V1 andV 2, it must necessarily hold that V1 and V2 are temporally co-
extensive. For example, the activities corresponding to the verbs to scribbleand to write
are temporally co-extensive, because one must necessarily be writing every moment that
one is scribbling.

In order to discuss temporal relationships between troponymy and entailment, the

WordNet creators introduced the notion of Temporal Inclusion, which they defined as
follows:

15

“A verb V1 will be said to temporally include averb V2 if there is some stretch of time
during which the activities denoted by the two verbs co-occur, but no time during which
V2 occurs and V1 does not. If there is atime during which V1 occurs but V2 does nat,
V1 will be said to properly include V2.” (Fellbaum 1990)

For example, such verb pairs as buy-pay and get_a medical_check-up/visit_the_doctor?
are bound by proper inclusion. The pairs bound by proper inclusion cannot be related by
troponymy, because troponym verbs must be temporally co-extensive. These ideas are
summarized in the following diagram:

Entailment
+ Troponymy - Troponymy
(co-extensiveness) (proper inclusion)
E.g. limp-walk E.g. buy-pay

Verbsin an entailment relation are aso in atroponymy relation if these verbs are
temporally co-extensive.

The notion of troponymy is best represented in SNePS by the subclass/superclass case-
frame. For example, to demonstrate that the synset {limp, hobble, hitch} has a more
general troponym synset {walk}, the following set of assertions is used:

(assert concept #limp-hobble-hitch-v-1861283
word "limp")

(assert concept *limp-hobble-hitch-v-1861283
word "hobble")

(assert concept *limp-hobble-hitch-v-1861283
word "hitch")

(assert concept #walk-v-1849285
word "walk™)

(assert subclass * limp-hobble-hitch-v-1861283
superclass * walk-v-1849285)

! The convention for dealing with empty spacesin WordNet is to replace every empty space with an
underscore.

16

Causation and Its SNePS Representation

The causative relation between two concepts (currently only in application to verbs) is
the relation when one of the concepts can be identified as causative and the other one as
resultative In cortrast to other WordNet relations, subjects of the verbsin a
causative/resultative pair have two distinctly different referents. The subject of the
resultative verb must be an object of the causative verb.

Some examples of causative/resultative pairs are:

give/have
show/see
kill/die

Causation is related to lexical entailment in that it is a specific case of entailment: if V1
necessarily causes V2, then V1 also entails V2. However, causation is different from
troponymy in that it lacks temporal inclusion. The relationship between entailment,
troponymy and causation is summarized in the following diagram:

Entailment
+ Temporal Inclusion - Temporal Inclusion
+ Troponymy - Troponymy Causatior
(Co-extensiveness) (Proper Inclusion)
E.g. showsee
E.g. lisp-tak E.g. buy-pay

It can be seen from this diagram that not all verbs related by entailment are also related
by temporal inclusion: while verbs in troponymy relation are always temporally co-
extensive, verbs in causative relation are not. To summarize, the causation relation
between verbs is a specific kind of entailment characterized by the absence of temporal
inclusion.

To represent causation in SNePS, the cause/effect case frame is introduced. For a pair of
verbs that are bound by causation relation, the synset pointed to by the cause arc
corresponds to the causative part of the pair, while the synset pointed to by the effect arc
corresponds to the resultative part of the pair. For example, the following assertions
represent the fact that a pair of synsets { show} /{ see} are bound by causation:

17

(assert concept #show-v-2075197
word "show")

(assert concept #see-v-2067665
word "see")

(assert cause * show-v-2075197
effect * see-v-2067665)

6. WordNet-to-SNePS (WNS) Interface

Overview

The process of retrieving data from the WordNet KB and converting this data to
SNePSUL is automated by means of a computer program called wns. The program is
implemented in the C language and makes use of the WordNet API that simplifies the
basic operations of searching the WordNet KB and is distributed as a part of the WordNet
installation package.

The functionality of wns includes the ability to perform a WordNet KB search: given a
word form (a one-word noun, a one-word verb, or a collocation with empty spaces
replaced by the underscore character) wns will

1. retrieve the synsets corresponding to every sense of this word form that is
available in the WordNet KB

2. retrieve and output the textual gloss corresponding to every sense of this word
that is available the WordNet KB

3. retrieve the information about the following relations for this word form:

Noun Antonymy

Noun Hypernymy

Noun Synonymy

Noun Holonymy (all three types)
Noun Meronymy (all three types)
Verb Antonymy

Verb Hypernymy (troponymy)
Verb Synonymy

Verb Entailment

Verb Causation

4. convert and output the information retrieved in steps (1) and (3) and convert it to
SNePSUL.

18

The wns program has a built-in morphological processor and thus is capable of handling
inflected word forms.

The executable wns is currently stored in
/projects/rapaport/Wordnet/WordNet-2.0/src/wns-1.0/

and is available for public use.

High-Level Design

wns operates in accordance with the following algorithm.

The algorithm is simplified and is intended to provide only a high-level understanding of
how of wns works; the source code of wns is well documented, so please see the code in
appendix 3 for details.

Begin

Read the word form W passed as an argument

For every WordNet noun relation R and word formW

{
perform a noun WordNet search for word form W and relation R
for every sense Sof word form W retrieved from WordNet KB
{
convert information about relation R and word form W for sense S
to SNePSUL and output this information
}
}
For every WordNet verb relation R and word form W
{
perform a verb WordNet search for word form W and relation R
for every sense S of word form W retrieved from WordNet KB
{
convert information about relation R and word form W for sense S
to SNePSUL and output this information
}
}
End

19

There are two ways to run the wns program:
1. Pass asingle word form as an argument: wns —word <some_word_form>
For example:

wns -word head
wns —word computer_program

The abridged output produced by executing wns —word head is shown in the Appendix
section of this report (for each type of search, only the first three senses are | eft).

2. Pass afile name: wns —file <some _file_name>
For example:
wns —file context.txt

The wns program includes a tokenizer. The tokenizer goes through the file that is passed
as an argument to the program and performs a WordNet search for each word form in the
file. The job of the tokenizer isto get rid of al the “extraneous’ characters, such as
commas, periods, spaces. As aresult, the program is capable of processing a passage that
is taken from an arbitrary text: the passage can be saved in a separate text file and the
name of the file can be passed to the program. In this manner, wns can be used to import
the entire content of the WordNet KB to SNePS if such aneed arises.

Conversion Rules

Because al WordNet relations are defined for synsets and not for individual word forms
and the output of the wns program reflects this state of affairs, a suite of conversion rules
is necessary to adapt the output of wns for usein CVA. This task is accomplished by
means of the rules which semantically interpret the wns-produced output and convert it to
SNePS assertions relating individual word forms. These assertions conform to the CVA
standards and thus can be picked up by the CVA word definition algorithms.

Thefirst rule is used to convert the wns representation of synsets into the CV A-compliant
representation that uses the synonym/synonym case frame:

(add forall ($concept $wordl $word2)
&ant (
(build concept * concept word *wordl)
(build concept * concept word *word2)

)
cq (build synonym (build lex *word1)
synonym (build lex *word?2)))

20

The following three rules will convert the antonym/antonym, subclass/superclass, and
part/whole relations which hold between concepts (synsets) to the CVA-compliant
relations that hold between individual words (synsets members):

(add forall ($conceptl $concept2 $wordl $word2)
&ant (
(build antonym * concept1 antonym * concept2)
(build concept * conceptl word *word1l)
(build concept * concept2 word *word2)
)
cq (build antonym (build lex *word1)
antonym (build lex *word2)))

(add forall ($sub-concept $super -concept $sub-word $super -word)
&ant (
(build subclass * sub-concept superclass * super-concept)
(build concept * sub-concept word * sub-wor d)
(build concept * super-concept word * super -wor d)
)
cq (build subclass (build lex * sub-word)
superclass (build lex * super-word)))

(add forall($whole-concept $part-concept Swhole-word $part-word)

&ant (

(build whole *whole-concept part * part-concept)

(build concept *whole-concept word * whol e-wor d)

(build concept * part-concept word * part-word)

)
cq (build part (build lex * part-word)
whole (build lex *whole-word)))

The following two rules will convert entailment and causation relations to the
representations that use the standard CVA agent/act/action case frame.

(add forall ($action-concept $action-word $entails-concept $entails-wor d)
&ant (
(build verb-concept * action-concept entails * entail s-concept)
(build concept * action-concept word * action-wor d)
(build concept * entails-concept word * entails-word)

)
cgq (build forall ($x)

ant (build agent *x

act (build action (build lex * action-word)))
cq (build agent *x

act (build action (build lex * entails-word)))))

21

(add forall ($cause-concept $cause-word Seffect-concept Seffect-word)
&ant (
(build cause * cause-concept effect * effect-concept)
(build concept * cause-concept word * cause-wor d)
(build concept * effect-concept word * effect -wor d)
)
cq (build forall ($subject $object)
ant (build agent * subject
act (build action (build lex * cause-word)
object * object))
cq (build agent * object
act (build action (build lex * effect -word)))))

7. CVA Demo

The demo created for the purpose of this project will be referred to as the augur-wns
demo to distinguish it from the original augur demo created by Chris Becker (Becker
2004) to computationally determine the meaning of the verb augur from context and thus
test the capabilities of his verb-definition algorithm.

The purpose of the augur-wns demo is to show how the automated WordNet-to-SNePS
interface (wns) can be used to retrieve some background knowledge necessary for CVA
from WordNet.

The following passage served as the context:

Suddenly the tempest redoubled. The poor young woman
could augur nothing favorable as she listened to

the threatening heavens, the changes of which were
interpreted in those credulous days according to

the ideas or the habits of individuals.

The origina augur demo already made a selective use of some WordNet ontologies,
which Chris Becker manually converted to SNePSUL . Specifically, the demo contains a
partial chain of superordinates for the nouns tempest, woman, days, and quality, and the
verbsinterpret, listen, and redouble. For the purpose of the augur-wns demo, the full
chain of superordinates for these words was automatically retrieved and converted to
SNePSUL using the wns program. Because the wns program retrieves all the senses of
the sought word that are defined in WordNet, the correct sense had to be manualy
extracted from the output of wns and pasted to the augur-wns demo (see the “Future
Research Directions’ section for more on this). In addition to this, in order to make the
output of wns recognizable by the verb-definition algorithm, the suite of conversion rules
described in the previous section was loaded to ensure that the synset relations generated
by wns are converted to the CVA-compliant rules. This step is accomplished by the line

22

(intext "conv-rules') in the augur -wns demo file (the rules were stored in the file named
conv-rules in the same directory where the demo was run).

Below is the verb-definition algorithm’s output for the original augur demo:

* * * Defining the verb augur * * *

Arguments of the verb:
(agent object)

Transitivity:
transitive

* * * Basic Findings* * *

possible cause of augur is:
bad omen,
heavens,
instance of change,
tempest,

possible actions performed by agent of augur is:
augur,
interpret,
listen,

possible actions performed on object of augur is:
augur,

possible actions performed with instrument of augur is:
augur,

possible action that is the cause of augur is:
listen,
interpret,

possible property of verbis:
unknown,

possible membership of agent is:
human,

possible superordinate of agent is:
animate thing,

possible property of agent is:
disposed to believe on little evidence,
credulous,
poor,
young,

possible superclass of object is:
quality,

23

possible property of object is:
not favorable,

* * * generalizations from this context * * *

A {human} can augur
Something that is a subclass of {quality}

A {human} can augur
Something with the properties { not favorabl e}

A {animate thing} can augur
Something that is a subclass of {quality}

A {animate thing} can augur
Something with the properties { not favorabl e}

Something with the properties {disposed to believe on little evidence, credulous, poor, young} can augur
Something that is a subclass of {quality}

Something with the properties {disposed to believe on little evidence, credulous, poor, young} can augur
Something with the properties {not favorabl e}

The definition of augur produced by the augur-wns demo is a superset of the definition
produced by the original augur demo:

* * * Defining the verb augur * * *

Arguments of the verb:
(agent object)

Transitivity: transitive
* * * Basic Findings* * *

possible cause of augur is:
bad omen,
heavens,
instance of change,
tempest,

possible actions performed by agent of augur is:
augur,
interpret,
listen,

possible actions performed on object of augur is:
augur,

possible actions performed with instrument of augur is:
augur,

possible action that is the cause of augur is:
listen,

24

interpret,

possible property of verbis:
unknown,

possible membership of agent is:
human,

possible superordinate of agent is:
entity,
physical_object,
object,
animate_thing,
living_thing,
being,
organism,

possible property of agent is:
disposed to believe on little evidence,
credulous,
poor,
young,

possible superclass of object is:
quality,

possible property of object is:
not favorable,

* * * generalizations fromthis context * * *

A {human} can augur
Something that is a subclass of {quality}

A {human} can augur
Something with the properties { not favorabl e}

A {entity, physical_object, object, animate_thing, living_thing, being, organism} canaugur
Something that is a subclass of {quality}

A {entity, physical_object, object, animate_thing, living_thing, being, organism} can augur
Something with the properties {not favorabl e}

Something with the properties {disposed to believe on little evidence, credulous, poor, young} can augur
Something that is a subclass of {quality}

Something with the properties {disposed to believe on little evidence, credul ous, poor, young} can augur
Something with the properties{not favorabl e}

The explanation of the fact that the wns-augur demo produces the output that is the
superset of the original augur demo is rooted in that the chains of superordinates, which
were manually adapted from WordNet for the augur demo, are incomplete, while the wns
program extracts whatever is available in the WordNet KB for the given word form.

25

8. Future Research Directions

WordNet-related Research

1. The wns program currently retrieves from WordNet al the senses for the word form
passed to it as an argument. However, when a context for this word form is provided,
only asingle sense is applicable. In other words, a word-sense disambiguation technique
needs to be developed, which would allow a decision about which sense of all the senses
that are available in WordNet KB for the given word form is applicable in the given
context.

An interesting project would be to investigate the applicability of the CVA techniques to
the problem of word-sense disambiguation. The following strategy is conceivable:

Suppose we are given aword form W in some context. We could run a CVA agorithm
on W and try to match its output against the wns-produced ontologies for each of the
senses of W. A match would point to the sense of W that is used in this context.

2. Because WordNet verb relations have many temporal aspects (see the section on
WordNet verb relations), the conversion rules, which interpreted the wns-produced
assertions for CVA use, could include the concept of time. For example, the rule that
interprets the cause/effect case frame could include the information that the causative and
resultative verbs lack temporal inclusion.

3. Since WordNet verb relations are interrelated (e.g., troponymy is a case of entailment),
the conversion rules could be updated to reflect this fact. For example, if an assertion
links two synsets as being in a troponymy relation, this assertion can be interpreted in the
same way as if these two synsets were in an entailment relation.

CYC-related Research

1. An interesting research direction would be to develop atheory of how a human reader
identifies the background knowledge that is necessary for CVA. The major problem with
using the CY C KB as a source of background knowledge is the lack of understanding of
how a human reader decides what kind of background knowledge is necessary for CVA.
Developing such a theory would make searching CY C for the relevant background
knowledge possible.

2. Another approach to using CY C as a source of background knowledge for CVA could
be to re-implement the CVA agorithmsin CY CL/SUBL (CY C programming languages).
This would obviate the need to search for and import the background knowledge to
SNePS.

26

3. A problem with using CY C as a source of background knowledge for CVA is having
to map CYC predicates to the standard CV A case-frames. A case-frame independent
CVA dgorithm, that is an algorithm that does not rely on a set of standard case-framesto
search for, would obviate the need for such a mapping. A case-frame independent CVA
algorithm could conceivably search the semantic network around an unknown word for
all assertions that involves this word (and not just the assertions that use the standard
case-frames).

27

Appendix 1

wns program sample run

/home/Mitya/WordNet-2.0/src/wns/>wns -word head

;antonyny search results for noun "head"

R LR sense 1 --------mmmmmn e
; (the front of a mlitary formation or process
; ion; "the head of the colum advanced bol dl y"
; ; "they were at the head of the attack")

(assert concept #head-n-7968063
word "head")

(assert concept #rear-n-7968474
word "rear")

(assert antonym *head-n-7968063
antonym *rear-n-7968474)

R SEeNSe 2 -------------ooooo- -
; (the top of sonething; "the head of the stair

; s"; "the head of the page"; "the head of the

;o list™)

(assert concept #head-n-8134688
word "head")

(assert concept #foot-n-7993741
word "foot")

(assert antonym *head-n-8134688
antonym *f oot - n- 7993741)

LR R SENSE 3 ~----mrmcmm e
; ((usually plural) an obverse side of a coint

; hat bears the representation of a person's he

; ad; "call heads or tails!")

(assert concept #head-n-3373458
word "head")

(assert concept #tail-n-4214453
word "tail™")

28

(assert antonym *head-n- 3373458
antonym *tail - n-4214453)

; hypernyny search results for noun "head"

R TR sense 1 -----------------------
; (the upper part of the human body or the fron

; t part of the body in animals; contains the f

; ace and brains; "he stuck his head out the wi

; ndow")

(assert concept #head-caput-n-5221598
word "head")

(assert concept *head-caput-n-5221598
word "caput")

(assert concept #external body part-n-4924211
word "external _body part")

(assert subcl ass *head-caput-n-5221598
supercl ass *external _body_part-n-4924211)

(assert concept #body_part-n-4919813
word "body_part™)

(assert subcl ass *external _body part-n-4924211
supercl ass *body_part-n-4919813)

(assert concept #part-piece-n-8797461
word "part")

(assert concept *part-piece-n-8797461
word "piece")

(assert subclass *body_part-n-4919813
supercl ass *part-piece-n-8797461)

(assert concept #thing-n-2056
word "thing")

(assert subclass *part-piece-n-8797461
supercl ass *t hi ng-n- 2056)

(assert concept #entity-n-1740
word "entity")

(assert subclass *thing-n-2056
superclass *entity-n-1740)

R TR SENSe 2 -------------oomooo- -
; (a single domestic animal; "200 head of catt

29

(assert

(assert

(assert

(assert
12748

(assert
12748

(assert
12748

(assert
12748

(assert
12748

(assert
12748

(assert
12748)
(assert

(assert

(assert
12748

(assert

(assert

(assert

(assert

(assert

concept #head-n-1245172
word "head")

concept #donmestic_ani mal - n- 1244626
word "donestic_animl")

subcl ass *head- n- 1245172
supercl ass *donestic_ani mal - n- 1244626)

concept #ani mal - ani mat e_bei ng- beast - brut e- cr eat ure-f auna- n-

word "animal")
concept *ani mal - ani mat e_bei ng- beast - br ut e- cr eat ure- f auna- n-

word "ani mat e_bei ng")
concept *ani mal - ani mat e_bei ng- beast - brut e- cr eat ure-f auna- n-

word "beast")
concept *ani mal - ani mat e_bei ng- beast - brut e- cr eat ure-f auna- n-

word "brute")
concept *ani mal - ani mat e_bei ng- beast - br ut e- cr eat ure- f auna- n-

word "creature")
concept *ani mal - ani mat e_bei ng- beast - brut e- cr eat ure-f auna- n-

word "fauna")

subcl ass *donesti c_ani mal - n- 1244626
supercl ass *ani nal - ani mat e_bei ng- beast - br ut e- cr eat ur e- f auna- n-

concept #organi sm bei ng-n-3226
word "organi sm')

concept *organi sm bei ng-n- 3226
word "being")

subcl ass *ani mal - ani mat e_bei ng- beast - brut e- cr eat ure-f auna- n-
supercl ass *organi sm bei ng- n- 3226)

concept #living_thing-animte_thing-n-3009
word "Iliving_thing")
concept *living_thing-ani mte_thi ng-n-3009
word "ani mat e_t hi ng")

subcl ass *organi sm bei ng-n- 3226
supercl ass *living_thing-ani mate_t hi ng-n-3009)

concept #obj ect - physical _object-n-16236
word "object")

concept *obj ect-physical _object-n-16236
word "physical _object")

30

(assert subclass *living_thing-ani mate_t hi ng-n-3009

supercl ass *obj ect - physi cal _obj ect-n-16236)

(assert concept #entity-n-1740

word "entity")

(assert subcl ass *object-physical _object-n-16236

supercl ass *entity-n-1740)

--------------- SENSE 3 ~----mrmcmm e
(that which is responsible for one's thoughts
and feelings; the seat of the faculty of rea

son; "his m nd wandered"; "I couldn't get his
words out of nmy head")

(assert concept #m nd-head- brai n-psyche-nous-n-5291080

word "m nd")

(assert concept *mi nd-head- brain-psyche-nous-n-5291080

word "head")

(assert concept *mi nd-head- brain-psyche-nous-n-5291080

word "brain")

(assert concept *m nd-head- brai n- psyche-nous-n-5291080

word "psyche")

(assert concept *m nd-head- brai n-psyche-nous-n-5291080

word "nous")

(assert concept #cognition-know edge-noesi s-n-20729

word "cognition")

(assert concept *cognition-know edge-noesi s-n-20729

word "know edge")

(assert concept *cognition-know edge-noesi s-n-20729

word "noesis")

(assert subcl ass *m nd- head- brai n- psyche-nous-n-5291080

supercl ass *cogniti on-know edge- noesi s- n-20729)

(assert concept #psychol ogi cal _feature-n-20333

word "psychol ogi cal _feature")

(assert subclass *cognition-know edge-noesi s-n-20729

supercl ass *psychol ogi cal _feature-n-20333)

synonyny search results for noun "head"

--------------- sense 1 --------mmmmmme e
(the upper part of the human body or the fron

t part of the body in animals; contains the f
ace and brains; "he stuck his head out the wi
ndow")

(assert concept #head-caput-n-5221598

31

word "head")
(assert concept *head-caput-n-5221598
word "caput")

(assert concept #external _body_part-n-4924211
word "external _body_part")

(assert subcl ass *head-caput-n-5221598
supercl ass *external _body_part-n-4924211)

R TR SENSe 2 -------------mmaooo- -
; (a single domestic animal; "200 head of catt

(assert concept #head-n-1245172
word "head")

(assert concept #donestic_ani mal -n-1244626
word "donestic_ani mal")

(assert subcl ass *head-n- 1245172
supercl ass *donestic_ani mal -n-1244626)

L sense 3 ----------o-omma o
; (that which is responsible for one's thoughts

; and feelings; the seat of the faculty of rea

; son; "his mnd wandered"; "I couldn't get his

; words out of my head")

(assert concept #m nd-head- brai n- psyche-nous-n-5291080
word "m nd")

(assert concept *m nd-head- brain-psyche-nous-n-5291080
word "head")

(assert concept *m nd-head- brai n-psyche-nous-n-5291080
word "brain")

(assert concept *nmi nd-head- brain-psyche-nous-n-5291080
word "psyche")

(assert concept *m nd-head- brain-psyche-nous-n-5291080
word "nous")

(assert concept #cognition-know edge-noesi s-n-20729
word "cognition")

(assert concept *cognition-know edge-noesi s-n-20729
word "know edge")

(assert concept *cognition-know edge-noesi s-n-20729
word "noesis")

(assert subcl ass *m nd- head- brai n- psyche-nous-n-5291080
supercl ass *cognition-know edge- noesi s-n-20729)

; holonymy search results for noun "head"

--------------- sense 1 -----------------------
(the upper part of the human body or the fron

t part of the body in animals; contains the f
ace and brains; "he stuck his head out the wi
ndow")

(assert concept #head-caput-n-5221598

word "head")

(assert concept *head-caput-n-5221598

word "caput")

(assert concept #body-organic_structure-physical _structure-n-4916110

word "body")

(assert concept *body-organic_structure-physical _structure-n-4916110

word "organi c_structure")

(assert concept *body-organic_structure-physical _structure-n-4916110

word "physical _structure")

(assert whol e *body-organi c_structure-physical _structure-n-4916110

part *head-caput-n-5221598)

(assert concept #ani mal - ani mat e_bei ng- beast - brut e- cr eat ur e- f auna- n-
12748

word "animal")

(assert concept *ani mal - ani mat e_bei ng- beast - brut e- cr eat ure-f auna- n-
12748

word "ani mat e_bei ng")

(assert concept *ani mal - ani mat e_bei ng- beast - brut e- cr eat ur e-f auna- n-
12748

word "beast")

(assert concept *ani mal - ani mat e_bei ng- beast - br ut e- cr eat ur e- f auna- n-
12748

word "brute")

(assert concept *ani mal - ani mat e_bei ng- beast - brut e- cr eat ure-f auna- n-
12748

word "creature")

(assert concept *ani mal - ani mat e_bei ng- beast - br ut e- cr eat ur e- f auna- n-
12748

word "fauna")

(assert whol e *ani mal - ani mat e_bei ng- beast - brut e-creat ure-f auna-n- 12748

part *head-caput-n-5221598)

--------------- SENSE 2 ---m-cme e
(the tip of an abscess (where the pus accunul
ates))

(assert concept #head-n-13501568

word "head")

(assert concept #abscess-n-13501259

word "abscess")

33

(assert whol e *abscess-n-13501259
part *head-n-13501568)

R SEeNsSe 3 --------------o-oooooo
; (a V-shaped mark at one end of an arrow point
; er; "the point of the arrow was due north")

(assert concept #point-head-n-6402917
word "point")

(assert concept *point-head-n-6402917
word "head")

(assert concept #arrow poi nter-n-6399245
word "arrow')

(assert concept *arrow pointer-n-6399245
word "pointer")

(assert whol e *arrow poi nter-n-6399245
part *poi nt-head-n-6402917)

; meronyny search results for noun "head"

R TR sense 1 -----------------------
; (the upper part of the human body or the fron

; t part of the body in animals; contains the f

; ace and brains; "he stuck his head out the w

; ndow")

(assert concept #head-caput-n-5221598
word "head")

(assert concept *head-caput-n-5221598
word "caput")

(assert concept #muzzl e-n-2364732
word "nuzzle")

(assert whol e *head- caput-n-5221598
part *muzzl e-n-2364732)

(assert concept #ear-n-5014060
word "ear")

(assert whol e *head- caput-n-5221598
part *ear-n-5014060)

(assert concept #basilar_artery-arteria_basilaris-n-5031199
word "basilar_artery")

(assert concept *basilar_artery-arteria_basilaris-n-5031199
word "arteria_basilaris")

(assert whol e *head- caput-n-5221598
part *basilar_artery-arteria_basilaris-n-5031199)

(assert concept #brain-encephal on-n-5166469
word "brain")

(assert concept *brain-encephal on-n-5166469
word "encephal on")

(assert whol e *head- caput-n-5221598
part *brain-encephal on-n-5166469)

(assert concept #skull-n-5223094
word "skull")

(assert whol e *head- caput-n-5221598
part *skul | -n-5223094)

(assert concept #face-human_face-n-5280660
word "face")

(assert concept *face-human_face-n-5280660
word "human_face")

(assert whol e *head- caput-n-5221598
part *face-human_face-n-5280660)

(assert concept #tenple-n-5282670
word "tenple")

(assert whol e *head- caput-n-5221598
part *tenpl e-n-5282670)

R L SENSe 2 --------mm e e
; (the striking part of a tool; "the head of th
;e hanmer")

(assert concept #head-n-3373261
word "head")

(assert concept #face-n-3193650
word "face")

(assert whol e *head-n-3373261
part *face-n-3193650)

35

Appendix 2

CVA Demo

* (denmpo "augur-wn. denp")

Fil e /home/ csgrad/ ddligach/ 1 ndProj/Deno/augur-wn.deno i s now t he source
of input.

CPUtinme : 0.01

;. FI LENANE: augur - wn. deno
; DATE: 4/ 15/ 2004
; PROGRAMVER: Chris Becker

; PROGRAMVER: Dmitriy Dligach

; Turn off inference tracing.
; This is optional;

;M(setq snip:*infertrace* nil)

; Load the verb definition algorithm
~(
--> load "/projects/rapaport/ CVA/ verbal gorithnB.0/defun_verb.cl")

Loadi ng / proj ects/rapaport/ CVA/ verbal gorithnB. 0/ defun_verb. cl

36

; Loadi ng

; / proj ect s/ rapaport/ CVA/ verbal gorithnB. 0/ Construct Fi ndLi sts.c
; Loadi ng

; / proj ects/rapaport/CVA/ verbal gorithnB. 0/ Const ruct FoundLi sts.c
; Loadi ng / proj ects/rapaport/ CVA/ verbal gorithnmB. 0/ Processi ng. cl

; Loadi ng / projects/rapaport/ CVA/ verbal gorithnmB. 0/ Qut put.c

CPU tinme : 0.06

; Clear the SNePS net work:

(resetnet t)

Net reset

CPU tinme : 0.00

;turn on full forward inferencing:
™
--> setq snip:*infertrace* nil)

ni

37

CPU tinme : 0.00

; ;enter the "snip" package:
™
--> in-package snip)

#<The snip package>

CPUtime : 0.00

™
--> defun broadcast-one-report (rep)
(let (anysent)
(do.chset (ch *QUTGO NG CHANNELS* anysent)
(when (isopen.ch ch)

(setq anysent (or (try-to-send-report rep ch)
anysent)))))

nil)

br oadcast - one-report

CPU time : 0.00

38

; (i n-package sneps)

; load all pre-defined relations:

(intext "/projects/rapaport/CVA/ STN2/ denpos/rel s")

File /projects/rapaport/ CVA/ STN2/ denpos/rels is now the source of input.

CPU tinme : 0.00

(al a2 a3 a4 after agent agai nst antonym associ at ed before cause cl ass
direction equiv etinme event fromin indobj instr into |lex |location
manner nenber node object on onto part place possessor proper-name
property rel skf sp-rel stime subclass superclass subset superset

synonym tine to whole kn_cat)

CPU time : 0.05

End of file /projects/rapaport/CVA/ STN2/ denos/rels

CPU time : 0.05

; define WrdNet relations

39

(define concept word)

(concept word)

CPU tinme : 0.00

; define new rel ati ons:

(define simlar)

(simlar)

CPU tinme : 0.00

; load all pre-defined path definitions:
(intext "/projects/rapaport/CVA/ STN2/ denps/ pat hs")

File /projects/rapaport/ CVA STN2/ denpos/ paths is now the source of
i nput .

CPU tinme : 0.00

before inplied by the path (conpose before
(kstar (conpose after- ! before)))
before- inplied by the path (conpose (kstar (conpose before- ! after))

bef ore-)

CPU tinme : 0.01

after inplied by the path (conpose after

(kstar (compose before- ! after)))
after- inplied by the path (conpose (kstar (conpose after- ! before))
after-)

CPU tinme : 0.00

class inplied by the path (conmpose cl ass

(kstar (compose subclass- ! superclass)))
class- inplied by the path (conpose

(kstar (conpose superclass- ! subcl ass))

cl ass-)

CPUtime : 0.00

subcl ass inplied by the path (conmpose subcl ass

(kstar (compose superclass- ! subclass)))
subcl ass- inplied by the path (conpose

(kstar (conpose subclass- ! superclass))

subcl ass-)

41

CPUtime : 0.00

menber inplied by the path (conpose nenber
(kstar (compose equiv- ! equiv)))
menber- inplied by the path (conpose (kstar (conpose equiv- ! equivV))

menber -)

CPUtime : 0.00

End of file /projects/rapaport/CVA/ STN2/ denps/ pat hs

CPUtinme : 0.01

; THE CONTEXT:

; Suddenly the tenpest redoubl ed. The poor young worman coul d augur

42

; nothing favorable as she listened to the threatening heavens, the

; changes of which were interpreted in those credul ous days according
to

;. the ideas or the habits of individuals.

; from http://ww. gutenberg. net/etext98/ htdsnl0.txt

; PARAPHRASED

; The tenpest redoubl ed.

; (ant:) The woman |istened to the heavens.

; (cq:) The woman augured a thing that was not favorable.

; In those days, people interpreted a change in the heavens.
; I'n credul ous days, people are credul ous.

; The act of interpretation, in those (credul ous) days,

; is done by the relation of "manner"

; with respect to "ideas" and "habits" possessed by the agent,

;. OBJECTS:

; tenpest

; woman

; (no)thing
; heavens

; change

; days

i ndi vi dual s

PROPERTI ES OF OBJECTS

t enpest
act: redoubl e

equi v: heavens

woman
property: young
property: poor
act: augur
act: listen(heavens)
t hi ng
property: not favorable
heavens
equi v: tenpest
property: threatening
possesses: change
change

i ndi vi dual s

act: interpret change

; BACKGROUND KNOW.EDGE:

: CGeneral rules:

; If action Ais perfornmed by agent Y on object Z,
; and action B is performed by agent Y on object Z,

: then A and B are sim|lar.

; If action A and action B are simlar, and A causes C,

; then B causes C as wel |

; If X and Y are equiv, and X has property A, then Y has property A
; If X and Y are equiv, and X does act A, then Y does act A.

; If X and Y are equiv, and X is a menber of class A,

; then Y is a menber of class A

; If X and Y are equiv, and X is a subclass of A then Y is a subclass

;. If action Ais perfornmed by agent Y on object Z,
;. and action B is perfornmed by agent Y on object Z,

;;; then A and B are simlar

; (show
(describe (add forall ($A $B $Y $2)

gnt ((build

45

agent *Y

act (build action *A object *Z)

)
(build
agent *Y
act (build action *B object *Z)
)

)
cq (build simlar *A simlar *B)

))

(rl! (forall v4 v3 v2 vl)
(&ant (p4 (act (p3 (action v2) (object v4))) (agent v3))
(p2 (act (pl (action v1l) (object v4))) (agent v3)))

(cq (p5 (simlar v2 vl))))

(mi!)

CPUtinme : 0.01

;;. If action | and action J are simlar, and the act containing

;;, action | causes K, then the act containing action J causes K as
wel |

;7 Note: the actions do not need to have the same agent or object.

46

;5 $1 and $J are actions
$Wand $V are agents

$U and $T are objects

; (show
(describe (add forall ($I $J $K $W SV $U $7)
&ant (

(build simlar *I simlar *J)

(build cause (build agent *W

act (build
action *|
obj ect *U))

effect *K))

cq (build cause (build agent *V act (build action *J object
*T))

ef fect *K)

))

(m2! (forall vi1l v10 v9 v8 v7 v6 V5)
(&ant
(p9 (cause (p8 (act (p7 (action v5) (object vi0))) (agent v8)))
(effect v7))
(p6 (sinilar v6 v5)))
(cq
(p12 (cause (pll (act (pl0 (action v6) (object vil))) (agent v9)))

(effect v7))))

47

(ne!)

CPU tinme : 0.02

;»; CGENERIC RULES FOR "EQUI V' CASE FRAME

;. These rules add sonme neaning to what it neans for

7;. two things to be equiv.

7, Equivalent things will share the same properties

7, If Xand Y are equiv, and X has property A,

;;: then Y also has property A

; (show
(describe (add forall ($x1 $y1 $ail)
&ant (
(build equiv *x1 equiv *yl)

(build object *x1 property *al)

cq (build object *yl property *al)

))

(mB! (forall v14 v13 v12)
(&nt (pl4 (object v12) (property vi4)) (pl3 (equiv vi3 v12)))

(cq (pl5 (object v13) (property vid))))

(n8!)

CPU tinme : 0.01

., Equivalent things will do the same actions

;. If X and Y are equiv, and X does act A,
7, then Y al so does act A

::; Note, this is for an intransitive act

(describe (add forall ($x2 $y2 $a2)
&ant (
(build equiv *x2 equiv *y2)
(build agent *x2 act (build action *a2))

)
cq (build agent *y2 act (build action *a2))

))

(mi! (forall v17 v16 v15)

49

(&ant (pl8 (act (pl7 (action v17))) (agent v15))
(pl6 (equiv v16 v15)))

(cqg (pl9 (act (pl7)) (agent v16))))

(ma!)

CPU tinme : 0.02

;. Equivalent things will share the same class nenbership

If X and Y are equiv, and X is a nmenber of class A

;. then Y is also a nenber of class A

(describe (add forall ($x3 $y3 $a3)
&ant ((build equiv *x3 equiv *y3)
(build nmenber *x3 class *a3))

cq (build menmber *y3 class *a3)

))

(mb! (forall v20 v19 v18)

(&ant (p21 (class v20) (rmember v18)) (p20 (equiv v19 v18)))

(cq (p22 (class v20) (rmenmber v19))))

(nb!)

CPU tinme : 0.02

50

i7s +., Equivalent things will share the same supercl ass

;. If Xand Y are equiv, and X is a subclass of A

;. then Y is also a subclass of A

(describe (add forall ($x4 $y4 $a4)
&nt ((build equiv *x4 equiv *y4)
(build subclass *x4 superclass *a4))

cq (build subclass *y4 superclass *a4)

))

(m6! (forall v23 v22 v21)
(&ant (p24 (subclass v21) (superclass v23)) (p23 (equiv v22 v21)))

(cq (p25 (subclass v22) (superclass v23))))

(n6!)

CPU time : 0.05

51

;. Tenpest and heavens refer to the same thing.
;. We can therefore say that tenpest is equiv to heavens

(descri be
(add
equiv (build lex "tenpest") = tenpest
equiv (build I ex "heavens") = heavens
)
)

(md! (equiv (nB (lex heavens)) (nv (lex tenpest))))

(nd!)

CPU tinme : 0.02

*
7., The tenpest redoubl ed.
(descri be
(add
agent *tenpest
act (build action (build Iex "redouble") = redouble)
)

52

(rL3! (act (mL1l (action (nlO0 (Il ex redouble)))))

(agent (mB (Il ex heavens))))

(mt2! (act (mll1l)) (agent (m7 (lex tenpest))))

(mL3! mi2!)

CPU tinme : 0.04

The woman i s young
(descri be
(add
object (build lex "the woman") = theWman
property (build lex "young")
)
)

(mL6e! (object (nl4 (lex the woman))) (property (ml5 (lex young))))

(m6!)

CPU tinme : 0.02

53

(descri be
(add
obj ect *t heWbman
property (build | ex "poor")
)
)

(mL8! (object (nl4 (lex the woman))) (property (ml7 (lex poor))))

(mL8!)

CPU tinme : 0.01

The woman is a nmenmber of the class human

(describe (assert
menber *theWbnman

class (build I ex "human") = human))

(m20! (class (m9 (lex human))) (nmenmber (ml4 (lex the worman))))

(n20!)

CPU tinme : 0.00

*

;. The object of "augur" is "nothing favorable"

;;, However, since it would be silly to create an object

;;. called "nothing” with the property "favorable".

77, Other possibilities could have been to represent it as

77, "Athing that is not favorable"”

;,; However, | settled on creating an object that is just the

;. concept "nothing favorable" with the property "not favorable"
;.5 (or just "unfavorable")

(descri be

(add

object (build lex "nothing favorable") =
not hi ngFavor abl e

property (build Iex "not favorable") = unfavorable

(m23! (object (nR1 (lex nothing favorable)))

55

(property (nR22 (lex not favorable))))

(n23!)

CPU tinme : 0.04

The heavens are threatening
(descri be
(add
obj ect *heavens
property (build lex "threatening") = threatening
)
)

(m26! (object (n7 (lex tenpest))) (property (m4 (lex threatening))))

(m25! (object (nB (lex heavens))) (property (nm4)))

(n26! ne5!)

CPU tine : 0.04

;. "days" are credul ous

56

;;, Later there is a rule that asserts that "days" being credul ous

7., means that people are credul ous.

(descri be (assert
object (build lex "days") = days

property (build lex "credul ous") = credul ous))

(m29! (object (nR7 (lex days))) (property (m8 (lex credulous))))

(m29!)

CPU tinme : 0.00

;7. | will define superordinates for the objects above

;7 The ontol ogi es used here cone from WrdNet 2.0:
7., They were retrieved using the automated

77, WordNet-to-SNePS interface (wns)

;;; tenpest
. => w ndst orm
N => storm violent storm

M => atnospheric phenonenon

57

A => physi cal phenonenon
. => patural phenonenon

Do => phenonenon

; hypernyny search results for noun "tenpest"”

R TR SENSe 2 --------------oooo- -
; ((literary) a violent wind; "a tenpest swept

; over the island")

(assert concept #tenpest-n-10776284

word "tenpest")

(n80!)

CPUtime : 0.00

(assert concept #w ndstorm n-10784367

word "wi ndstorni)

(nB1!)

58

CPU tinme : 0.00

(assert subcl ass *tenpest-n-10776284

supercl ass *wi ndstorm n-10784367)

(nB2!)

CPU time : 0.00

(assert concept #stormviolent_stormn-10722776

word "storni)

(nB83!)

CPU tinme : 0.00

* (assert concept *stormyviolent_stormn-10722776

word "viol ent_stornt)

(nB4!)

CPU tinme : 0.00

(assert subclass *w ndstorm n-10784367

superclass *stormvi ol ent_stormn-10722776)

59

(nB5!)

CPU tinme : 0.00

(assert concept #atnospheric_phenonenon-n-10687119

word "at nospheri c_phenonenon")

(nB6!)

CPUtime : 0.00

(assert subcl ass *stormviol ent_stormn-10722776

supercl ass *at nospheri c_phenonenon-n-10687119)

(nB87!)

CPU tinme : 0.00

(assert concept #physical _phenonmenon-n-10681095

wor d "physi cal _phenomenon")

(nB8!)

CPU tinme : 0.00

60

(assert subcl ass *at nospheri c_phenonmenon-n-10687119

supercl ass *physi cal _phenomenon-n-10681095)

(nB89!)

CPU tinme : 0.00

(assert concept #natural _phenonenon-n-10670756

word "natural _phenomenon")

(m0!)

CPU tinme : 0.00

(assert subcl ass *physi cal _phenonenon-n- 10681095

supercl ass *natural _phenomenon-n-10670756)

(ma1!)

CPU tinme : 0.00

(assert concept #phenonmenon-n-29881

word "phenonmenon")

61

(ma2!)

CPU tinme : 0.01

(assert subcl ass *natural _phenomenon-n-10670756

supercl ass *phenonenon-n-29881)

(ma3!)

CPUtime : 0.00

*
;s VWOMVAN

M is a kind of:

;. human => animate thing => physical object => entity

;55 woman, adult female

P => femal e, femal e person

;;;I => person, individual, sonmeone, sonebody, nortal, human,
sou

i => organi sm being
S => living thing, animte thing
M => obj ect, physical object

A => entity

62

; hypernyny search results for noun "woman"

R sense 1 -------------------o---
; (an adult femml e person (as opposed to a nmn)

; ; "the woman kept house while the man hunted”

(assert concept #woman-adult fenml e-n-10084064

word "woman")

(ma4l)

CPU time : 0.00

* (assert concept *worman-adult_femal e-n-10084064

word "adult_femal e")

(mi5!)

CPU tinme : 0.00

(assert concept #fenal e-femal e_person-n-9013489

63

word "fenmal e")

(mi6!)

CPU tinme : 0.00

* (assert concept *femrml e-femal e_person-n-9013489

word "fenmal e_person")

(ma7!)

CPUtime : 0.00

(assert subcl ass *worman-adul t _femal e- n- 10084064

supercl ass *fenmal e-femal e_person-n-9013489)

(m8!)

CPU tinme : 0.00

(assert concept #person-individual - sonmeone-sonebody- nortal - human- soul -
n- 6026

word "person")

(m9!)

CPU tinme : 0.00

* (assert concept *person-individual -soneone-sonebody-nortal - human-
soul - n-6026

word "individual")

(nB0!)

CPUtime : 0.00

* (assert concept *person-individual -soneone-sonebody-nortal - human-
soul - n- 6026

word "soneone")

(nb1!)

CPU tinme : 0.00

* (assert concept *person-individual -soneone-sonebody-nortal - human-
soul - n- 6026

word "sonebody")

(nB2!)

CPU tinme : 0.00

* (assert concept *person-individual -soneone-sonebody-nortal - human-
soul - n-6026

word "nortal ")

(nB3!)

65

CPU tinme : 0.00

* (assert concept *person-individual - soneone- sonebody- nortal - human-
soul - n- 6026

word "human")

(B4l)

CPU tinme : 0.00

* (assert concept *person-individual -soneone-sonebody- nortal - human-
soul -n-6026

word "soul")

(nB5!)

CPU tinme : 0.00

(assert subclass *femal e-femal e_person-n-9013489

supercl ass *person-indi vi dual - soneone- sonmebody- nort al - human-
soul - n-6026)

(nB6!)

CPUtime : 0.00

(assert concept #organi sm bei ng-n-3226

66

word "organi sm')

(nB7!)

CPU tinme : 0.00

* (assert concept *organi sm bei ng-n-3226

word "being")

(nB8!)

CPUtime : 0.00

(assert subcl ass *person-indi vi dual - soneone- sonebody- nort al - human- soul -
n- 6026

supercl ass *organi sm bei ng- n- 3226)

(mB9!)

CPU tinme : 0.00

(assert concept #living_thing-animte_thing-n-3009

word "living_thing")

(mB0!)

CPU tinme : 0.00

67

* (assert concept *living_thing-ani mate_thi ng-n-3009

word "ani mate_t hing")

(mB1!)

CPU tinme : 0.00

(assert subcl ass *organi sm bei ng-n-3226

supercl ass *living_thing-ani mate_t hi ng-n-3009)

(mB2!)

CPU tinme : 0.00

(assert concept #object-physical _object-n-16236

wor d

obj ect")

(n63!)

CPU tinme : 0.00

* (assert concept *object-physical _object-n-16236

word "physical _object")

(nB4!)

68

CPU tinme : 0.00

(assert subclass *living_thing-ani mate_t hi ng-n-3009

supercl ass *obj ect - physi cal _obj ect-n-16236)

(mB5!)

CPU tinme : 0.00

(assert concept #entity-n-1740

word "entity")

(nB6!)

CPU time : 0.00

(assert subcl ass *object-physical _object-n-16236

supercl ass *entity-n-1740)

(n67!)

CPU tinme : 0.01

69

D is a kind of:

;;; days => time period => fundanmental quantity => anpunt =>
abstraction

;; days, years

- = |ife

- => tinme period, period of tine, period

s => fundanmental quantity, fundanental measure
o => measure, quantity, anount

- => abstraction

hypernyny search results for noun "days"

--------------- sense 1 -----------------------
(the tinme during which soneone's life continu
es; "the nonarch's | ast days"; "in his fina

years")

(assert concept #days-years-n-14283933

word "days")

70

(n68!)

CPUtime : 0.00

* (assert concept *days-years-n-14283933

word "years")

(mB9!)

CPU tinme : 0.00

(assert concept #life-n-14283784

word "life")

(n70!)

CPU time : 0.00

(assert subclass *days-years-n-14283933

supercl ass *life-n-14283784)

(n71!)

CPU tinme : 0.00

71

(assert concept #tine_period-period_of _time-period-n-14257468

word "tinme_period")

(mr2!)

CPU tinme : 0.00

* (assert concept *time_period-period_of tine-period-n-14257468

word "period_of _tinme")

(n73!)

CPU tinme : 0.00

* (assert concept *time_period-period_of _tine-period-n-14257468

word "period")

(ni74!)

CPU tinme : 0.00

(assert subclass *life-n-14283784

superclass *tine_period-period_of _time-period-n-14257468)

(ni75!)

CPU tinme : 0.00

72

(assert concept #fundanental _quantity-fundanental _nmeasure-n-12810936

word "fundamental quantity")

(ni6!)

CPU tinme : 0.00

* (assert concept *fundanmental _quantity-fundanmental neasure-n-12810936

word "fundanmental _measure")

(n77!)

CPU tinme : 0.00

(assert subclass *time_period-period_of tine-period-n-14257468

supercl ass *fundanmental _quantity-fundanmental neasure-n-
12810936)

(mr8!)

CPU tinme : 0.00

(assert concept #neasure-quantity-anmount-n-29305

word "neasure")

73

(n79!)

CPUtime : 0.03

* (assert concept *measure-quantity-anount-n-29305

word "quantity")

(n80!)

CPU tinme : 0.00

* (assert concept *measure-quantity-anmount-n-29305

word "amount™)

(nB81!)

CPU tinme : 0.01

(assert subcl ass *fundamental _quantity-fundanmental neasure-n-12810936

supercl ass *neasure-quantity-anmount-n-29305)

(nB82!)

CPU tinme : 0.00

(assert concept #abstraction-n-20486

74

word "abstraction")

(n83!)

CPU tinme : 0.00

(assert subcl ass *neasure-quantity-anount-n-29305

supercl ass *abstracti on-n-20486)

(nB4!)

CPU tinme : 0.00

;3 NOTHI NG FAVORABLE

;5. e.g unfavorable

N is a kind of:

;;. quality => attribute => abstraction

(descri be (assert
subcl ass *not hi ngFavor abl e

superclass (build lex quality) = quality))

(mB6! (subclass (n21 (lex nothing favorable)))

(superclass (nmB5 (lex quality))))

75

(nB6!)

CPU tinme : 0.00

;o quality
A => attribute

Do => abstraction

; hypernyny search results for noun "quality"

R LR sense 1 --------mmmmmn e
; (an essential and distinguishing attribute of
; something or someone; "the quality of mercy

; is not strained"--Shakespeare)

(assert concept #quality-n-4521520

word "quality")

(nB87!)

CPUtinme : 0.01

76

(assert concept #attribute-n-27563

word "attribute")

(n88!)

CPU tinme : 0.00

(assert subclass *quality-n-4521520

superclass *attri bute-n-27563)

(nmB89!)

CPU tinme : 0.00

(assert concept #abstraction-n-20486

word "abstraction")

(m0!)

CPU tinme : 0.00

(assert subclass *attribute-n-27563

supercl ass *abstracti on-n-20486)

77

(no1!)

CPU tinme : 0.00

*

i, CREDULOUS

N is a nmeasure of (?):

;. credibility => quality => attribute => abstraction
;;; Question for future work:

;;: How can this best be represented?

0)

CPU tinme : 0.00

;. credibility, credibleness, believability
o => quality
P => attribute

. => abstraction

78

; hypernyny search results for noun "credibility"

; (the quality of being believable or trustwort

(assert concept #credibility-credi bl eness-believability-n-4565438

word "credibility")

(m2!)

CPU tinme : 0.00

* (assert concept *credibility-credibl eness-believability-n-4565438

wor d

credi bl eness")

(no3!)

CPU tinme : 0.00

* (assert concept *credibility-credibl eness-believability-n-4565438

word "believability")

(mo4!)

79

CPU tinme : 0.00

(assert concept #quality-n-4521520

word "quality")

(nd5!)

CPU tinme : 0.00

(assert subclass *credibility-credibl eness-believability-n-4565438

superclass *quality-n-4521520)

(no6!)

CPU time : 0.00

(assert concept #attribute-n-27563

word "attribute")

(no7!)

CPU tinme : 0.00

80

(assert subclass *quality-n-4521520

supercl ass *attribute-n-27563)

(no8!)

CPU tinme : 0.00

(assert concept #abstraction-n-20486

word "abstraction")

(no9!)

CPU tinme : 0.00

(assert subclass *attribute-n-27563

supercl ass *abstracti on-n-20486)

(mLOoo!)

CPU time : 0.00

i1 | NTERPRET
P is one way to:

;. explicate => inform => conmunicate => interact => act

81

;. interpret

. => explain, explicate

P => inform

M => conmuni cate, intercomunicate
M => interact

D => act, nobve

; hypernyny search results for verb "interpret”

R SEeNSe 2 -------------ooooo- -

; (give an interpretation or explanation to)

(assert concept #interpret-v-907397

word "interpret")

(mLo1!)

CPU tinme : 0.01

(assert concept #explain-explicate-v-908384

82

word "explain")

(mLo2!)

CPU tinme : 0.00

* (assert concept *expl ai n-explicate-v-908384

word "explicate")

(mLO3!)

CPUtime : 0.00

(assert subclass *interpret-v-907397

supercl ass *expl ai n-expl i cate-v-908384)

(mLo4!)

CPU tinme : 0.00

(assert concept #informv-804489

word "infornt)

(mLo5!)

CPU tinme : 0.00

83

(assert subcl ass *expl ai n-explicate-v-908384

supercl ass *i nformv-804489)

(MLO6!)

CPU tinme : 0.00

(assert concept #conmuni cate-intercomruni cate-v-716346

word "communi cate")

(mLo7!)

CPU tinme : 0.00

* (assert concept *comruni cate-intercomunicate-v-716346

wor d

i nt ercomrmuni cate")

(mLo8!)

CPU tinme : 0.00

(assert subclass *informv-804489

supercl ass *comruni cat e-i nt ercomuni cat e-v-716346)

(mLo9!)

CPUtime : 0.00

(assert concept #interact-v-2305904

wor d

interact™)

(mL10!)

CPU tinme : 0.00

(assert subcl ass *comuni cat e-i ntercomuni cat e-v-716346

supercl ass *interact-v-2305904)

(mi11!)

CPUtinme : 0.01

(assert concept #act-nove-v-2296591

word "act")

(mL12!)

CPU tinme : 0.00

85

* (assert concept *act-nmove-v-2296591

word "nove")

(mL13!)

CPU tinme : 0.00

(assert subclass *interact-v-2305904

supercl ass *act-nove-v-2296591)

(mL14!)

CPU tinme : 0.00

7+ LISTEN

i is one way to:
;. perceive

;.5 concentrate => think

o0 listen

BN => percei ve, conmprehend

;:.; listen, hear, take heed

MM => concentrate, focus, center, centre, pore, rivet

86

A => think, cogitate, cerebrate

; hypernyny search results for verb "listen"

--------------- sense 1 --------mmmmmnm e
; (hear with intention; "Listen to the sound of

; this cello")

(assert concept #listen-v-2107615

word "listen")

(mL15!)

CPU tinme : 0.00

(assert concept #perceive-conprehend-v-2045668

word "perceive")

(mL16!)

CPUtinme : 0.01

87

* (assert concept *perceive-conprehend-v-2045668

word "conprehend")

(mL17!)

CPU tinme : 0.00

(assert subclass *listen-v-2107615

supercl ass *percei ve-conprehend- v-2045668)

(mL18!)

CPU tinme : 0.00

L SEeNSe 2 ----------mmma oo

; (listen and pay attention; "Listen to your fa

; ther"; "We nmust hear the expert before we nak

; e a decision")

(assert concept #listen-hear-take_heed-v-2108709

word "listen")

(mL19!)

CPU tinme : 0.00

88

* (assert concept *listen-hear-take_heed-v-2108709

word "hear")

(20!)

CPU tinme : 0.00

* (assert concept *listen-hear-take_heed-v-2108709

word "take_heed")

(mi21!)

CPUtinme : 0.01

(assert concept #concentrate-focus-center-centre-pore-rivet-v-698305

word "concentrate")

(mL22!)

CPU time : 0.00

* (assert concept *concentrate-focus-center-centre-pore-rivet-v-698305

word "focus")

(mi23!)

89

CPU tinme : 0.00

* (assert concept *concentrate-focus-center-centre-pore-rivet-v-698305

word "center")

(mL24!)

CPU tinme : 0.00

* (assert concept *concentrate-focus-center-centre-pore-rivet-v-698305

word "centre")

(mL25!)

CPU tinme : 0.00

* (assert concept *concentrate-focus-center-centre-pore-rivet-v-698305

word "pore")

(mL26!)

CPU tinme : 0.01

* (assert concept *concentrate-focus-center-centre-pore-rivet-v-698305

word "rivet")

(m27!)

90

CPU tinme : 0.00

(assert subclass *listen-hear-take_heed-v-2108709

super cl ass *concentrate-focus-center-centre- pore-r ivet-v-
698305)

(mi28!)

CPU tinme : 0.00

(assert concept #think-cogitate-cerebrate-v-608615

word "think")

(mL29!)

CPU time : 0.00

* (assert concept *think-cogitate-cerebrate-v-608615

word "cogitate")

(mL30!)

CPU tinme : 0.00

* (assert concept *think-cogitate-cerebrate-v-608615

word "cerebrate")

91

(mL311)

CPUtime : 0.00

(assert subclass *concentrate-focus-center-centre-pore-rivet-v-698305

supercl ass *think-cogitate-cerebrate-v-608615)

(mL32!)

CPU tinme : 0.00

;;» REDOUBLE
o is one way to:
;;, escalate => increase => change

;. listen, hear, take heed
D => concentrate, focus, center, centre, pore, rivet

A => think, cogitate, cerebrate

92

; (double in magnitude, extent, or intensity;
; The eneny redoubled their screaning on the ra
; dio")

(assert concept #redoubl e-v-281537

word "redoubl e")

(mL33!)

CPU tinme : 0.00

(assert concept #escal ate-intensify-step_up-v-281258

word "escal ate")

(mL341)

CPUtime : 0.00

* (assert concept *escal ate-intensify-step_up-v-281258

word "intensify")

(mL35!)

CPU tinme : 0.00

93

* (assert concept *escal ate-intensify-step_up-v-281258

word "step_up")

(mL36!)

CPU tinme : 0.00

(assert subcl ass *redoubl e-v-281537

supercl ass *escal ate-intensify-step_up-v-281258)

(mL37!)

CPU tinme : 0.00

(assert concept #increase-v-147655

word "increase")

(m.38!)

CPU tinme : 0.00

(assert subclass *escal ate-intensify-step_up-v-281258

supercl ass *increase-v-147655)

94

(mL39!)

CPUtime : 0.00

(assert concept #change-alter-nodify-v-121430

word "change")

(mL40!)

CPU tinme : 0.00

* (assert concept *change-alter-nodify-v-121430

word "alter")

(mL41!)

CPU time : 0.00

* (assert concept *change-alter-nodify-v-121430

word "nodify")

(mL42!)

CPU tinme : 0.00

(assert subcl ass *increase-v-147655

95

supercl ass *change-al ter-nodify-v-121430)

(mL43!)

CPU tinme : 0.00

;;; end WordNet rul es

;. now load rules to convert wordnet case-franes

;.. to "standard" SNePS/ CVA case-franes

(intext "conv-rul es")

File conv-rules is now the source of input.

CPU time : 0.00

* concept is already defined.

word i s already defined.

(concept word)

CPU tinme : 0.01

96

(verb-concept entails)

CPUtime : 0.00

* cause is already defined.

effect is already defined.

(cause effect)

CPU tinme : 0.00

(269! n268! 266! nR63! 262! nR60! 257! nR56! 254! nR51! 250!
n249! 48! 247! nR45! n44! nR43! nR42! nR40! 239! 238! nR36!
m235! 233! k30! nR29! nR27! nR24! nR21! nR218! nR215! 212! nR11!
n209! nR206! 205! nR03! n200! mMl97! nl96! nl94! mi91!l ml89! ni86!
mMi83! mi80! ml79! ni78! ml77! ml76! 75! nl73! mi72! ml71! ni70!
ml69! mi68! ml67! nil66! mle5! mle3! nl62! nl6l! mi59! ml58! nil56!
mL53! mi50! m47! mid44! ml42! 41! nil40! ni38! nml36! mi35! ml34!
m33! mi31! mi30! ml29! ml27! nl26! nl25! nl24! ml23! m22! m21!
mi20! m19! ml17! npil16! mil5! n13! npll2! nil10! M08! mlo7! nilO5!
ml03! mi02! ml0l! nB9! nB7! nB5! nmP4! nmp3! 2! 0! nB8! nB7! nB3!
m81! nBO! nv9! nv7! nm76! m74! ni73! n72! n70! 69! 68! n66! nH4! nb3!
n6l! n60! nb8! nb7! nb5! nb4! nb3! nb2! nbl! nb0! MA9! MA7! mi6! 5!

mi4! md2! ma0! 88! nB6! nB4! nB3! nmB81l! nBO!)

CPU tine : 25.11

97

(270!
mL29!
mL16!
no7!
4!
b4l

nB4!

CPUtime : 1.

(669!
658!
646!
635!
n624!
m613!
n602!
n591!
n680!
568!
MB55!
n543!

nb31!

mL42!
mL27!
mL15!
nme5! o4l
n73! nir2!
nb3! nb2!

nB83! nB1!

n668!

n657!

n645!

n634!

n623!

n612!

n601!

nb90!

nb78!

nb66!

nb54!

nb42!

nb30!

nmi41!

nmL26!

mi13!

16

n667!

n656!

n644!

n633!

n622!

n611!

n600!

nb89!

677!

nb65!

nb53!

nb41!

nb29!

ni40! mi38!

mi25! mi24!

m12! m10!

nB3! nB2! nbOo!

n70! n69! nb8!

nbl! nb0! 49!

n8o!)

666! n665!

n655! n654!
n643! nb642!
n632! n631!
n621! n620!
n610! nb609!
nb99! nb98!
nb88! nb87!
nb76! nb75!
nb63! nb62!
nb52! nb50!
nb40! nb38!

nb28! nb27!

nML36!
mi23!
nl08!
n88!
n66!

ma7!

n664!
n653!
n641!
n630!
n619!
n608!
nb97!
nb86!
nb74!
nb61!
nb49!
nb37!

nb26!

98

ng7!

n64!

n¥6!

mL35!

m22!

nLo7!

n663!

n652!

n640!

n629!

n618!

n607!

nb96!

nb85!

nb73!

nb60!

nb48!

nb36!

nb25!

n83!

n63!

ma5!

34!

mi21!

05!

n662!

n651!

n639!

n628!

n617!

n606!

nb95!

nb84!

nb672!

nb59!

nb47!

nb35!

nb24!

nB1!

n61!

mi4!

mL33!

20!

nlo3!

n661!

n649!

n638!

n627!

n616!

n605!

nb94!

nb83!

n671!

nb58!

nb46!

nb34!

nb23!

n80!

n60!

n42!

mL31!

mL19!

nlo2!

ni79!

nb8!

n40!

n660!

n648!

n637!

n626!

n615!

n604!

nb93!

nb82!

nb70!

nb57!

nb45!

nb33!

nb22!

nmL30!
nmLi7!
nlo1l! nBo!
n77! nie6!
nb7! nb5!

n38! nB6!

n659!

n647!

n636!

n625!

n614!

n603!

nb92!

nb81!

nb69!

nb56!

nb44!

nb32!

nb21!

nb20!

nb09!

m498!

n486!

ma75!

nmi63!

ma52!

mi41!

n4 30!

nm419!

n408!

nB897!

n386!

nB75!

nB64!

nB52!

nB339!

n326!

nB15!

nB04!

293!

n282!

n271!

nl33!

mL22!

mi11!

00!

nB6!

nB4!

nb19!

nb08!

ma97!

n4 85!

mi74!

mi62!

ma51!

n440!

nm429!

n18!

m407!

nB896!

n385!

nB74!

nB63!

nB851!

n338!

nB325!

nB14!

nB03!

292!

n281!

nmi43!

n32!

mL21!

nmL10!

no9!

no8!

n83!

nb18!

nb07!

mi96!

n484!

m72!

ma61!

nm450!

n439!

n428!

m17!

nmi06!

nB895!

n384!

n373!

nB62!

nB50!

nB336!

nB324!

nB313!

nB02!

291!

n280!

mi42!

mi31!

nmL20!

nmLo9!

np7!

nB2!

nb17!

nb06!

ma95!

n483!

m71!

nm460!

ma49!

n4 38!

27!

n16!

nm405!

n394!

n383!

nB72!

nB61!

nB49!

nB35!

n323!

nB12!

nB801!

n290!

n279!

ni41!

30!

mL19!

nLo8!

noe!

nB1!

nb16!

nb05!

mi94!

n482!

m470!

mi59!

mi48!

n37!

n26!

nmi15!

m404!

nB893!

n382!

nB371!

nB60!

nB847!

nB334!

nB22!

nB311!

nB00!

289!

n278!

40!

n29!

nmL18!

nmLo7!

n80!

np5!

nb15!

nb04!

ma93!

n481!

nmi69!

ni58!

ma47!

n436!

nm25!

nmi14!

m403!

n892!

n381!

n370!

nB59!

nB46!

nB333!

nB321!

n310!

n299!

n288!

277!

nmL39!

28!

mL17!

nMLo6!

nb4!

n79! ni8!

99

nb14!

nb03!

mi92!

n4 80!

n468!

ma57!

m446!

n4 35!

nm24!

nmi13!

m402!

nB891!

n380!

nB69!

nB358!

nB45!

nB332!

n320!

nB09!

n298!

n287!

n276!

38!

mL27!

nmL16!

nmLo5!

no3!

np2!

n7!

nb13!

nb02!

m490!

n479!

nmie67!

nmi56!

ma45!

n 34!

nm23!

12!

m401!

nB890!

n379!

n368!

nB57!

nB44!

nB331!

n319!

nB08!

297!

n286!

n275!

mL37!

nl26!

mL15!

nLo4!

no1!

nb12!

nb01!

mi89!

n4 78!

N 66!

mi55!

mi44!

n433!

22!

mi11!

nm400!

n389!

n378!

nB67!

nB56!

nB43!

n329!

n318!

nB07!

n296!

n285!

n274!

nL36!

ni25!

nmi14!

nmLo3!

n7e6! ni5!

noo!

nb11!

nb00!

mi88!

ma77!

ni65!

ma54!

ma43!

n432!

nm21!

nm410!

nB99!

n388!

n377!

nB66!

nB354!

nB841!

n328!

n317!

nB06!

n295!

n284!

n273!

mL35!

nmiL24!

mL13!

mLo2!

n’4!

n89!

nb10!

nmi99!

ma87!

n476!

ni64!

mi53!

mi42!

n431!

n420!

m409!

nB98!

n387!

n376!

nB65!

nB53!

nB40!

nB27!

n316!

nB05!

n294!

n283!

272!

34!

ni23!

mL12!

mLo1!

n88!

ni’ 3!

ng7!

ni’2!

n7l! n70! n69! n68! nNB7! NH6!

nb7! nb6! nb5! nb4! nb3! nb2!

ma3! mi2! mil!l nd0! nB89! nB8!

CPU tinme : 5.47

(670! nl42! mi41l! nil40! ml38!

mi29! m27! ml26! nl25! mi24!

m16! mi15! mi13! ml12! nl10!

mO7! nmB5! b4l nB3! nP2! nBO!

n74! ni73! niv2! nv0! 69! n68!

nb4! nb3! nb2! nbl! nb0! M9l

n84! nB3! nB1l! nB0!)

CPU tinme : 1.50

End of file conv-rules

CPU tine : 33.32

n65! n64! n63! n62! n6l! noOo!

nb1l! nb0! M9l md8! mi7! 6!

87! nB6! nB85! nB4! nB3! nB2!

mi36! mi35! ml34! ni33! mi31!

mi23! m22! mi21! nl20! mi19!

m08! mi07! ml05! ml03! ml02!

88! nB87! nB3! nB81l! nBO! n79!

n66! n64! n63! nbl! 60! b8!

m7! mi6! mi5! mid4l mi2l mi0!

100

nb9! nb8!

ma5! 4!

n81! nBo!)

mL30!
mL17!
m01! nB9!
n77! nvo6!
nb7! nb5!

n38! nB6!

" Peopl

This can be rephrased as

e interpret a change in the heavens."

for all x, if Xis a person

then X interprets a change [in the heavens].

This gives us a representation for:

If people do X, then the wonan does X

"change is represented as an instance of "change" (i.e. a nmenber

the cl ass
change re
t he sense

hei rar chy

The only
mul tiple
sone sort

rel ati ons

"change"); this instance would be the
ating to the "heavens". This would separate it from
of "change" used previously, and a superclass of the

"redoubl e => escal ate => i ncrease => change"

ssue that could arise is whether we should have
nst ances of change for each rule that refers to
of "change", and then have a rule that allows the

com ng of f one instance of change to refer to the

101

of

others as well.

; (show
(describe (add forall $person

ant (build menmber *person class *human)

cq (build
agent *person
act (build
action (build lex "interpret")

obj ect (build lex "instance of change")

= i nst Change))

))
(m676! (act (nb75 (action (nb64 (lex interpret)))))
(agent (ml4 (lex the woman))))
(674!
(act (mB672 (action (nb64)) (object (nb671 (lex instance of change)))))

(agent (mi4)))

(673! (forall v39) (ant (p49 (class (mL9 (lex human))) (menmber v39)))

(cq (p50 (act (nb72)) (agent v39))))

(m20! (class (mL9)) (menber (m4)))
(m676! nb674! n673! nR0!)

CPU tinme : 0.69

102

;; define what an instance of "change" is

(descri be (add nenber *instChange class *change))

(m677! (menber (671 (lex instance of change))))

(MB77!)

CPU time : 0.07

;.5 |If the days are credul ous, then all people are credul ous

(describe (add forall *person
&ant ((build nmenber *person class *human)

(buil d object *days property *credul ous)

)

cq (build object *person property *credul ous)

))

(m679! (object (ml4 (lex the woman))) (property (nm8 (Il ex credulous))))

(m678! (forall v39)

103

(&ant (p49 (class (nl9 (lex human))) (nenber v39))
(m29! (object (nR7 (lex days))) (property (nm28))))

(cqg (p53 (object v39) (property (nm28)))))

(679! nB78!)

CPU tinme : 0.16

;. If a person is credul ous, they are

"di sposed to believe on little evidence"

;.5 This just summarizes the neaning of credulous into

;. one node that can be accessed fromthe verb algorithm

(describe (add forall *person
&ant ((build member *person class *human)
(build object *person property *credul ous)
)
cq (build
obj ect *person

property (build I ex "disposed to believe on little
evi dence")

))

(682! (object (m4 (lex the wonan)))

104

(property (n680 (Il ex disposed to believe on little evidence))))
(m681! (forall v39)

(&ant (p53 (object v39) (property (nm28 (lex credulous))))

(p49 (class (ml9 (lex human))) (nmenber v39)))

(cq (p54 (object v39) (property (n680)))))

(m29! (object (nR7 (lex days))) (property (nm8)))

(682! 681! n29!)

CPUtinme : 0.64

;7. If X does the act of "redouble" then X possesses

;5 and instance of "change".

Note: In the background know edge represented above,

"change" is the highest superordi nate category of "redoubl e"

; (show
(describe (add forall $h
ant (build
agent *h

act (build action *redouble)

;cq (build possessor *h object *change)

105

cq (build possessor *h object *instChange)

))

(685! (object (m671 (lex instance of change)))
(possessor (nB (lex heavens))))

(684! (object (m671)) (possessor (n7 (lex tenpest))))

(n683! (forall v40)

(ant (p57 (act (mll (action (miO (lex redouble))))) (agent v40)))
(cq (p58 (object (m671)) (possessor v40))))

(mi3! (act (nil)) (agent (nB)))

(mL2! (act (ml1l)) (agent (m7)))

(685! 684! nB83! ml3! mi2!)

CPU tinme : 0.77

* .. format ps)

"The poor young worman coul d augur nothi ng favorable

as she listened to the threatening heavens..."

The main part of the passage consists of two clauses that

are the antecedent - consequent of each other

106

77, ANT: The woman listens to change [in the heavens].

7, CQ The woman augurs a nothing favorable.

77, (possible problem what is the woman actually |istening to?)

;,; the "heavens", the "threatening" heavens, or the "changes" of it?

;7. | decided to have her listen to the "change" in the heavens.

;.; the first clause:

7, The woman |istens to change [in the heavens].

; (show
(describe (add agent *theWman
act (build action (build lex "listen")
obj ect *inst Change)

) = Wman_listens_To_Heavens

(M690! (similar (nB64 (lex interpret)) (nme25 (lex listen))))
(689! (act (mB688 (action (n225)))) (agent (mid (lex the woman))))
(687!

(act (nB86 (action (n225)) (object (m671 (lex instance of change)))))

(agent (mi4)))

107

(690! nB689! nB87!)

CPU tinme : 0.13

t he second cl ause:

;;; The woman augurs not hing favorable.

(descri be (add agent *theWman
act (build action (build lex "augur") = augur

obj ect *not hi ngFavor abl e

)

) = Wonman_augur s_Not hi ng

(695! (act (mB694 (action (m691 (lex augur)))))
(agent (ml4 (lex the woman))))

(693!

(act (m692 (action (n691)) (object (n21 (lex nothing favorable)))))

(agent (mi4)))

(MB95! nB93!)

CPUtinme : 0.12

108

;. mark the word "augur" as "unknown"

(describe (assert object *augur property (build I ex "unknown")))

(mB697! (object (m691 (lex augur))) (property (nm696 (I ex unknown))))

(n697!)

CPU tinme : 0.00

*

;. conmbine both of the above clauses into cause - effect
7, CAUSE: The woman |istens to change [in the heavens].
7, EFFECT: The woman augurs a not hing favorable.

; (show

(describe (add cause *Wman_Il i stens_To_Heavens

ef fect *Worman_augur s_Not hi ng))

(p74!

109

(cause
(p72 (act (p71 (action (nR25 (lex listen))) (object vi1)))
(agent v9)))
(ef fect
(693!
(act (mB92 (action (mB91 (lex augur)))
(object (n21 (lex nothing favorable)))))
(agent (ml4 (lex the woman))))))
(p73! (cause (p72))
(effect (mB95! (act (694 (action (n691)))) (agent (mi4)))))
(p70!
(cause
(p68 (act (p67 (action (nb64 (lex interpret))) (object vi1)))
(agent v9)))
(effect (nmB95!)))
(p69! (cause (p68)) (effect (nmB93!)))
(n700!
(cause
(687!
(act (mB86 (action (nm225))
(object (mB71 (lex instance of change)))))
(agent (ni4))))
(effect (mB95!)))
(699! (cause (nB87!)) (effect (nmB93!)))
(698!
(cause (nB90! (sinmilar (nb64) (n225)))
(nB89! (act (nB88 (action (nR25)))) (agent (mi4))) (nB87!))

(effect (nmB95!) (nB93!)))

110

(p74! p73! p70! p69! n¥00! mB99! nBI8!)

CPU tinme : 0.57

* ;:format ps)

;5 | NFORMATI ON FROM PROTOCOLS

;7 | took protocols on this context fromnyself before
;. knew what "augur" neant. I will represent sonme of the

;.: inferences | nmde here.

M if: a person interprets a change,
v and the days are credul ous,

P then: the change is interpreted to be a "bad onmen"

; (show
(describe (add forall *person
ant ((build
agent *person
act (build
action (build lex "interpret")

obj ect *inst Change))

111

(build object *days property *credul ous))

cq (build equi v *inst Change
equiv (build Iex "bad onmen") = badOren)

))

(n703! (forall v39)
(ant
(p50
(act (mB672 (action (nB64 (lex interpret)))
(object (m671 (lex instance of change)))))
(agent v39))
(m29! (object (n27 (lex days))) (property (m28 (lex credulous)))))

(cq (n702! (equiv (m701 (lex bad omen)) (n671)))))

(m703! n702!)

CPU tinme : 0.57

* o format ps)

;. If the act of "interpreting change" caused sonme act Y,

and "change" is equiv to Z, then Z causes Y as well

;;: *this should make "bad omen" a cause of the augur act.

112

; (show

(describe (add forall (*person $x6 $y6 $z6 $a6 $b6)

&ant ((build cause (build
agent *person
act (build
action (build lex "interpret")
obj ect *inst Change))
effect (build
agent *person
act (build
action *a6

obj ect *b6)) = aact)

(build equiv *x6 equiv *z6)

cq (build cause *z6 effect *aact)

))

(m709! (cause (n701 (Il ex bad onen)))
(effect

(693!

(act (692 (action (691l (Il ex augur)))

(object (n2l1 (lex nothing favorable)))))

113

(agent (ml4 (lex the woman))))))
(n708! (cause (nv7 (lex tenpest))) (effect (n693!)))
(n707! (cause (n671 (lex instance of change))) (effect (mB93!)))
(n706! (cause (n8 (lex heavens))) (effect (nm693!)))
(705!
(cause
(674! (act (nB72 (action (nb64 (lex interpret))) (object (n671))))
(agent (n4))))
(effect (nm693!)))
(p95!
(cause (p94 (act (p67 (action (nb64)) (object vil))) (agent (mi4))))
(effect (mB93!)))
(p93!
(cause
(p92 (act (p71 (action (nm225 (lex listen))) (object v11)))
(agent (ni4))))
(effect (m693!)))
(n704! (forall v45 v44 v43 v42 v4l v39)
(&nt (p81 (equiv v43 v4l))
(p80 (cause (p50 (act (nB72)) (agent v39)))
(effect (p79 (act (p78 (action v44) (object v45))) (agent v39)))))
(cq (p82 (cause v43) (effect (p79)))))
(n702! (equiv (n701) (n671)))
(p74! (cause (p72 (act (p71)) (agent v9))) (effect (mB93!)))
(p69! (cause (p68 (act (p67)) (agent v9))) (effect (mB93!)))

(md! (equiv (nB) (nv)))

(m709! nv08! nir07! nv06! nir05! p95! p93! nir04! nv02! p74! p69! nb!)

114

CPU tine : 2.86

* ,:format ps)

77 A "bad omen" is related to "nothing favorable"”

77 *This is another thing | came up with when | took

;. protocols on this passage nyself. | don't knowif it actually

;;, adds anything inportant to this representation

(describe (add object *badOren property *nothi ngFavorabl e))

(m711! (object (nm671 (lex instance of change)))

(property (nRl1 (lex nothing favorable))))

(m710! (object (nr70l (lex bad onmen))) (property (nm2l)))

(m711! m710!)

CPU time : 0.52

;. End of representations

;. Ask Cassie what "augur" neans:

115

~(
--> defineVerb 'augur)

SNePS ERROR: Illegal relation or path: (instrunent- act action |ex)

Occurred in module find in function checkpath

Do you want to debug it? n

SNePS ERROR: Illegal relation or path: (with- action |ex)

OCccurred in module find in function checkpath

Do you want to debug it? n

* * * Defining the verb augur * * *

Arguments of the verb:

(agent object)

Transitivity: transitive

* * * Basic Findings * * *

possi bl e cause of augur is:
bad onen,
heavens,

i nstance of change,

116

t enpest,

possi bl e actions performed by agent of augur is:
augur,
i nterpret,

i sten,

possi bl e actions perfornmed on object of augur is:

augur,

possi bl e actions performed with instrunent of augur is:

augur,

possi bl e action that is the cause of augur is:

i sten,

i nterpret,

possi bl e property of verb is:

unknown,

possi bl e menbershi p of agent is:

human,

possi bl e superordi nate of agent is:

entity,

117

physi cal _obj ect,
obj ect,

ani mat e_t hi ng,

l'iving_thing,
bei ng,
or gani sm

possi bl e property of agent is:
di sposed to believe on little evidence,
credul ous,
poor,

young,

possi bl e supercl ass of object is:

quality,

possi bl e property of object is:

not favorabl e,

* * * generalizations fromthis context * * *

A {human} can augur

Sonething that is a subclass of {quality}

A {human} can augur

118

Sormet hing with the properties {not favorable}

A {entity, physical _object, object, animate_thing, |iving_thing,
bei ng, organisnm can augur

Sonmet hing that is a subclass of {quality}

A {entity, physical _object, object, animate_thing, |iving_thing,
bei ng, organisnm can augur

Sonething with the properties {not favorable}

Somet hing with the properties {disposed to believe on little

evi dence, credul ous, poor, young} can augur

Sonething that is a subclass of {quality}

Somet hing with the properties {disposed to believe on little

evi dence, credul ous, poor, young} can augur

Sonething with the properties {not favorable}

ni

CPU tinme : 0.06

End of /hone/csgrad/ddligach/ 1 ndProj/Deno/augur-wn. deno denonstration

119

Appendix 3

WNS Code

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "wn.h"
#include "wnhelp.h"
#include "license.h"

/lsome global constants

#define MAX_WORD_LEN 300

#define MAX_WORDS_IN_PASSAGE 200
#define MAX_INPUT_FILE_LEN 300 * 200
#define MAX_BASE_NODE_NAME_LEN 500
#define MAX_POS_NAME_LEN 20

/[function prototypes

void SearchForAntonyms(char * searchstr, int pos);
void SearchForHypernyms(char * searchstr, int pos);
void SearchForSynonyms(char * searchstr, int pos);
void SearchForHolonyms(char * searchstr, int pos);
void SearchForMeronyms(char * searchstr, int pos);
void SearchForEntailments(char * searchstr, int pos);
void SearchForCausations(char * searchstr, int pos);

void TraverseAntonymSenses(SynsetPtr synset_ptr);
void TraverseHypernymSenses(SynsetPtr synset_ptr);
void TraverseHolonymSenses(SynsetPtr synset_ptr);
void TraverseMeronymSenses(SynsetPtr synset_ptr);
void TraverseEntailmentSenses(SynsetPtr synset_ptr);
void TraverseCausationSenses(SynsetPtr synset_ptr);

void TraverseAntonyms(SynsetPtr synset_ptr);
void TraverseHypernyms(SynsetPtr synset_ptr);
void TraverseHolonyms(SynsetPtr synset_ptr);
void TraverseMeronyms(SynsetPtr synset_ptr);
void TraverseEntailments(SynsetPtr synset_ptr);
void TraverseCausations(SynsetPtr synset_ptr);

void PrintSynset(SynsetPtr synset_ptr);

char * GetBaseNodeName(SynsetPtr synset_ptr, char * result);

void PrintSynsetStruct(SynsetPtr synset_ptr);

void PrintDefinition(char * definition);

void PrintSearchHeader(char * searchtype, int pos, char * searchstr);

void PrintSenseHeader(int sensenum, char * definition);

int Tokenize(char * passage, char tokenized_passage[J[MAX_WORD_LEN)]);
int ReadFilelntoString(char * file_name, char * result_str);

void GetPOSName(int pos, char * result);

void ReplaceChar(char * str, char char_to_replace, char replacement_char);

/ * K*kkk F*kkk * * * K*kkk F*kkk

120

*

* main()

Fkkkkkkkkkkkk Kkkkkkkkkkkkk /

main(int argc, char *argv[])
{
char tokenized_passage[MAX_WORDS_IN_PASSAGE][MAX_WORD_LEN];
char file_str[MAX_INPUT_FILE_LEN];
int loop_index = O;
int word_count =0;

/linitialize wordnet database
if(wninit())

printf("error opening WordNet database\n");
exit(-1); //couldn't open database

}
if(argc < 3)
{

/Ino arguments were passed
printf("\nWordNet to SNePS interface\n");
printf(" \n\n");
printf("'usage:\n\n™);

printf(" wns -file <file name>\n");

printf(" wns -word <word>\n\n");

exit(-1); //no command line params passed

/Iparse command line
else if(strcmp(argv[1], "-file") == 0)

/Iread input file into string and tokenize it
ReadFilelntoString(argv[2], file_str);
word_count = Tokenize(file_str, tokenized_passage);

else if(stremp(argv[1], "-word") == 0)
/Istore this word in the word table (tokenized_passage)

word_count =1;
strcpy(tokenized_passage[0], argv[2]);

}

else

{
printf("incorrect command line optionA\n");
exit(-1);

}

/Nloop through the tokens
for(loop_index = 0; loop_index < word_count; loop_index++)

{

/Iperform noun searches

SearchForAntonyms(tokenized_passage[loop_index], NOUN);
SearchForHypernyms(tokenized_passage[loop_index], NOUN);
SearchForSynonyms(tokenized_passage[loop_index], NOUN);
SearchForHolonyms(tokenized_passage[loop_index], NOUN);
SearchForMeronyms(tokenized_passage[loop_index], NOUN);

/Iperform verb searches

121

SearchForAntonyms(tokenized_passage[loop_index], VERB);
SearchForHypernyms(tokenized_passage[loop_index], VERB);
SearchForSynonyms(tokenized_passage[loop_index], VERB);
SearchForEntailments(tokenized_passage[loop_index], VERB);
SearchForCausations(tokenized_passage[loop_index], VERB);

*

Fkkkkkkkkkkkk Kkkkkkkkkkkkk /

* SearchForAntonyms()
*

* This function will call findtheinfo_ds to search for antonyms of the searchstr

*

/

void SearchForAntonyms(char * searchstr, int pos)

{
SynsetPtr search_result_ptr = NULL; //result of findtheinfo(...)

/lprint textual header for this search
PrintSearchHeader("antonymy", pos, searchstr);

search_result_ptr = findtheinfo_ds(searchstr, pos, ANTPTR, ALLSENSES);
if(lsearch_result_ptr)
{
//if search did not return anything
[/ltry to morph the search string
search_result_ptr = findtheinfo_ds(morphstr(searchstr, pos), pos,
ANTPTR, ALLSENSES);

}

if(search_result_ptr)

/lthere are search results, output them
TraverseAntonymSenses(search_result_ptr);

}

/lfree the space allocated by findtheinfo_ds()
free_syns(search_result_ptr);

* SearchForHypernyms()
*
* This function will cal findtheinfo_ds to search for all hypernyms

* of the searchstr.
*

Kkkkkkk Fkkkkkk Kkkkkkkkkkkkk *kkkkkk /

void SearchForHypernyms(char * searchstr, int pos)

{

122

SynsetPtr search_result_ptr = NULL; //result of findtheinfo(...)
PrintSearchHeader("hypernymy", pos, searchstr);

search_result_ptr = findtheinfo_ds(searchstr, pos, -HYPERPTR, ALLSENSES);
if(lsearch_result_ptr)

{
/lif search did not return anything
/ltry to morph the search string
search_result_ptr = findtheinfo_ds(morphstr(searchstr, pos), pos,
-HYPERPTR, ALLSENSES);
}

if(search_result_ptr)

/lthe search produced some results, output them
TraverseHypernymSenses(search_result_ptr);

}

/lfree the space allocated by findtheinfo_ds()
free_syns(search_result_ptr);

/
*

* SearchForSynonyms()

*

* This function will call findtheinfo_ds() to search for synonyms of the
* searchstr and its immediate hypernyms

*

e /

void SearchForSynonyms(char * searchstr, int pos)

{
SynsetPtr search_result_ptr = NULL; //result of findtheinfo(...)
PrintSearchHeader("synonymy", pos, searchstr);
search_result_ptr = findtheinfo_ds(searchstr, pos, HYPERPTR, ALLSENSES);
if(lsearch_result_ptr)
{
/lif search did not return anything
/ltry to morph the search string
search_result_ptr = findtheinfo_ds(morphstr(searchstr, pos), pos,
HYPERPTR, ALLSENSES);
}
if(search_result_ptr)
/lthe search produced some results, output them
TraverseHypernymSenses(search_result_ptr);
}
//free the space allocated by findtheinfo_ds()
free_syns(search_result_ptr);
}

* SearchForHolonyms()

*

* This function will call findtheinfo_ds() three times to search for

123

* each type of holonyms of the searchstr.
*

*% *hkkkkkhkkhhkkhhhkhrkhhrhhrhhhrhrhkrdrrx xxxxxxxxx/

void SearchForHolonyms(char * searchstr, int pos)

{
SynsetPtr search_result_ptr = NULL; //result of findtheinfo(...)
int holonym_type; //"member of", "substance of", or "part of"
PrintSearchHeader("holonymy", pos, searchstr);
for(holonym_type = ISMEMBERPTR; holonym_type <= ISPARTPTR; holonym_type++)
{
search_result_ptr = findtheinfo_ds(searchstr,
pos,
holonym_type,
ALLSENSES);
if(lsearch_result_ptr)
/lif search did not return anything
/ltry to morph the search string
search_result_ptr = findtheinfo_ds(morphstr(searchstr, pos),
pos,
holonym_type,
ALLSENSES);
}
if(search_result_ptr)
/lthe search produced some results, output them
TraverseHolonymSenses(search_result_ptr);
}
}
/ffree the space allocated by findtheinfo_ds()
free_syns(search_result_ptr);
}

I‘ * * * *

*

* SearchForMeronyms()
*

* This function will call findtheinfo_ds() three times to search for
* each type of meronyms of the searchstr.

*

*kkkkkkhkkhkkdkhkkhkkhrkhkkx

void SearchForMeronyms(char * searchstr, int pos)

{
SynsetPtr search_result_ptr = NULL; //result of findtheinfo(...)
int meronym_type; //member, substance, or type meronym

PrintSearchHeader("meronymy", pos, searchstr);

for(meronym_type = HASMEMBERPTR; meronym_type <= HASPARTPTR; meronym_type++)
{

search_result_ptr = findtheinfo_ds(searchstr,
pos,
meronym_type,
ALLSENSES);
if(lsearch_result_ptr)

124

/lif search did not return anything

/ltry to morph the search string

search_result_ptr = findtheinfo_ds(morphstr(searchstr, pos),
pos,
meronym_type,

ALLSENSES);
}
if(search_result_ptr)
/lthe search produced some results, output them
TraverseMeronymSenses(search_result_ptr);
}
}

/lfree the space allocated by findtheinfo_ds()
free_syns(search_result_ptr);

* SearchForEntailments()
*

* This function will cal findtheinfo_ds to search for entailment of searchstr.

*

Kkkkkkkkkk * xxnx/

void SearchForEntailments(char * searchstr, int pos)

{
SynsetPtr search_result_ptr = NULL; //result of findtheinfo(...)

PrintSearchHeader("entailment”, pos, searchstr);

search_result_ptr = findtheinfo_ds(searchstr, pos, ENTAILPTR, ALLSENSES);
if(lsearch_result_ptr)

/lif search did not return anything
/ltry to morph the search string
search_result_ptr = findtheinfo_ds(morphstr(searchstr, pos), pos,
ENTAILPTR, ALLSENSES);
}

if(search_result_ptr)

/lthe search produced some results, output them
TraverseEntailmentSenses(search_result_ptr);

}

/lfree the space allocated by findtheinfo_ds()
free_syns(search_result_ptr);

* SearchForCausations()

*

* This function will cal findtheinfo_ds to search for causation of searchstr.

*

*kkk * * * * * * * x/

125

void SearchForCausations(char * searchstr, int pos)

{
SynsetPtr search_result_ptr = NULL; //result of findtheinfo(...)
PrintSearchHeader("causation”, pos, searchstr);
search_result_ptr = findtheinfo_ds(searchstr, pos, CAUSETO, ALLSENSES);
if(lsearch_result_ptr)
/lif search did not return anything
/ltry to morph the search string
search_result_ptr = findtheinfo_ds(morphstr(searchstr, pos), pos,
CAUSETO, ALLSENSES);
if(search_result_ptr)
/lthe search produced some results, output them
TraverseCausationSenses(search_result_ptr);
}
/lfree the space allocated by findtheinfo_ds()
free_syns(search_result_ptr);
}

e /

/ *kkKk *kkKh kKK *kk Kk kK kK *kkFKhk

* TraverseAntonymSenses()
*
* This function moves through all senses of the search string

* and calls TraverseAntonyms() for each senses
*

Fkkkkkkkkkkkk Fkkkkkkkkkkkk n/

void TraverseAntonymSenses(SynsetPtr synset_ptr)
{
int sense_counter = 1;
//save pointer passed to this function
SynsetPtr cur_sense_ptr = synset_ptr;

/lloop through various senses of the searchstr
while(cur_sense_ptr)
{
/fif there are antonyms for this sense, output them
if(cur_sense_ptr -> ptrlist)

{
PrintSenseHeader(sense_counter++, cur_sense_ptr -> defn);
/ltraverse and print antonyms for this sense
TraverseAntonyms(cur_sense_ptr);

}

//Imove to the next sense
cur_sense_ptr = cur_sense_ptr -> nextss;

126

* TraverseHypernymSenses()
*

* This function loops through all senses of the search string

* and calls TraverseHypernyms() for each sense to print the hierarchy
*

*kkkkkk Fkkkkkk Kkkkkkkkkkkkk Fkkkkkk /

void TraverseHypernymSenses(SynsetPtr synset_ptr)
{
int sense_counter = 1;
//save pointer passed to this function
SynsetPtr cur_sense_ptr = synset_ptr;

/lloop through various senses of the searchstr
while(cur_sense_ptr)

{

PrintSenseHeader(sense_counter++, cur_sense_ptr -> defn);

/ltraverse and print hypernym hierarchy for this sense
TraverseHypernyms(cur_sense_ptr);

//Imove to the next sense
cur_sense_ptr = cur_sense_ptr -> nextss;

* TraverseHolonymSenses()
*
* This function loops through all senses of the search string

* and calls TraverseHolonyms() for each sense.
*

*kkkkkk Fkkkkkk Kkkkkkkkkkkkk Fkkkkkk /

void TraverseHolonymSenses(SynsetPtr synset_ptr)
{
int sense_counter = 1;
//save pointer passed to this function
SynsetPtr cur_sense_ptr = synset_ptr;

/lloop through all senses of the searchstr

while(cur_sense_ptr)

{
/lif there are meronyms for this sense, print them
if(cur_sense_ptr -> ptrlist)

{
PrintSenseHeader(sense_counter++, cur_sense_ptr -> defn);
/ltraverse and print meronyms for this sense
TraverseHolonyms(cur_sense_ptr);

}

/Imove to the next sense

127

cur_sense_ptr = cur_sense_ptr -> nextss;

* TraverseMeronymSenses()
*

* This function loops through all senses of the search string

* and calls TraverseMeronyms() for each sense.
*

*kkk * Kkkkkkk *kkk nnnnn/

void TraverseMeronymSenses(SynsetPtr synset_ptr)
{
int sense_counter = 1;
//save pointer passed to this function
SynsetPtr cur_sense_ptr = synset_ptr;

/lloop through all senses of the searchstr

while(cur_sense_ptr)

{
/lif there are meronyms for this sense, print them
if(cur_sense_ptr -> ptrlist)

{
PrintSenseHeader(sense_counter++, cur_sense_ptr -> defn);
/ltraverse and print meronyms for this sense
TraverseMeronyms(cur_sense_ptr);

}

/Imove to the next sense
cur_sense_ptr = cur_sense_ptr -> nextss;
}
}

*
* TraverseEntailmentSenses()
*

* This function loops through all senses of the search string
* and calls TraverseEntailments() for each sense to print the ontology

*

void TraverseEntailmentSenses(SynsetPtr synset_ptr)

{

int sense_counter = 1;
//save pointer passed to this function
SynsetPtr cur_sense_ptr = synset_ptr;

/lloop through various senses of the searchstr
while(cur_sense_ptr)

{

//if there are entailments for this sense, pritn them
if(cur_sense_ptr -> ptrlist)

PrintSenseHeader(sense_counter++, cur_sense_ptr -> defn);

[/ltraverse and print entailments for this sense

128

TraverseEntailments(cur_sense_ptr);

}

/Imove to the next sense
cur_sense_ptr = cur_sense_ptr -> nextss;
}
}

/**
*

* TraverseCausationSenses()

*

* This function loops through all senses of the search string

* and calls TraverseCausations() for each sense to print the ontology

*

void TraverseCausationSenses(SynsetPtr synset_ptr)
{
int sense_counter = 1;
//save pointer passed to this function
SynsetPtr cur_sense_ptr = synset_ptr;

/lloop through various senses of the searchstr
while(cur_sense_ptr)
{
//if there are causations for this sense, pritn them
if(cur_sense_ptr -> ptrlist)

{
PrintSenseHeader(sense_counter++, cur_sense_ptr -> defn);
[/ltraverse and print entailments for this sense
TraverseCausations(cur_sense_ptr);

}

/Imove to the next sense
cur_sense_ptr = cur_sense_ptr -> nextss;
}
}

/ *kkkkkk *kkkhkk *kkkkkkhkkhhkkhhhkhkkhrrkk *kkkkkk *kkkkkk *%

*

* The following set of functions will traverse search results for each sense

*

*kkkkkkhkkhkkdkhkkhkkhrkhkkx *kkkkkk /

/ *kkkkkk *kkkhkk *kkkkkkhkkhhkkhhhkhkkhrrkk *kkkkkk *kkkkkk *%

*

* TraverseAntonyms()

*

* This function loops through all the antonym synsets for the synset
* pointed to by synset_ptr and creates their SNePS representations.
*

void TraverseAntonyms(SynsetPtr synset_ptr)

{

//get point to first antonym
SynsetPtr cur_synset_ptr = synset_ptr -> ptrlist;

129

/Ibase node name for the synset corresponding to the search string
char base_node_name_antl[MAX_BASE_NODE_NAME_LEN];
/Ibase node name for the synset corresponding to a search result
char base_node_name_ant2[MAX_BASE_NODE_NAME_LEN];

GetBaseNodeName(synset_ptr, base_node_name_antl);

/lprint the synset corresponding to the search string
PrintSynset(synset_ptr);

/Nloop through all antonyms
while(cur_synset_ptr)

PrintSynset(cur_synset_ptr);

GetBaseNodeName(cur_synset_ptr, base_node_name_ant2);
printf("(assert antonym *%s\n %6s antonym *%s)\n\n",
base_node_name_antl,

base_node_name_ant2);

/Imove to the next sense
cur_synset_ptr = cur_synset_ptr -> nextss;

* TraverseHypernyms()
*

* This function will traverse through hypernym synsets
* and convert them to SNePS/CVA representations

*

* * *kkk * *kkkk kkkkkhkkhkkkk xxxxxxxx/

void TraverseHypernyms(SynsetPtr synset_ptr)

{
char prev_base_node_name[MAX_BASE_NODE_NAME_LEN];

char cur_base_node_name[MAX_BASE_NODE_NAME_LEN];
//save pointer passed to this function
SynsetPtr cur_synset_ptr = synset_ptr;

/linitialize cur_base_node_name
GetBaseNodeName(cur_synset_ptr, cur_base_node_name);

/IPrint the first synset in the hierarchy
PrintSynset(cur_synset_ptr);

/[Traverse hierarchy

while(cur_synset_ptr -> ptrlist)

{
/Imove to the next level
cur_synset_ptr = cur_synset_ptr -> ptrlist;
/Isave prev base node name and get the new one
strcpy(prev_base_node_name, cur_base_node_name);
[Istrcpy(cur_base_node_name, GetBaseNodeName(cur_synset_ptr));
GetBaseNodeName(cur_synset_ptr, cur_base_node_name);

PrintSynset(cur_synset_ptr);

130

printf("(assert subclass *%s \n %6s superclass *%s)\n\n",
prev_base_node_name,

cur_base_node_name);

[FFFFIK KK I I T KKk Kk dk ok ko *hkkkkkhkkhkkhhkkkhkk *kkkkkkkk *kkkkkkkk

*

* TraverseHolonyms()

*

* This function loops through all the meronym synsets for the synset
* pointed to by synset_ptr and creates their SNePS representations.
*

void TraverseHolonyms(SynsetPtr synset_ptr)
{
//get point to first meronym
SynsetPtr cur_synset_ptr = synset_ptr -> ptrlist;

//Ibase node name for the synset corresponding to the search string
char base_node_name_whole[MAX_BASE_NODE_NAME_LEN];
/Ibase node name for the synset corresponding to a search result
char base_node_name_partfMAX_BASE_NODE_NAME_LEN];

GetBaseNodeName(synset_ptr, base_node_name_part);

/lprint the synset corresponding to the search string
PrintSynset(synset_ptr);

/Noop through search results
/Ibase_node_name_part remains the same because it came from the searchstr
/lon each iteration we retrieve the next base_node_name_whole
while(cur_synset_ptr)
{
PrintSynset(cur_synset_ptr);

GetBaseNodeName(cur_synset_ptr, base_node_name_whole);
printf("(assert whole *%s\n %6s part *%s)\n\n",
base_node_name_whole,

base_node_name_part);

//Imove to the next sense
cur_synset_ptr = cur_synset_ptr -> nextss;

* TraverseMeronyms()

*

* This function loops through all the meronym synsets for the synset
* pointed to by synset_ptr and creates their SNePS representations.
*

e /

void TraverseMeronyms(SynsetPtr synset_ptr)

131

//get point to first meronym
SynsetPtr cur_synset_ptr = synset_ptr -> ptrlist;

/Ibase node name for the synset corresponding to the search string
char base_node_name_whole[MAX_BASE_NODE_NAME_LEN];
//Ibase node name for the synset corresponding to a search result
char base_node_name_partfMAX_BASE_NODE_NAME_LEN];

GetBaseNodeName(synset_ptr, base_node_name_whole);

/lprint the synset corresponding to the search string
PrintSynset(synset_ptr);

/Nloop through search results
/Ibase_node_name_whole remains the same because it came from the searchstr
/lon each iteration we retrieve the next base_node_name_part
while(cur_synset_ptr)

PrintSynset(cur_synset_ptr);

GetBaseNodeName(cur_synset_ptr, base_node_name_part);
printf("(assert whole *%s \n %6s part *%s)\n\n",
base_node_name_whole,

base_node_name_part);

//Imove to the next sense
cur_synset_ptr = cur_synset_ptr -> nextss;

* TraverseEntailments()

*

* This function loops through all the entailment synsets for the synset
* pointed to by synset_ptr and creates their SNePS representations.
*

*kkkkkk Fkkkkkk Kkkkkkkkkkkkk Fkkkkkk /

void TraverseEntailments(SynsetPtr synset_ptr)
{
//get pointer to first entailment
SynsetPtr cur_synset_ptr = synset_ptr -> ptrlist;

/Ibase node name for the synset corresponding to the search string
char base_node_name_action[MAX_BASE_NODE_NAME_LEN];
//Ibase node name for the synset corresponding to a search result
char base_node_name_entailsf]MAX_BASE_NODE_NAME_LEN];

GetBaseNodeName(synset_ptr, base_node_name_action);

/Iprint the synset corresponding to the search string
PrintSynset(synset_ptr);

/Nloop through search results
/Ibase_node_name_action remains the same because it came from the searchstr
/lon each iteration we retrieve the next base_node_name_entails
while(cur_synset_ptr)

{

132

PrintSynset(cur_synset_ptr);

GetBaseNodeName(cur_synset_ptr, base_node_name_entails);
printf("(assert verb-concept *%s \n %6s entails *%s)\n\n",
base_node_name_action,

base_node_name_entails);

/Imove to the next sense
cur_synset_ptr = cur_synset_ptr -> nextss;

[** * F*kkk * * * * *

*

* TraverseCausations()

*

* This function loops through all the causation synsets for the synset
* pointed to by synset_ptr and creates their SNePS representations.
*

Kkkkkkkkkk * xxnx/

void TraverseCausations(SynsetPtr synset_ptr)
{
//get point to first meronym
SynsetPtr cur_synset_ptr = synset_ptr -> ptrlist;

/Ibase node name for the synset corresponding to the search string
char base_node_name_cause[MAX_BASE_NODE_NAME_LEN];
/Ibase node name for the synset corresponding to a search result
char base_node_name_effecttMAX_BASE_NODE_NAME_LEN];

GetBaseNodeName(synset_ptr, base_node_name_cause);

/Iprint the synset corresponding to the search string
PrintSynset(synset_ptr);

/lloop through search results
/lbase_node_name_cause remains the same because it came from the searchstr
/lon each iteration we retrieve the next base_node_name_effect
while(cur_synset_ptr)
{

PrintSynset(cur_synset_ptr);

GetBaseNodeName(cur_synset_ptr, base_node_name_effect);
printf("(assert cause *%s \n %6s effect *%s)\n\n",
base_node_name_cause,

base_node_name_effect);

/Imove to the next sense
cur_synset_ptr = cur_synset_ptr -> nextss;

*

133

/**

*

* GetBaseNodeName()

*

* This function generates base node name for the given synset;

* the newly generated base node name is returned via the second argument
*

*kkkkkkkhkkhhkkhhhkhhkhhkrk *% *% *% *kkkkkkhkkkhhkhhkkkkk

*kk *******/

char * GetBaseNodeName(SynsetPtr synset_ptr, char * result)

{
char base_node_name[MAX_BASE_NODE_NAME_LEN]; //new base node name to return

int word_num; //loop counter

/Iconcatenate all words in synset
strcpy(base_node_name, synset_ptr -> words[0]);
for(word_num = 1; word_num < synset_ptr -> wcount; word_num-++)

{

sprintf(base_node_name, "%s -%s",
base_node_name, synset_ptr -> words[word_num]);

}

lIreplace possible quote char with '-'
ReplaceChar(base_node_name, '\", -');

//attach part of speech and this synset's offset in data file
sprintf(base_node_name, "%s -%c-%d",
base_node_name, *(synset_ptr -> pos), synset_ptr -> hereiam);

return strcpy(result, base_node_name);

}

/ * *kk * *kk *kk * *kk *kk * *kk *%

*

* PrintSynset()
*

* This function will print the synset pointed to by the argument passed
* to this function. The synset will be printed as a SNePSUL expression:
* the concept which this synset represents is pointed to by the "concept"

* arc; each member of this synset is pointed to by the "word" arc.
*

void PrintSynset(SynsetPtr synset_ptr)
{

int word_num = 0; //loop counter
char base_node_name[MAX_BASE_NODE_NAME_LEN]; //base node unique identifer

/lgenerate base node name
GetBaseNodeName(synset_ptr, base_node_name);

/lprint the synset pointed to by synset_ptrin SNePSUL
printf("(assert concept #%s \n %6s word \"%s\")\n",
base_node_name,

sy,nset_ptr -> words[0]);

for(word_num = 1; word_num < synset_ptr -> wcount; word_num-++)

{

134

printf("(assert concept *%s \n %6s word \"%s\")\n",
base_node_name,

synset_ptr -> words[vx;ord_num]);

}
printf("\n");

/ *kkkkkk *kkkkkk *kkkkkkhkkhhkkhhhkhrkhrrkk *kkkkkk *kkkkkk *%

*

* PrintSynsetStruct()
*

* This function is useful for debugging purposes
* it prints the content of the synset structure (ss)
* defined in $WNHOME/src/include/wntypes.h

*

*kkkkkkhkkhkkdkhkkhkkhrxhkkx *kkkkkk /

void PrintSynsetStruct(SynsetPtr synset_ptr)
/* this function is useful for debugging */

{

int loop_count;

printf("\n***** SYNSET STRUCT DUMP *****\n");

printf("current file position: %d\n", synset_ptr -> hereiam);

printf("type of ADJ synset: %d\n", synset_ptr -> sstype);

printf(“file number that synset comes from: %d\n", synset_ptr -> fnum);
printf("part of speech: %c\n", *(synset_ptr -> pos));

printf("number of words in synset: %d\n", synset_ptr -> wcount);
printf("words: ");

for(loop_count = 0; loop_count < synset_ptr -> wcount; loop_count++)

printf("%s, ", synset_ptr -> words[loop_count]);

}
printf("\n");
printf("unique id in lexicographer file: %d\n", *(synset_ptr -> lexid));
printf("unique id in lexicographer file: %d\n", *((synset_ptr -> lexid) + 1));
printf("sense number in wordnet: %d\n", *(synset_ptr -> wnsns));
printf("which word in synset we're looking for: %d\n", synset_ptr -> whichword);
printf("number of pointers: %d\n", synset_ptr -> ptrcount);
printf("pointer type: %d\n", *(synset_ptr -> ptrtyp));
printf("pointer offsets: %I\n", *(synset_ptr -> ptroff));
printf("pointer part of speech: %d\n", *(synset_ptr -> ppos));
printf("pointer to fields: %d\n", *(synset_ptr -> pto));
printf("pointer from fields: %d\n", *(synset_ptr -> pfrm));
llprintf("number of verb frames: %d\n", synset_ptr -> fcount);
llprintf("frame numbers: %d\n", *(synset_ptr -> frmid));
/lprintf("frame to field: %d\n", *(synset_ptr -> frmto));
printf("synset gloss: %s\n", synset_ptr -> defn);
printf("unique synset key: %d\n", synset_ptr -> key);
printf("***** END SYNSET STRUCT *****\n\n");

* PrintDefinition()
*

* Print the string passed to this function, inserting an EOL character
* every time line_length characters have been printed. This function is
* intended to improve formatting of the synset definition output

135

void PrintDefinition(char * definition)

{
inti; //loop index
int const line_length = 45; //number of characters in one line

for(i = 0; i < strlen(definition); i++)
if(i%line_length == 0)
{

/lprint EOL every time we've printed line_length characters
printf("\n; *);

}

printf("%c", definition[i]);

}
printf("\n");

/ * * *kkk K*kkk K*kkk Fkkk Fkkk *

*

* PrintSearchHeader()

*

void PrintSearchHeader(char * searchtype, int pos, char * searchstr)

{
char pos_str[MAX_POS_NAME_LEN]; //pos name (e.g. "noun" or "adjective")
GetPOSName(pos, pos_str); //get pos nhame

printf("\n; \n");
printf("; \n");
printf("; %s search results for %s \"%s\"\n",
searchtype, pos_str, searchstr);
printf("; \n");
printf("; \n\n");

ikt *kkkkkkkkhhkhkhkkhrkhhkhhrkhrrrhkrkx *kkkkkkkk *kkkkkkkk *kkkkkkkk

*

* PrintSenseHeader()

*

*kkkkkkhkkhkkdkhkkhkkhrkhkkx *kkkkkkkkk /

void PrintSenseHeader(int sensenum, char * definition)

{
/lprint sense number and the textual gloss for this sense
printf("; --------------- sense %d --------m--m--moomeooeo
sensenum);
PrintDefinition(definition);
printf("; \n\n");
}

* ReadFileIntoString()

*

136

* This function slurps a text file into a string. It operates by reading

* the file character by charactre into the string passed to this function

* as a parameter until the end of file character is reached. The function
* returns the number of characters read.

*

int ReadFilelntoString(char * file_name, char * result_str)

{
FILE * input_file_ptr = NULL;
int char_count = 0;

/lopen intput file
input_file_ptr = fopen(file_name, "r");
if(tinput_file_ptr) {printf("couldn't open input file\n"); exit(1);}

//slurp the entire file into result_str
while((result_str[char_count++] = fgetc(input_file_ptr)) != EOF);

fclose(input_file_ptr); //close input file

/Ireturn the number of characters in input file
return char_count;

* Tokenize()

* The first argument of this function is a text string. The second argument

*is a table (an array of strings).
*

* This function will filter out all non-alpha characters from the string
* passed to this function as an argument. The string will be split into
* tokens (words, i.e. - strings separated by empty space). The result
* will be placed into the table passed to this function as the second

* argument.

*

* This function returns the number of words in the resulting table.

*

. /

int Tokenize(char * passage, char tokenized_passage[][[MAX_WORD_LEN])
{

/lallowable ascii character ranges (‘A'-'Z' or 'a’ - 'z')

int const ascii_range_low1 = 65; //capital ‘A’

int const ascii_range_highl = 90; //capital 'Z'

int const ascii_range_low2 = 97; //small ‘a'

int const ascii_range_high2 = 122; //small 'z’

int loop_index = 0; //loop index
int char_count = 0; //used to count chars in a word
int word_count = 0; //used to count the number of words in passage

/lloop through every character in the passage
/lexcluding the last one (EOF)
for(loop_index = 0; loop_index < strlen(passage); loop_index++)

/Icheck if this is the end of the word
if((passage[loop_index] =="")

137

(passage[loop_index] =="n")

/linsert a null terminating char at the end of current word
tokenized_passage[word_count][char_count] = "\0;

/Imake sure this word is not an empty string
//(so that an empty space after an empty space
// does not count as a word)
if(strlen(tokenized_passage[word_count]) != 0)

{
}

char_count = 0; //begin filling a new word
continue; //begin the loop over

word_count++; //go to the next position in the table

}

/lcheck if this character falls within the allowable range
if(((passage[loop_index] >= ascii_range_lowl) &&
(passage[loop_index] <= ascii_range_high1))
Il
((passagelloop_index] >= ascii_range_low2) &&
(passage[loop_index] <= ascii_range_high2))

(passagelloop_index] =="_") /I"_"is allowed
(passagelloop_index] =="-")) //-' is allowed
{
/Isave the character and increment the character count
tokenized_passage[word_count][char_count++] = passage[loop_index];
}

}

/Ireturn the number of words in passage
return word_count;

/ *kkkhkk *kkkkkk *kkkkkkhkkhhkkhhhkhkkhrrkk *kkkkkk *kkkkkk *%

*

* GetPOSName()
*

* This function is used to convert int POS code into string
*

* *% *% * *kkkk * *% /
void GetPOSName(int pos, char * result)
{
switch(pos)
case NOUN:
strcpy(result, "noun™);
break;
case VERB:
strepy(result, "verb");
break;
case ADJ:
strepy(result, "adjective");
break;

138

case ADV:
strepy(result, "adverb");

break;
default:
strepy(result, "unknown POS");
break;
}

*

* ReplaceChar()

*

* This function is used to replace one character within a string with another

*
*kkkkkk /

*kkkkkkhkkkkkk

*kkkkkkkkk

void ReplaceChar(char * str, char char_to_replace, char replacement_char)

{

intindex = 0;
for(index = 0; index < strlen(str); index++)
if(strlindex] == char_to_replace)

strlindex] = replacement_char;

139

References

1. Becker, Chris (2004), “Contextual Vocabulary Acquistion; Contextual
Information in Verb Contexts: from analysis to algorithm”. Available online at
http://www.cse.buffal 0.edu/~rapaport/CV A/becker- verbs.pdf

2. Beckwith, Richard, Miller, George, A, & Tengi, Randee. “Design and
implementation of the WordNet lexical database and searching software”.
Included in wordNet software distribution. See
http://www.cogsci.princeton.edu/~wn/.

3. Ehrlich, Karen, & Rapaport, William J. (1995), "A Computational Theory of
Vocabulary Expansion: Project Proposal”, Technical Report 95-15 (Buffalo:
SUNY Buffalo Department of Computer Science) and Technical Report 95-08
(Buffalo: SUNY Buffalo Center for Cognitive Science).

4. Fellbaum, Christiane, (1990) “English Verbs as a Semantic Net”, International
Journal of Lexocography 3(4): 270-301.

5. Miller, George, A (1990) “Nouns in WordNet: alexical inheritance system”,
International Journal of Lexicography, 3(4), 245 — 264.

6. Rapaport, William J., & Ehrlich, Karen (2000), "A Computational Theory of
Vocabulary Acquisition™, in Lucja M. lwanska & Stuart C. Shapiro (eds.), Natural
Language Processing and Knowledge Representation: Language for Knowledge
and Knowledge for Language (Menlo Park, CA/Cambridge, MA: AAAI
PresssMIT Press): 347-375.

7. Rapaport, William J., & Kibby, Michad W. (2002), "ROLE: Contextua
Vocabulary Acquisition: From Algorithm to Curriculum”.

8. Shapiro, Stuart C., & Rapaport, William J. (1987), "SNePS Considered as a Fully
Intensional Propositional Semantic Network™, in Nick Cercone & Gordon
McCalla (eds.), The Knowledge Frontier: Essays in the Representation of
Knowledge (New Y ork: Springer-Verlag): 262-315.

140

