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Abstract 
 

Contextual Vocabulary Acquisition (CVA) is the act of deriving 
the meaning of a word from the context in which it appears. The 
goal of the CVA project is to develop a computational model of 
this task. To accomplish this, the SNePS knowledge representation 
and reasoning system is used to model both the mind of a reader 
and the process of learning a new word. A cognitive agent known 
as Cassie is given a representation of a passage and an appropriate 
set of background knowledge. She then comes up with an 
approximate definition using reasoning and a CVA algorithm 
designed for a particular part of speech. In this paper, a revision to 
the verb algorithm using a package known as the SNePS Rational 
Engine is introduced. The benefits of this approach are discussed 
and the new algorithm is tested by comparing its performance 
against the results of a previous version of the verb algorithm. 
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Introduction to Contextual Vocabulary Acquisition 
 
 Suppose a person who is reading a book comes across a word that they are unfamiliar 

with. If they decide to try to figure out what its meaning is from the context in which it appears, 

that reader would be engaging in what is known as contextual vocabulary acquisition (CVA).  

More formally, CVA is defined as “the active, deliberate acquisition of word meanings from text 

by reasoning from contextual clues, prior knowledge, language knowledge and hypotheses from 

prior encounters with the word, but without external sources of help such as dictionaries or 

people.” (Rapaport and Kibby 2002: 3) With repeated exposure to the word in varying contexts, 

the meaning which the reader has derived will eventually “converge” to a dictionary-like 

definition. (Rapaport and Ehrlich 2000: 5) 

 The goal of the CVA project is to develop a computational theory of vocabulary 

acquisition. By designing algorithms to perform this task, a better understanding of the role of 

context can be gained and can serve as the foundation for a curriculum in CVA. (Rapaport and 

Kibby 2002: 3) As things currently stand, algorithms to define nouns and verbs have been 

produced and are now in the process of being tested. These algorithms are implemented in Lisp 

and are designed to work with a semantic network in order to properly model the process of 

learning a new word. The name of the particular semantic network in use is SNePS. 

 SNePS is an “intensional, propositional, semantic-network knowledge-representation and 

reasoning system used for research in artificial intelligence and in cognitive science.” (Shapiro 

and Rapaport 1995: 79) The structure and features of SNePS lend themselves well to the task of 

modeling cognitive processes. For instance, components such as the SNePS Inference Package 

(SNIP) and the SNePS Belief Revision package (SNeBR) allow a SNePS cognitive agent to 
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reason with the information present in the network. However, the bulk of the work in this project 

is done using the SNePS Rational Engine, SNeRE.  

SNeRE is a package in SNePS which allows cognitive agents to engage in acting. At the 

primitive level, acts are written in Lisp code whereas more complex acts are written in terms of 

other acts. There is also a set of predefined actions which are fairly powerful in a computational 

sense. For example, the “withall” command takes a set of variables, a proposition which contains 

those free variables and a call to an action which (presumably) uses those variables. This 

command will then perform that action for every configuration of variables which satisfies the 

proposition. Another example of SNeRE’s power is the fact that sequence, selection and iteration 

all have acting analogues in SNeRE.  

The current implementations of the noun and verb algorithms model a process known as 

“implicit” CVA. By calling a Lisp function after the network is formed, little to no reasoning 

using the information in the network occurs. Instead, the network is simply “raided” for 

information which is then processed and delivered to the user. In contrast, an implementation of 

the verb algorithm in SNeRE would allow much of the information gathering process to be 

constructed as acts which are carried out by a cognitive agent. An algorithm written in terms of 

deliberate acts would be performing “explicit” CVA. 

 

Functionality of the New Algorithm 

 While this version of the verb algorithm was in development, a decision was made to 

limit the amount of pure Lisp code present as much as possible. The point of this self-imposed 

constraint was to force most of the code to be written as SNeRE acts. This has the benefit of 
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reducing most of the verb algorithm to actions performed by a cognitive agent, which may be 

more useful to researchers who are trying to determine techniques for CVA. 

 The complex acts which describe how Cassie is to gather the information are dynamically 

defined using universally quantified rules. Once a verb is identified as the target verb using the 

member/class case frame, these rules will trigger and the complex acts will become defined in 

terms of the verb. Once this is done, the DefineVerb primitive action can be used to print out the 

“verb frame.” 

 The following sections explain what each heading of the verb frame represents and 

discuss how Cassie derives the information that each component requires. The actual code for 

each section can be seen in Appendix B. The semantics for each case frame that is used by the 

algorithm can be found in Appendix A. 

Verb 

 The verb heading is just the name of the verb which is being defined. This information is 

initially provided to the algorithm when the user invokes the perform command on DefineVerb 

to get it started. Instead of searching the network to find the verb, the given value is simply 

reprinted under the lex heading of the verb frame. 

Transitivity 

 The transitivity of a verb is directly related to the number of objects that a given verb 

interacts with. There are typically three classes of transitivity: ditransitive, transitive and 

intransitive. Ditransitive verbs deal with two objects, one named the “direct” object and one 

named the “indirect” object. Transitive verbs do not deal with an indirect object and interact only 

with a direct object. Intransitive verbs do not deal with any objects at all. 
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 This information is implicitly present in the network by the manner in which the sentence 

is represented. Different SNePSLOG frames are used depending on the transitivity class to which 

the verb belongs. Consequently, all that is required to determine the class of the verb is to find 

out which frame is being used to represent the action. 

 In order to do this, SNeRE’s withall command is used to check if any instances of the 

ditransitive action frame containing the verb exist in the network. If so, then the verb is classified 

as ditransitive. If not, then the withall command is used again to check if the transitive action 

frame is in use. If this is the case then the verb is classified as transitive, otherwise it is classified 

as intransitive. 

 This information is recorded directly in the network using a “verb-feature” frame. Doing 

so allows us to avoid repeatedly performing the three-step check when subsequent parts of the 

program need to know the verb’s transitivity. Once the verb’s transitivity has been recorded, it is 

then printed out in the verb frame. 

Properties 

 In several contexts, it can be determined that a given verb has certain properties even 

though it is not an “object” in the traditional sense. For instance, the verb is frequently given the 

property of being unknown as it is the word we are looking to define in the first place. 

 Determining the properties of the verb is fairly easy. By using the “tell-ask” interface, 

Cassie can perform deductions while inside a primitive action. This allows her to determine what 

the properties of the verb are by searching the network for instances of the object-property frame 

with the verb as the object. She then returns a list of all of the properties which is then printed to 

the screen. 

Cause/Effect 
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 This was an interesting case to handle as the cause and effect relationship is not formally 

defined in any of the available case frame dictionaries. In Becker’s algorithm, two types of 

causes and effects called “direct” and “action” are checked. The difference between the two is 

the way in which the cause and effect frame is used to build the relationship. For the action 

causes and effects, both slots of the cause and effect frame are filled with instances of the 

agent/act/action case frame. The algorithm checks to see if any agent performing the action 

corresponding to the verb is the cause or effect of some other agent performing another action. 

For direct causes and effects, the verb itself directly occupies either the cause or effect slot while 

the other slot is occupied by the agent/act/action case frame. In this case, the algorithm checks to 

see if the verb action directly causes or is the effect of an agent performing another action. 

 To determine if the verb is contained within any cause and effect relationships, the 

algorithm checks all of the aforementioned configurations of this frame using the withall action. 

If any matches are found, they are then passed to a primitive action which retrieves the action 

from each of these instances and prints it out. 

Object and Agent 

 Both the object and agent parts of the frame are relatively simple. In Becker’s algorithm, 

these frame slots contained the most common superclass of both the agent and the object. 

However, this is difficult to do without resorting to the use of list processing functions in Lisp. 

Therefore, all of the class memberships of the object and the agent are printed in this particular 

implementation. 

 Before the DefineVerb action is performed, special paths are defined for the 

member/class and subclass/superclass relations. This allows the inference package to find all of 

the class memberships by following any subclass/superclass chains that exist in the network. 
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Once this is done, then the class memberships of every agent and every object associated with 

the verb are printed to the screen. 

Similar Actions 

 There are two different categories which are considered under the heading of similar 

actions. The first are any terms which are related to the verb through an “equivalency” relation. 

If the verb appears in the network within the Equivalent, Similar or are-synonymous case frames 

then the algorithm will display the terms that the verb is connected to. If no such information 

exists then the algorithm will display a list of actions performed on the same object on which the 

verb performed. 

 In Becker’s algorithm, there is another type of similar action – actions performed with the 

same instrument that was associated with the verb. Only the former is searched for in this 

implementation since support for instruments is not available at this time. 

 

Testing and Results 

 The primary test of this algorithm was a comparison of results between Becker’s 

algorithm and the SNeRE algorithm using Becker’s demo of the verb “perambulate.” This demo 

is divided into different stages, and at the end of each stage the verb algorithm is executed. This 

is designed to show how the definition evolves with exposure to different contexts. Since the 

definitions change with every stage, this is an excellent test for the algorithm. 

 The context for the first stage was the sentence "In the morning we rose to perambulate a 

city and surveyed the ruins of ancient magnificence..." (Becker 2005: 15) The following is a 

comparison of the resulting outputs: 
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Becker’s Algorithm SNeRE Algorithm 
lex: perambulate; 
property: unknown; 
similar action: (rose survey) 
transitivity: (transitive) 
object: (city) 
agent: (person) 

perform DefineVerb(perambulate) 
Verb: perambulate 
Class: (verb) 
Transitivity: (transitive) 
Properties: (unknown) 
Similar Actions: nil 
Agent: (person) 
Object: (place city) 

Table 1: The outputs of both algorithms after the first context. 

 The similar actions output in the first algorithm are not detected in the SNeRE algorithm 

since they are not explicitly said to be similar and are not actions performed on the same object 

that the verb acts on. However, an interesting bug was found at this stage. Each slot in the frame 

can be printed out independently by executing the perform command on the action (primitive or 

complex) representing that particular frame slot. This is particularly useful for debugging as the 

entire DefineVerb command does not need to be executed to test individual parts of the frame. 

However, performing the DefineSimilarActions command independently results in the verb itself 

being returned as a similar action. The reason for the difference in functionality has not yet been 

determined. 

 The context for the second sentence was the sentence “We are going to attack a city and 

destroy it soon.” (Becker 2005: 16) The following are the outputs: 

 

Becker’s Algorithm SNeRE Algorithm 
lex: perambulate; 
property: unknown; 
similar action: (unmake 
activity destroy attack) 
transitivity: (transitive) 
object: (city) 
agent: (person) 

Verb: perambulate 
Class: (verb) 
Transitivity: (transitive) 
Properties: (unknown) 
Similar Actions:(destroy 
attack) 
Agent: (person) 
Object: (place city) 

Table 2: The outputs of both algorithms after the second context. 
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 Both algorithms have found some common ground when it comes to the list of similar 

actions. While the superclasses of “destroy” and “attack” are not included in the SNeRE 

algorithm at this particular stage, the algorithms seem to agree on all of the other information 

present in the verb frame. 

 The context for the third sentence was “Nightly did the hereditary prince of the land 

perambulate the streets of his capital…” (Becker 2005: 16) The outputs are as follows: 

Becker’s Algorithm SNeRE Algorithm 
lex: perambulate; 
property: unknown; 
similar action: (unmake 
activity destroy attack) 
transitivity: (transitive) 
object: (city) 
agent: (person) 

perform DefineVerb(perambulate) 
Verb: perambulate 
Class: (verb) 
Transitivity: (transitive) 
Properties: (unknown) 
Similar Actions:(attack unmake 
activity destroy) 
Agent: (person) 
Agent: (person) 
Object: (streets place) 
Object: (place city) 

 Table 3: The outputs of both algorithms after the third context. 

 At this point an issue with the SNeRE implementation presented itself. Since the withall 

command is being used, the agent and object frames are printing out multiple times for every 

agent which performs the verb action and every object that the verb acts upon. While this is not a 

frequent occurrence in the context tests that are being run, a strategy for dealing with this is still 

necessary as the process of CVA is intended to work over varying contexts. Printing out as many 

independent copies of the agent and object frames as there are contexts is not a palatable 

solution. 

 Another problem which also showed up at this stage was the fact that producing the 

similar actions list took a non-trivial amount of time. This indicates that the way in which 

support for similar actions is implemented is probably flawed. There may be the potential for 

infinite loop situations with logical inferences or very wasteful searches through the network. 
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 There are three more stages to the demo for “perambulate” but the first stages have 

sufficiently demonstrated the capabilities of the SNeRE algorithm. Many of the verb frame 

components work perfectly fine but the tests have clearly shown that other parts (such as similar 

action) need serious revision. 

 

Future Work 

One of the major difficulties of using SNePSLOG for this project is that all case frames 

have to be defined before they can be used. This presented a problem during the conversion 

process as Becker’s algorithm is constructed almost entirely in terms of arc labels and paths. 

There was no information available to determine what case frame a particular arc belonged to. In 

most of these cases, support for that particular part of the algorithm was not implemented. 

Anyone who continues work on this project should be aware that support needs to be built in for 

many more case frames. 

 Furthermore, many of the case frames that newer versions of the verb algorithm deal with 

do not have their semantics formally defined. The most common frames (such as those shared 

with the noun algorithm) have had their representational quality discussed at length and have 

solid linguistic justification for the manner in which they are constructed. However, there are 

some very important frames (such as those dealing with instruments) which simply haven’t been 

scrutinized yet. They need to be analyzed further to ensure that they represent information in a 

sensible manner. Once this is done, they can then be added into an updated case frame dictionary 

for the benefit of future researchers. 
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 Further work is also needed to add support for instruments into the algorithm. This is 

extremely important as the most common elements in the “manner” frame in Becker’s algorithm 

deal with the manner in which a given instrument is used to perform the verb task. 

 Finally, one small problem is the way in which the data is printed to the screen. Any 

primitive action which performs multiple searches through the network will end up printing out 

separate lists for each search since they are not combined prior to being passed to Lisp’s format 

function. The output could be cleaned up fairly easily using a few list processing functions. 
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Appendix A: Case Frames and Semantics 

Note: Some images and semantics are taken from Napieralski’s Dictionary of CVA Case 

Frames at http://www.cse.buffalo.edu/~rapaport/CVA/cvaresources.html. 

 

Figure 1: Does(i, action-ditrans(j, k, i)) frame 

Semantics 

[[m]] is the proposition that agent [[i]] performs action [[j]] with respect to object [[k]] and 

indirect object [[l]]. 

 

 

Figure 2: Does(i, action-wrt(j, k)) frame 

Semantics 

[[m]] is the proposition that agent [[i]] performs action [[j]] with respect to object [[k]]. 
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Figure 3: Does(i, action-intrans(j)) frame 

Semantics 

[[m]] is the proposition that agent [[i]] performs action [[j]]. 

Note: Due to SNeRE naming conventions, the action arc label has been changed to action1. 

 

Figure 4: Isa(j, i) frame 

Semantics 

[[m]] is the proposition that [[i]] is a member of the class [[j]]. 
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 Figure 5: Is-a-kind-of(j, i) frame 

Semantics 

[[m]] is the proposition that [[i]] is a subclass of [[j]]. 

 

Figure 5: Is(j, i) frame 

Semantics 

[[m]] is the proposition that [[i]] has the property [[j]]. 

 

Figure 6: thing-called(w) frame 

Semantics 

[[m]] is the concept expressed by uttering [[w]]. 
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Figure 7: are-synonymous(i, j) frame 

Semantics 

[[m]] is the proposition that some concepts [[i]] and [[j]] are synonyms. 

 

Figure 7: Equivalent(i, j) frame 

Semantics 

[[m]] is the proposition that some concepts [[i]] and [[j]] are equivalent. 

 

Figure 8: Similar(i, j) frame 

Semantics 

[[m]] is the proposition that some concepts [[i]] and [[j]] are equivalent.
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Appendix B: Template for the SNeRE Verb Algorithm 

;; ===================================================== 
;; SNeRE Verb Algorithm, 1.0 
;; by Joe Salazar - jsalazar@cse.buffalo.edu 
;; 
;; Future work:  
;; Add support for instruments 
;; Add support for the 'manner' frame 
;; Change all instances of ‘Lex’ to ‘thing-called’ and  
;; restructure the code layout 
;; 
;; ===================================================== 
 
set-mode-3 
 
;;define-frame Verb(class member) 
define-frame Transitivity(verb-feature verb type) 
 
define-frame CauseEffect(nil cause effect) 
 
;; ================================================== 
;; Frames for classification. 
;; Many of these are also used by the noun algorithm. 
;; ================================================== 
 
define-frame Lex(nil lex) 
 
define-frame Is-Named(nil object propername) 
define-frame Is(nil property object) 
define-frame Isa(nil class member) 
define-frame Is-a-Kind-of(nil superclass subclass) 
 
;; Equivalency relations. 
 
define-frame Equivalent(nil equiv equiv) 
define-frame Similar(nil similar similar) 
 
define-frame are-synonymous(nil synonym synonym) 
 
;; agent acting frames 
 
define-frame Does(nil agent act) 
define-frame action-intrans(nil action1) 
define-frame action-wrt(nil action1 object1) 
define-frame action-ditrans(nil action1 object1 indobject1) 
 
;; ===================================================== 
;; SNeRE action frames. 
;; These frames define the complex and primitive actions 
;; used by the algorithm. 
;; ===================================================== 
 
define-frame DefineVerb(action verb) 
define-frame DetermineTransitivity(action verb) 
define-frame DetermineSimilarActions(action verb) 
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define-frame DetermineDirectCause(action verb) 
define-frame DetermineDirectEffect(action verb) 
define-frame DetermineActionCause(action verb) 
define-frame DetermineActionEffect(action verb) 
define-frame DetermineAgentSuperclass(action verb) 
define-frame DetermineObjectSuperclass(action verb) 
 
define-frame FindVerb(action verb) 
define-frame FindVerbMembership(action verb) 
define-frame FindVerbTransitivity(action verb) 
define-frame FindVerbProperties(action verb) 
define-frame FindEquivalences(action verb) 
define-frame FindSimilarActions(action object agent) 
define-frame FindDirectCause(action verb agent) 
define-frame FindDirectEffect(action verb agent) 
define-frame FindActionCause(action verb agent1 agent2) 
define-frame FindActionEffect(action verb agent1 agent2) 
define-frame FindAgentSuperclass(action agent) 
define-frame FindObjectSuperclass(action object) 
 
define-frame Say(action object) 
 
;define-frame snsequence2(action object1 object2) 
;define-frame snsequence3(action object1 object2 object3) 
;define-frame snsequence4(action object1 object2 object3 object4) 
 
define-frame snsequence12(action object1 object2 snepsul::object3  
      snepsul::object4 snepsul::object5 snepsul::object6  
      snepsul::object7 snepsul::object8 snepsul::object9  
      snepsul::object10 snepsul::object11 snepsul::object12) 
 
;; ======================================================= 
;; Primitive action definitions. 
;;  
;; The primitive actions used by the algorithm are defined  
;; and attached in this section. 
;; ======================================================= 
 
^^ 
(define-primaction Say((object)) 
  (format t "~A~%" object)) 
 
(define-primaction FindVerb ((verb)) 
  "Print the name of the verb."  
  (format t "Verb: ~A~%" verb)) 
 
(define-primaction FindVerbMembership ((verb)) 
  "Find all classes in which verb is a member."  
  (format t "Class: ~A~%" (askwh (concatenate 'string "Isa(Lex(?x),Lex(" 
(princ-to-string verb) "))")))) 
 
(define-primaction FindVerbTransitivity ((verb)) 
  "Print the transitivity of the verb."  
  (format t "Transitivity: ~A~%" (askwh (concatenate 'string 
"Transitivity(Lex(" (princ-to-string verb) "),?x)")))) 
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(define-primaction FindVerbProperties ((verb)) 
  "Find the properties of the verb."  
  (format t "Properties: ~A~%" (askwh (concatenate 'string "Is(Lex(?x),Lex(" 
(princ-to-string verb) "))")))) 
 
(define-primaction FindAgentSuperclass ((agent)) 
  "Find the properties of the verb."  
  (format t "Agent: ~A~%" (askwh (concatenate 'string "Isa(Lex(?x),Lex(" 
(princ-to-string agent) "))")))) 
 
(define-primaction FindObjectSuperclass ((object)) 
  "Find the properties of the verb."  
  (format t "Object: ~A~%" (askwh (concatenate 'string "Isa(Lex(?x),Lex(" 
(princ-to-string object) "))")))) 
 
(define-primaction FindEquivalences ((verb)) 
  "Find the direct equivalencies with the verb."  
  (format t "Similar Actions: ~A ~A ~A~%"  
(askwh (concatenate 'string  
"Equivalent(Lex(" (princ-to-string verb) "),Lex(?x))"))  
(askwh (concatenate 'string  
"are-synonymous(Lex(" (princ-to-string verb) "),Lex(?x))"))  
(askwh (concatenate 'string  
"Similar(Lex(" (princ-to-string verb) "),Lex(?x))")))) 
 
(define-primaction FindSimilarActions ((object) (agent)) 
  "Find all actions similar to the verb."  
  (format t "Similar Actions: ~A~%" (askwh (concatenate 'string 
  "Does(Lex(" (princ-to-string agent) "),  
action-wrt(Lex(?x), Lex(" (princ-to-string object) ")))" )))) 
 
(define-primaction FindDirectCause ((verb) (agent)) 
  "Find all cause relations with the verb."  
  (format t "Cause: ~A~%" (askwh (concatenate 'string  
"CauseEffect(Lex("(princ-to-string verb) "),  
Does(Lex("(princ-to-string agent)"), action-intrans(Lex(?x)) ))")))) 
 
(define-primaction FindDirectEffect ((verb) (agent)) 
  "Find all cause relations with the verb."  
  (format t "Cause: ~A~%" (askwh (concatenate 'string 
  "CauseEffect(Does(Lex(" (princ-to-string agent) "),  
action-intrans(Lex(?x)) ),Lex("(princ-to-string verb) "))")))) 
 
(define-primaction FindActionCause ((verb) (agent1) (agent2)) 
  "Find all action cause relations with the verb."  
  (format t "Action Cause: ~A~%" (askwh (concatenate 'string 
  "CauseEffect(Does(Lex(" (princ-to-string agent1) "),  
action-intrans(Lex("(princ-to-string verb) "))),  
Does(Lex("(princ-to-string agent2)"), action-intrans(Lex(?x)) ))")))) 
 
(define-primaction FindActionEffect ((verb) (agent1) (agent2)) 
  "Find all action cause relations with the verb."  
  (format t "Action Effect: ~A~%" (askwh (concatenate 'string 
  "CauseEffect(Does(Lex("(princ-to-string agent2)"),  
action-intrans(Lex(?x)) ), Does(Lex(" (princ-to-string agent1) "),  
action-intrans(Lex(" (princ-to-string verb) "))))")))) 
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(attach-primaction do-one do-one do-all do-all believe believe 
     disbelieve disbelieve adopt adopt unadopt unadopt  
     snsequence12 snsequence sniterate sniterate  
     snif snif withall withall withsome withsome 
     ;; user defined primitive actions 
     Say Say FindVerb FindVerb  
     FindVerbProperties FindVerbProperties 
     FindVerbMembership FindVerbMembership  
     FindVerbTransitivity FindVerbTransitivity  
     FindSimilarActions FindSimilarActions  
     FindDirectCause FindDirectCause  
     FindDirectEffect FindDirectEffect 
     FindActionCause FindActionCause 
     FindActionEffect FindActionEffect 
     FindEquivalences FindEquivalences 
     FindAgentSuperclass FindAgentSuperclass 
     FindObjectSuperclass FindObjectSuperclass 
) 
^^ 
  
 
;; ============================================ 
;; Path definitions for "one or more" relations 
;; ============================================ 
 
;; ========================================== 
;; Path definition for "superclass" argument. 
;; ========================================== 
 
define-path superclass (compose superclass (kstar (compose subclass- 
 ! superclass))) 
 
;; ============================================= 
;; Path definition for "superordinate" argument. 
;; ============================================= 
 
define-path class (compose class (kstar (compose subclass- ! superclass))) 
 
;; ======================================= 
;; Path definition for equivalency chains. 
;; ======================================= 
 
define-path equiv (compose equiv (kstar (compose equiv- ! equiv))) 
 
;; ======================================= 
;; Path definition for synonym chains. 
;; ======================================= 
 
define-path synonym (compose synonym (kstar (compose synonym- ! synonym))) 
 
;; ======================================= 
;; Path definition for similarity chains. 
;; ======================================= 
 
define-path similar (compose similar (kstar (compose similar- ! similar))) 
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;; =========================================== 
;; Now add the representation of the sentence. 
;; =========================================== 
 
 
 
 
;; ============================================================= 
;; Rules for determining superclasses of agents and objects. 
;; 
;; The action frame is checked in order to determine the  
;; agent or object as appropriate. If either are present then  
;; they are printed in the verb frame. 
;; ============================================================= 
 
all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DetermineAgentSuperclass(v),  
       withall(?x, Does(Lex(?x), action-intrans(Lex(v))),  
       FindAgentSuperclass(x)))). 
 
all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DetermineObjectSuperclass(v),  
       withall({?x, ?y}, Does(Lex(?x), action-wrt(Lex(v), Lex(?y))),  
       FindObjectSuperclass(y)))). 
 
;; ============================================================= 
;; Rules for determining transitivity. 
;; 
;; Checks the action frame of the verb to see if there's an 
;; indirect object in use. If so, then the verb is ditransitive. 
;; If not, then it checks the action frame to see if the verb  
;; is done with respect to an object. If so, then the verb is  
;; transitive. If not, then the verb must be intransitive. 
;; ============================================================= 
 
all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DetermineTransitivity(v),  
   withall({?x, ?y, ?z}, Does(?x, action-ditrans(Lex(v), ?y, ?z)),  
   believe(Transitivity(Lex(v), ditransitive)),  
  withall({?x, ?y}, Does(?x, action-wrt(Lex(v), ?y)),  
   believe(Transitivity(Lex(v), transitive)),  
   believe(Transitivity(Lex(v), intransitive)))))). 
 
;; =================================================================== 
;; Rules for determining similar actions. 
;; 
;; Checks the action frame to see if any equivalent, synonymous or 
;; similar actions exist in the network. These actions are represented 
;; by using the equiv, synonym and similar frames respectively. If 
;; these are not used with respect to the verb then the program scans 
;; the network for other actions which could be considered similar. 
;; =================================================================== 
 
;; Ensuring that the equivalence relationships trigger by deriving  
;; the reverse of every frame. 
 
all(x, y)(Equivalent(x, y) => Equivalent(y, x)). 
all(x, y)(are-synonymous(x, y) => are-synonymous(y, x)). 
all(x, y)(Similar(x, y) => Similar(y, x)). 
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all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DetermineSimilarActions(v),  
       withall(?x, are-synonymous(Lex(v), Lex(?x)), FindEquivalences(v),   
       withall(?y, Equivalent(Lex(v), Lex(?y)), FindEquivalences(v),  
       withall(?z, Similar(Lex(v), Lex(?z)), FindEquivalences(v),  
       withall({?t,?w}, Does(?t, action-wrt(Lex(v), Lex(?w))),  
       withall({?a,?b}, Does(Lex(?a), action-wrt(Lex(?b), Lex(w))),  
       FindSimilarActions(w, a) ))))))). 
 
;; ============================================================= 
;; Cause and effect frame rules. 
;; 
;; There are two types of cause and effect relations, direct and  
;; action-related. Each is checked individually to determine if  
;; they exist. If they do, then the relevant rule is triggered. 
;;  
;; ============================================================= 
 
all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DetermineDirectCause(v),  
       withall({?x,?y}, CauseEffect(Lex(v), Does(Lex(?x),  
       action-intrans(?y))), FindDirectCause(v, x)))). 
 
all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DetermineDirectEffect(v),  
       withall({?x,?y}, CauseEffect(Does(Lex(?x), action-intrans(?y)),  
       Lex(v)), FindDirectEffect(v, x)))). 
 
all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DetermineActionCause(v),  
       withsome({?x,?y,?z}, CauseEffect(Does(Lex(?x), 
       action-intrans(Lex(v))), Does(Lex(?y), 
       action-intrans(Lex(?z)))), FindActionCause(v, x, y)))). 
 
all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DetermineActionEffect(v),  
       withsome({?x,?y,?z}, CauseEffect(Does(Lex(?x), 
       action-intrans(Lex(?y))), Does(Lex(?z), 
       action-intrans(Lex(v)))), FindActionEffect(v, z, x)))). 
 
;; ============================================================ 
;; Algorithm flow of control. 
;; 
;; All of the complex actions and primitive actions involved in 
;; defining the verb frame are called in sequential order given  
;; below. 
;; ============================================================ 
 
all(v)(Isa(Lex(verb), Lex(v)) => ActPlan(DefineVerb(v),  
 snsequence12(DetermineTransitivity(v), FindVerb(v),  
      FindVerbMembership(v), FindVerbTransitivity(v),  
      FindVerbProperties(v), DetermineDirectCause(v),  
      DetermineDirectEffect(v), DetermineActionCause(v),  
      DetermineActionEffect(v), DetermineSimilarActions(v),  
      DetermineAgentSuperclass(v), DetermineObjectSuperclass(v)))). 
    
;; ====================== 
;; Define the verb. 
;; ====================== 
 
perform DefineVerb(perambulate) 
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