
r;: -- 1~:;-:;~:a~~=1"-~' '::~"'I!i: +-~' -~ - ,-~"~~ J) ~.

, -- NOTICE: THLS MA1ER1At ~!- -

8EP~tEOt~8Y~~i.". Computers and Mathematics

LAW (nn..E 17. u.s.C ..~.

e~vironment, but it is an effective and well-designed to the controversy, and then contribute my two cents
pIece of software. Even a version of CC without worthgraphics would be a desirable package. .

CC is copyrighted by David Meredith and dis-
tributed by Background of the Controversy

Mathematics Application .Group The present debate swirls around an article called
Departme~t of Mathem,atIcs. "Program Verification: The Very Idea," [6] written by
San FrancIsco State UnIVersIty the philosopher James Fetzer. In this article, the author
1600 Holl~way Avenue attacked a certain conception of program verification,
San FrancIsco, CA 94132 and claimed to show that the proclaimed aims of

CC is shareware ,and the authors of the program ~rogra~ verification are, in principle, quite simply
suggest a $25 donatIon to the Applied Mathematics ImpossIble.
Fund ~t SFSU, Further information can be obtained ~rogram .v~rification, theory and practice, is a big
by calling (415)338-2199, busIness. MIllIons of dollars are spent on it annu-

ally. So rather predictably, there was a large, outraged
response. Some of the letters accused Fetzer of mis-

Mathematical Proofs of representatio~, o~ of knowing nothing at all about
-~ ComputerSy te C t program venficatIon. Others accused the editor of

s m orrec ness bl. h. "' 11 ' t" d . .
pu IS Ing an 1 -InlOrme , IrresponsIble, and dan-

Jon Barwise* gerous article", On the other hand, some writers
found merit in Fetzer's position. One even said that it

~n the.early, years of the century, there was an exciting, did not go nearly ~ar enough.* B~t to understand this
If aCrImOnIOUS, debate about the nature of mathe- debate, and what It has to do wIth mathematics, we
matics and its relationship to the rest of the world. need to back up a few years.
The debate took place in articles, published correspon- I a~sum~ that th~ reader has an intuitive grasp
dence, and private letters. While it sometimes seemed of,notIons l!ke algonthm, program, (computing) ma-
to generate less light than heat, still, when the smoke chIne, and Implementation. In the way we are using
cleared, the situation was brighter. The debate led to t?ese terms an algorithm A is an abstract computa-
the ~areful formulation of various positions, e.g., for- tIonal process. A p~ogram P is a linguistic object that
malIsm, Platonism, logicism, and intuitionism which plays a causal role In a computation. In writing a pro-
capture particular aspects of mathematical ~ctivity. gram, ~n,e typica~ly tries to i,mplement some (implicit
Few modem mathematicians are terribly happy with or explIcIt) algonthm. That IS, one wants the program ;;
any of these positions, but they do seem to have kept ~, when run on a machine M, to carry out the algo- ~

the ",:olf from the door, in that they allowed us to get nthm ~. ~ proof of program correctness would prove ii
on wIth mathematics. that thIS IS the case, (I reserve "computer system cor- c'

Today a similar controversy about the nature of rectness" for a stronger notion, which I define towards
mathematics and its relation to the rest of the world the. end of the article.) Program verification is the
is raging out of the sight of most mathematicians busIness of providing proofs of program correctness.
in the pages of CACM, the Communications of the C, A. R. Ho,are i~ one of the founders of the field
Association for Computing Machinery, The debate is ?f program venficatIon, To see what is at issue, here
almost as exciting and at least as acrimonious. The IS a famous quote from Hoare.

. purpose of this article is to draw the reader's attention Computer programming is an exact science, in
that all the properties of a program and all the

"I would like to acknowledge many conversations with John consequences of executing it can, in principle, be
~tchemendy and Brian Smith over the years on the topic of modeling found out from the text of the program itself by
In mathematics and in computer science, 1 also need to acknowledge means of purely deductive reasoning, [8]

. the role that Alan Bush has played in my thinking on the matters
discu.ssed in this essay. Talking to him, and watching him at workcon.vlnced me that there is .something very ~mponant about program " These letters can be found in the same issue of CACM as [2],
venficatlon. 1 would also lIke to thank vanous readers of an earlier [4] and [7].
draft of this anicle for comments and suggestions.

I
844 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

-

"i . -~~ -- !,~",7~; - "j,~

-
Computers and Mathematics

Since the late 1960s, a great deal of effort has gone they were correct in their conclusion that program
i into developing program verification techniques.* In verification is impossible.

spite of two decades of work in the field, Fetzer claims Fetzer's argument was summarized in a critical
that the premise on which it is based is false. letter (one of the thoughtful reactions) by Bevier,

There was an earlier attack on program verification. Smith, and Young, roughly as follows:
I~ 1979" I?eMill~, Lipton, and Perl~s [3] published a I. The purpose of program verification is to
highly cntl~al art~cle. !helr contention was that th,ere rovide a mathematical method for guaranteeing
was a crucial social difference between mathematical ihe erformance of a program.
proofs and proofs of program correctness. In mathe- p

~atics, ,proofs are subjected t? public scrutiny. !here 2. This is possible for algorithms, which cannot
IS ,a s~clal process at work which ends up ac~eptlng or be executed by a machine, but not possible for
~eJectlng a purp.orte~ proof. No s~ch process IS at ,:"ork ro rams which can be executed by a machine.
In program venficatlon, they claim. Program verifiers p g ,

J do not ~ublish their purported proofs. of correctness 3. There is little to be gained and much to be lost
:. and, subject the.m to the test of their peers. They through fruitless efforts to guarantee the reliability

can t. There are Just too many programs, the programs of ro rams when no guarantees are to be had.
are too long, the proofs of correctness too long and p g
boring, and there are too few people interested in In responding, Fetzer calls their summary of his
reading any such purported proofs. So, they argue, an position perfectly reasonable, "so long as the first

; all important social aspect of mathematical proofs is premise is intended as a reflection of the position
\ unavailable in the realm of program verification. The that is - implicitly or explicitly - endorsed by the

crucial social mechanism for winnowing proofs from proponents of program verification."
faulty purported proofs is unavailable, so the aims of All three points bear consideration, but we will
program verification are unsatisfiable. start with the second. Can one conceivably give a

The DeMilio, Lipton and Perlis article sparked mathematical proof that a given program P, when run
quite a controversy in its own day, as can be imag- on a machine M, will behave properly by being an
ined, but nothing like the controversy ignited by embodiment of the algorithm A? Or is it, in principle,
Fetzer's more recent article. In his article Fetzer did impossible, as Fetzer claims?
two things. First, he argued that DeMilio, Lipton, Fetzer's argument for (2) (as he briefly summarized
and Perlis were mistaken about the nature of proofs, it in [7]) is that computers are
that the~, confla~ed genuine formal p~oofs and."proof complex causal systems whose behavior, in prin-
sketches. Genuine proofs have certain properties that . I I b k .th the ncertal' nty, Clp e, can on y e nown WI u
proof sketches do, no~ have.. And with rega~d to that attends empirical knowledge as opposed to
the way ~athe~atlcs IS pract~ced, he. would Inter- the certainty that attends specific kinds of math-
pret DeMilio, LIpton and Perils as saYing that most t ' I d t t . F hen the domal'

n" f .. bl ' h d . h ' ' I ema Ica emons ra Ions. or w
proo s pu IS e In m~t ematlcs papers ~re simp y of entities that is thereby described consists of

pr~of sk~tches. Th~ .soclal ,process comes In, Fet~er purely abstract entities, conclusive absolute ver-
claimed, In determining which proof sketches are In- 'fi t . 'bl b t hen the domal'

n of. . I ca Ions are pOSSI e; u w
deed sketches ,of fo~al proofs. (We will return to thIS entities that is thereby described consists of non-
part of Fetzer s claim later.) abstract physical entities... only inconclusive

relative verifications are possible.
Fetzer's Argument

Reaction to Fetzer's Argument
Fetzer's second aim, and the one which has drawn

i a firestorm of response, is to show that while De- Many of the charges leveled against Fetzer's article are
, Millo, Lipton and Perlis were wrong in their reasons, typical of encounters between practitioners of any field

;. X and philosophers of X. The philosopher necessarily
attempts to give an analysis of X as it presents itself

. This article will not assume any familiarity with such techniques. to the informed outsider. The practitioner feels that
However. the reader interested in a simple introduction to them the philosopher misses a (or the) main point of X.
mIght consult Chapter 4 of [1] or Chapter 5 of [12], For a more ., .
complete look at some of the theoretical issues behind program Out of fru~tratlon, he IS all too often tem~ted to cla,.m

" verification. see [5]. that one simply cannot understand X wIthout doing

i;

SEPTEMBER 1989, VOLUME 36, NUMBER 7 845

. c,'~~;;;:
, I' .

, -

Computers and Mathematics

X. As mathematicians (let X be mathematics), we can It bears noting that none of these writers question
all surely recognize the temptation. But such reactions Fetzer's claim that the aim of program verification is
do not really tell against the message carried by the to say something about programs running on physical
philosopher; they simply try to cast doubt or ridicule computers. Their defense is that program verification
on the messenger. I will ignore these sorts of reactions is a branch of science, not mathematics. So they seem
to Fetzer's article in what follows and try to get at the to be backing away from the position staked out by
substance of the debate, as exemplified by some of the Hoare that got program verification underway. And,
more thoughtful reactions to it. in so doing, I think they give up something important

The argument hinges on a perceived discontinuity too quickly.
between the world of mathematics, and the physical M th t ' d th Ph ' I W ld. " a ema lCS an e YSlca orworld. It IS a gap that Bevier, SmIth and Young [2]
are at pains to diminish. They argue that if one gives At issue is one of the oldest puzzles in the philosophy
a sufficiently fine-grained analysis of software and of mathematics: How is applied mathematics possible?
hardware, down to the level of logical circuitry, there On the one hand is the observed fact that mathematics
is little to be made of the distinction. For example, has great efficacy in science as well as in our day-to-day
they write. . . coping with the physical world. On the other hand,

. . . there is the seeming divide between the empirical
whereas It IS true ,that physlc~l gates do not facts of the physical world and the a priori nature of

always behave,as the~r math~matlcal counterparts the deductive method. Or, from a realist perspective
. .. the, sem~ntl~ gap. IS sufficlentl~ small to render rather than a formalist, there seems to be a divide
Fetz~r s objections Inconsequ~ntlal. To deny any between the concrete physical objects that populate the
relation betwee~, say, a physical .ANI? gate and physical world and the abstract objects about which
the corresponding Boolean function I.S to deny we reason in mathematics.
t~at thl~re c~n .be ,any useful mathematical, model It is this problem around which Fetzer and the
? rea ~t~.. his IS t~ntam?unt to asserting the more cogent defenders of program verification are
Impossibility of physIcal SCIence. [2] warily circling. If there are no mathematical truths

Bevier, Smith and Young also dispute point (I) about physical objects, then clearly there is a sense
(and (3), of course). They view program verification in which program verification is impossible, since
not as a branch of mathematics but as a physical it would certainly follow that there cannot be a
science. The goal is not mathematical certainty, but mathematical proof that a given program P, when run
"to make it possible to make highly accurate pre- on a particular physical computer M, has any property
dictions about the behavior of programs running on whatsoever. On the other hand, applied mathematics
computers." is a fact of life. Why shouldn't program verification

In response to all the mail, the editor of CACM be a branch of applied mathematics? Whatever makes
invited John Dobson and Brian Randell to try to other forms of applied mathematics possible would
put the situation into perspective. The result was [4]. surely make program verification possible as well. In
Dobson and Randell find blame on both sides of what follows, I would like to sketch a picture of what
the controversy. They find proponents of program I think is going on in general, and then apply it to
verification guilty of overselling their trade. On the three issues in computer correctness.
other hand, they accuse Fetzer of failing to observe At the heart of the matter, I think, is the distinction
the distinction between the reasons something is so, between a given physical (or other) phenomenon and
and the typically weaker reasons one has for believing a mathematical model of that phenomenon. It is this
it to be so. In particular, they accuse him of mis- distinction which is implicit in Dobson and Randell's
taking proofs of program correctness as "providing "distinction between 'this is the way the world is' and
explanatory reasons for program correctness" whereas 'this is a useful way of thinking of the world'." It
they should be taken as providing "merely evidential is explicit in Bevier, Smith and Young's claim that
reasons" for program correctness. They say that "the Fetzer would have us "deny that there can be any
hypothesis 'this program will execute correctly' is one useful mathematical model of reality."
that can never be proven, only falsified." They take Mathematics, both pure and applied, rests on our
the proof of a program's correctness to show only that experience of the world and our ability to reason.
certain kinds of errors are not possible. Some of this experience is mathematical experience

846 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

~- -

. ' ,,~ :

-
Computers and Mathematics

with various sorts of abstract objects. But ultimately mathematical model is faithful to the phenomenon
mathematics is grounded in our experience of the being modeled, our theorems will correspond to facts
nonmathematical world. This claim is controversial, about that phenomenon. So again we have at least the
and it is not crucial to the point I want to make, but it possibility of mathematics shedding light on things in
does suggest an answer to the question before us. For the nonmathematical world, for example, determining
if mathematics ultimately rests on our experience of physical areas or actual computational processes.
the non mathematical world, it would be odd indeed Both forms* of applied mathematics have a con-

" if mathematics were in principal unable to provide us tingent element (what Fetzer calls "relativity") in their

with any truths about that world. conclusions about the world. The axiomatic method
There are two ways to use mathematics to un- says that our theorems are true if our axioms are. The

derstand the world. One has become codified in the modeling method says that our theorems model facts
axiomatic method. We state explicitly various assump- in the domain modeled if there is a close enough fit
tions and then prove that various conclusions follow.* between the model and the domain modeled. The sad
Euclidean geometry is a hackneyed example. There fact of the matter is that there is usually no way to
really are things like lines and triangles. Moreover, the prove - at least in the sense of mathematical proof
axioms of plane geometry are true of them, or close to - the antecedent of a conditional of either of these
being true in normal circumstances. Axiomatic set the- types.
ory is another example. There really are collections of Still, this does not doom the application of math-
things. Other examples are the axiomatic approaches ematics. After all, our axioms are often true, or close
to the natural or real numbers. In such cases we enough to the truth. And our mathematical models are
state as axioms some principles that seem true, or often good representations of the phenomenon being
perhaps idealizations of true but messier facts, and modeled. Applying mathematics does not in general
prove consequences of the axioms. If our axioms are lend itself to absolute certainty, but it can carry deep
true, and if the purported proof is correct, then the and justified conviction. Or, as a philosopher might
conclusion must also be true. But what if our axioms say, applied mathematics may not guarantee knowl-
are not exactly true? What if they are idealizations? edge of facts about the physical world, but it can lead

;. Well, if the world is continuous enough, and if our to the next best thing - justified true belief.
axioms are close approximations to the facts, then our How can our conviction in applied mathematics
conclusions will also be close to the facts. be justified? In answering this, we need to distinguish

The second and more prevalent method for ap- between what it is that makes a mathematical model
plying mathematics to the non mathematical world is (say) fit the world, and what constitutes good evidence
that of mathematical modeling. We use some previ- for believing that it does. For a model to be a good one
ously established domain of abstract objects, say real there needs to be a mapping from the crucial features
numbers, functions, or sets, etc., about which we have of the model to corresponding features of the physical
an axiomatic theory, to build a model of the new world which is an isomorphism between the model

:; phenomenon under study. For example, the Lebesgue and the modeled, at least in normal circumstances
,~;; integral is really a mathematical model of a real where the model is to be applied.
. physical process for determining areas. And most of Sometimes we can have explanatory evidence that

, computer science uses set theory as a tool for modeling there is such a mapping. For example, we have some-
computers and other computational structures in the thing very close to a mathematical proof that the
world. Lebesgue integral provides a good model of the in-

With this form of applied mathematics, there is a tuitive notion of area, in normal circumstances. And
somewhat different relationship between theorem and when modeling something we have built and un-
the world. For in this case theorems are really theorems derstand reasonably well, like a particular computer,
about the domain of mathematical objects used to we may be able to be reasonably certain of the fit
model the physical world. These truths can shed light between our model and the thing modeled. More
on the physical world, though. To the extent that our typically, though, we only get empirical, experimental

evidence that our model is a good one, through the
. This is a great oversimplification of the method, of course.

What we really do is to try to systematize fairly self-evident truths
about the domain, selecting some to serve as axioms, provided the . A II h f f I ' d h ' ,

hothers folio ctua y, t ese two orms 0 app Ie mat ematlcs are Just t ew as consequences. ..,
ends of a contInuum. Often there IS some of each goIng on.

SEPTEMBER 1989. VOLUME 36. NUMBER 7 847

.~~ .. ~.-

Computers and Mathematics

succe~s we have in using. it to predict facts in the particular physical computers running programs in
domain mo?eled. If experIence leads us to trust our real time. Where they seem to differ then is. h
mod~l as being a good one, then we will be justified in fatal they take the gap between th~ mod~l a:d ~w
trusting our theorems as corresponding with the facts domain modeled to be. Does the gap lead to Fetzer'~
of the world. If we are led as.tray, then we ho~e that pessimistic conclusion (3 above)?
the consequences are not senous, and we revise our In principle, at least, there is no more or less
model. reason to doubt the applicability of a correct proof

Many controversies and errors have arisen out of a computer's correctness relative to a mathematical
of what one might call the Fallacy of Identification, model than to doubt the applicability of any other
the failure to distinguish between some mathematical theorem about some mathematical model of some

I model and the thing it is a model of. It is natural real world phenomenon, provided we have similar
. enough for the working mathematician to identify weight of ev~dence fo.r the appropriateness of the two
1 ' the two while he is trying to prove his results for models, So If there IS an argument against the use

intuitions about the domain modeled guide ~s in of m~thematical models in program verification, it
~ finding theorems about the mathematical model, But must Involve something problematic about computers,
, when that final "QED" is put at the end of the computer programs and computational activity.

proof, we must step back and remember that the The one candidate for a special problem suggested
~dentification is just that, an identification, not an by Fetzer's article stems from the fact that computer
Identity. Fetzer is clear enough about the difference - programs playa causal role in computation, in that
at least in the case of computers. His antagonists are they. actually engender the particular process that is
not so clear. camed out. There are two points to be made in

response. First, there is the distinction between the
program as abstract object, as "type," and the program

Feuer's Argument, Revisited as ~art of the physical world, as an instance of the type.
It IS the latter that plays a causal role. Fetzer is quite

There is a pervasive ambiguity within the program explicit in his determination to talk about the latter,
verification literature. Are the theorems about a math- but proofs of correctness are about the former. From a
ematical model of computation? Or are they about the syntactic point of view, program instances are simple
real thing? It is a bit hard to say, since the literature is en~ugh to have very reliable abstract models about
far from clear about the distinction. Workers in pro- which we can prove results. And we can also model
gram verification sometimes appear to fall prey to the the c~us,al role these programs play in computers. At
Fallacy of Identification. If pushed to decide between least It IS no more problematic than any other form
the two, as Fetzer forces them to do, it seems that his of causality in applied mathematics. In fact, it is
anta~onists want their work to be about the real thing, ra~her less problematic, since we know quite well how
not Just a model of it, as we noted earlier. They are this takes place, so we can model it quite faithfully.
more willing to give up the mathematical method than Indeed, as these things go, the models of programs
they are to give up their claim to be showing something and ,computers used in proving program correctness
about physically embodied computers. On the other are In above average shape. We typically have quite
hand, it seems that Hoare's program was meant to ap- g~od reason~ for trusting them, So if we can come up
~ly .to math~matical models of computation, and only wit? a genuine proo,f that. a .pro~ram is correct, it is
1n?lrectly, Via the model/modeled relation, to the real tY'pI~ally a pretty reliable indication that the program
thing, This view is reinforced by Hoare's more recent will Indeed compute the intended algorithm.
principles (see [9]) that "computers are mathematical But this brings us back to a point made by DeMilio
machines" and "computer programs are mathematical Lipton and Perlis. Real programs are typically ve~
expressions," But whatever Hoare or others want to be long and complicated. What is the chance of getting a
doing, part of what they are doing is proving theorems ~roof of ~orr~ctness right, especially when there is so
about their models of computation. ltttle outside Interest in checking the proofs?

0' ,. It seems to me that things are not as bad as they
somen~:r~~~:~t~r;e~~~~m:~~r;t:d, th~~etSee~~ to b~ suggest. Admittedly, today's programs are often very
ical certaint gree a .ma emat long and the proofs can be pretty boring. But there

y ca~ ap~ly to the ~athematlcal model. are some telling points on the other side. (1) Pro ram
;~:~~~fr:e~:ie:::ci~tl~~tc~:~~lmty ~rees th~t mat~- language methodology is advancing to allow pro;ams

I e WI regar to t e to have structural features (modularity, typing, etc.)

848 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

r--
r:,~~ - ,'ok; , _III",, c~ _~,i" ~ic",

. ,. 10 --~"'--r . .e

~ - .

Computers and Mathematics

1
'{ to aid in their verification. (2) Programs written different models of that notion. And, as Kreisel has
' with eventual verification in mind can. make t~e .task observed ([10]) i? .making r:nuch the same point, 99%

simpler. (3) In my (nonempty but admittedly limited) of all mathematIcians don t know the rules of even
experience, it is rare for such proofs to require great one of these formal systems, but still manage to give
mathematical ingenuity. If they do, then there is correct proofs.
something suspicious about the program. And (4), The distinction between formal proofs and real
automated proof checking might help in weeding out proofs raises the question as to the fit between our
faulty purported proofs from the real thing. But here mathematical model and the real thing in a new
a word of caution is in order. setting. How confident can we be of this fit in this, case?

We can be reasonably confident in most of theFormal Proofs and Proofs models, in one sense. We can be reasonably confident

that the mathematical objects declared proofs doIt seem~ to me that ~etz.er an~ most o~ the coI?- correspond, under the mapping between the model
puter science commum~y, mcludmg those mvolved. m and the domain modeled, to real proofs, at least if we
automated proof c~ecklng, st~mble over a landmm~ set aside matters of comprehensibility and elegance.
left by t~e retreatmg formalIsts. Namely, they fall But even here it is worth noting that it took many
to iecogmze th,e true role ~f formal languages and attempts to get the usual rules of formal logic straight,

1 formal proofs m mathematIcs. Fetzer assumes that . .. , ,
j h . 11 . .d h f 1 f especially regarding quantifiers and the SubstitutIon' mat ematlca OgIC prOVI es t e test 0 a rea proo, . . .

1. h d'h h' 11 ' ., 1 b' 1 of terms contammg free vanables. Many pub IS e
Wit fWk at ~s usua y wntten m Jouma s emg on y versions of this model get things wrong, so that
proo s etc es. objects get counted as proofs (in the model) which do

. . . a proof of a theorem T, say, occurs just in case not at all correspond to a v~lid 'pi~ce of reasoning.
theorem T can be shown to be the last member On the other hand, I thmk It IS clear that current

, of a sequence of formulae where every member f?rmal models of proof are severely impoverished
I of that sequence is either given. . . or else derived smce there a~e many .perfectly good proofs that a~e
I from preceding members of that sequence (by not modeled m an~ direct way by a formal proo~ m

relying upon the members of a specified set of any current deductIve system. For example, consIder
rules of inference.) proofs where one establishes one of several cases and

then observes that the others follow by symmetry con-
Here, at the risk of stepping on the toes of my siderations. This is a perfectly valid (and ubiquitous)

I fellow mathematical logicians, I must say that Fetzer, form of mathematical reasoning, but I know of no sys-
: and many others, commit the Fallacy of Identification. tern of formal deduction that admits of such a general
! That is, they identify a mathematical model of the rule. They can't, because it is not, in general, some-t domain of proofs with that domain itself. thing one can determine from local, syntactic features

The idea that reasoning could somehow be reduced of a proof. Which is just to say that the model of proof
to syntactic form in a formal, artificially constructed accepted by Fetzer (and his opponents) suffers from
language, is a relatively recent idea in the history of the very same objection as do models of computers.

: mathematics. It arose from Hilbert's formalist pro- Which is not to say that it isn't useful. But still, it is
gram. There were proofs for thousands of years before a model, not the real thing. And it could be that the
logicians came along with the mathematizations of best proofs (in the sense of being most enlightening
the notion. But these "formal proofs" are themselves or easiest to understand) of a program's correctness
certain kinds of mathematical objects: sequences of will use methods, like symmetry considerations, that
sentences in a formally specified artificial language, are not adequately modeled in the logician's notion
sequences satisfying certain syntactic constraints on of formal proof, and so which would not be deemed
their members. They certainly aren't what mathe- correct by some automated proof checker designed
maticians since the time of the ancient Greeks were around the formalist's model.
constructing, for one thing. For another, no particular Moreover, identifying proofs with formal proofs
system can claim to be the real notion of proof, since leads to what may be an even more serious mistake.
there are endless variations, as is evident from the Of course to write down a proof that a program P
fact that there are as many different deductive systems is correct for an algorithm A, we need to have some
as there are textbooks in logic. They can't all be the description, representation, or "specification," of A
real notion of proof. Rather, they provide somewhat itself. The formal model of proofs leads people to

SEPTEMBER 1989. VOLUME 36. NUMBER 7 849

~

T
'.. ~.'.;' - . k;;:~ ..

Computers and Mathematic~

suppose that the specification of the algorithm has reliable model of the computer, but also of a proof
been given in the artificial language over which the of algorithm correctness, relative to a model of the
proof regime is defined, usually some descendant of environment in which the system is to be placed.
the first-order predicate calculus. While writing things Who really gives a damn that the program correctly
out in complete logical notation can sometimes result computes the algorithm A if A is not the one needed
in added clarity, all too often it merely obscures things, in the real computer system.

. which is why practicing mathematicians almost never The question of algorithm correctness is seldom
use such a language. And, it is not uncommon for an addressed. Partly this stems from the fact that builders
error to enter the picture in the translation from the of computer systems, like others, find it all too easy to

. English description to the formal specification. Except fall into the Fallacy of Identification, forgetting that
for the hope of having proofs generated, partially there can be a gulf between their implicit model and
generated, or checked by a computer, there seems the world. Partly it is because there are fewer known
to be no compelling reason to specify an algorithm tools at hand to study algorithm correctness. But even
in a formal language. Surely a better practice would if it is addressed, how about the question of the fit
be to initially describe the algorithm clearly and between the model and the domain modeled?
unambiguously in the language ordinarily used by Here things are not so rosy. Many "bugs" in
mathematicians, an extension of English or some programs that make it into general use are not p:rogram
other human language.* errors at all. Rather, they result from a faIlure t.o

anticipate some situations in which the program IS
required to operate, and some uses the users put itPrograms and Computer Systems to. These are mismatches between the model of the

As should be clear by now, I disagree with Fetzer's computer's environment and the computer's actual
highly pessimistic conclusion (3 above). I think that operating environment.
program verification is an effective way of getting more Modeling the environment and the user is typically
reliable programs. However, there is another problem, far more complex than modeling a computer. For
if we turn from the question of program verification example, it often involves many aspects of human ,

to the larger question of computer system correctness. psychology, to mention just one nightmare. A good:
Computer systems are not just physical objects that model of the user may need to model her beliefs about

compute abstract algorithms. They are also embedded the program and how it operates, her likely desires,
in the physical world and they interact with users. and her physical abilities. (For example, can she use
They are intended to generate real world activity. a mouse quickly and accurately?) Next to modeling
The starting assumption of the program verification this sort of stuff adequately, modeling the computer,
task is that we are given a mathematical algorithm or the solar system, is a piece of cake.
A, or perhaps some description of it, to implement. In the sort of applications of program verification
But., from the p~int of view of correctness of. the that really worry Fetzer (like air traffic control or
entIre system, thIS begs at least half the questlo~. SOl) these problems arise with a vengeance. The
The larger question of computer system correctness IS unexpected situation is an ever present danger, as is
not whether the machine implements A, but whether the unusual user. Such cases, being unanticipated by
the machine carries out the intended real world task. the model builder, often do not fit with the model. ,c'

Thus, to solve the larger problem, our mathematical There are many documented cases of such mismatches ~

models need to include not just a reliable model ([11]). And if these mismatches take place in a critical ~
of the computer, but also a reliable model of the computer system we may well not be able to go back
environment in which it is to be placed, including the and redesign the model. For we may not be around.
user (Smith [11]). In sum, I think Fetzer is correct when he points

Typically, this additional modeling is implicit in to the theoretical limitations of program verification.
the design of the algorithm. But if we are going But they're just the limitations implicit in any ap- ;{
to divide things up in this way, then a ~ull proof plied mathematics. Program verification, a branch of ~
?f computer system correctness need consls.t of not applied mathematics, is currently an extremely useful ,,'
Just a proof of program correctness, relative to a tool for improving the performance of programs, and

so of real world computers. On the other hand, proofs
. .. ". of computer system correctness are of value only to. Another motivation for writIng a ~formal specification at some . d I f

stage might be as a step toward writing the desired program. the extent that we can rely on the underlYIng mo e s 0

850 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

r

-
Computers and Mathematics

the computer and its environment. Hopefully articles [5] William M. Farmer, Dale M. Johnson, and F.
:: critical of computer system correctness methodology, Javier Thayer, "Towards a discipline for develop-

techniques, and standards will not be drowned out, ing verified software", in: James H. Burrows and
but will help to generate an improved understand- Patrick R. Gallagher, Jr., eds., Proceedings of the 9th
ing among professionals and the public of what such National Computer Security Conference, September
proofs show and what they do not show about the 15-18, 1986 at the National Bureau of Standards,
correctness of physical computers operating in the Gaithersburg, Maryland, pp. 91-98; republished in:
the real world. For only with such an understanding Rein Turn, ed., Advances in Computer System Secu-
can those outside the computer science community rity, Vol. III, Artech House, Norwood, Massachusetts,
intelligently assess the relative advantages and dangers 1988, pp. 176-183
of a given proposed use of computer systems. [6] Fetzer, James H. Program verification: The very

idea, CACM 31, 9 (September 1988) 1048-1063
[7] Fetzer, James H. Author's response to various

Bibliography letters about [6] CACM 32, 3 (March 1989) 377-381
[1] Bentley, J. Progamming Pearls, Addison-Wesley, [8] Hoare, C.A.R. An axiomatic basis for computer
1986 programming. CACM 12 (1969), 576-580
[2] Bevier, W.R., Smith, M.K, and Young, W.D. Letter .[9] Hoare, C.A.R. Mathematics of programming,
in the Technical Correspondence section of CACM 32, BYTE (August 1986), 112-149
3 (March 1989) 375-376 [10] Kreisel, G. Informal rigour and completeness
[3] DeMilio, R., Lipton, R. and Perlis, A. Social pro- proofs, Int. Colloq. Philos. Sci., 1 (1965) 138-186
cesses and proofs of theorems and programs. CACM [11] Smith, B.C. The Limits of Correctness, SIGCAS
22,5 (May 1979) 271-280 Newsletter 14,4 (December 1985) 18-26
[4] Dobson, J. and Randell, B. Program verification: [12] Wulf, W.A., Shaw, M., Hilfinger, P.N. an~
Public image and private reality, CACM 32, 4 (April Flon, L. Fundamental Structures of Computer SCI-
1989) 420-422 ence, Addison-Wesley, 1981

ALGEBRAIZABLE LOGICS
W. J. Blok and Don Pigozzi
(Memoirs of the AMS. Number 396)

I ~. Although most of the familiar logical systems are known to 1980 MathematIcs SubJect ClassIficatIons 03G99: 03645. 03655.
have an algebraic counterpart. no general and precise notion 03660. 03C05. 08C15

.. of an algebraizable logic exists upon which a systematic ISBN 0-8218-2459-7, LC 88-8130
ISSN 0065-9266

Investigation of the process of algebraization can be based 88 pages (sof1cover). January 1989
In this work. the authors propose and begin such an Individual member S8, List price $13,
investigation. Their main result is an intrinsic characterization Institutional member $10
of algebraizability in terms of the Leibniz operator a. which To order, please specify MEMO/396NA

associates to each theory T of a given deductive system 5 a ~"l~t1r"
congruence relation aT on the formula algebra. aT identifies ;' ,'?'-: ~

all formulas that cannot be distinguished from one another. on i ;~; 5
the basis of T. by any property expressible in the language ~. ~ .
of 5, The characterization theorem states that a deductive +"'/J(o \~

system 5 is algebraizable if and only if a is one-to-one All prices subject to change, Shipment will be made by surface, For
and order-preserving on the lattice of S.theorles and also air delivery add, 1st book S5. each additional book S3,maximum SIOO.
preserves directed unions. The authors illustrate these results Prepayment requIred. Order from American Mathematical Society. P.O.
with a large number of examples from modal and intuitionistic Box 1571. Annex Station. Providence. RI 02901-1571, or call toll free
logic. relevance logic. and classical predicate logic. 800-566-7774 to charge with VISA or MasterCard.

~

SEPTEMBER 1989. VOLUME 36. NUMBER 7 8&1

, .
. '. .

Computers and Mathematics

~~

Edited by Jon Barwise

. Edito~i~l notes. can correctness of executable computer programs be proved?
I start off thIs month by admItting two embarrassing lapses. But essentially everyone agrees that it cannot be proved, in the

strict mathematical sense, that a physical computer will exe-
Who developed those programs? cute a program correctly. A problem has been raised by use
I have a set of guidelines I send out to software reviewers. One of the word "proof' about program verification. There is wide
thing I forgot to mention in those guidelines was that a review agreement that program verification is (currently) part of ap-
should always indicate who developed the software. A couple plied rather than pure mathematics, but mathematicians may
of recent reviews have failed to do this, and readers have let me well think of proofs as characteristic of pure mathematics. One
know about it in no uncertain terms. I regret these omissions might, for example, predict the orbit of a satellite very accu-
and have added a new sentence to my guidelines. rately without claiming to prove that it will be in a specific

One omission, ironically, was in the review of Tarski's World small region at a future time. I suppose very few applied math-
by Mark Seligman in the November 1989 issue. It happens that ematicians or scientists would claim to prove, in the sense of
this logic coursew.are program was developed by John Etche- mathematical proof, anything about the physical world. ~:I,;c:~;
mendy ~nd ~e, wIth the support of the FAD program at Stan- If, as D?bson and Randell ,[~] well say, "the hypothesis 'this ~~.
ford Uruverslty.. .. program .wlll ;xecute c,orrectly IS one that can never be proven, 'tt~

The other was In the revIew of Explormg Small Groups by only falsIfied, and a proof of a program's correctness shows :.!~~,
Suzanne Molnar in the December 1989 issue. This program "only that certain kinds of errors are not possible", then we are :,~
was developed by Ladnor Geissinger, who also wrote the man- dealing with relatively weak, perhaps new (to mathematicians) ~"'i~j:
ual. Geissinger is Professor of Mathematics at the University of meanings of "proof' and/or "correctness," which one should be W:f::f::
North Carolina at Chapel Hill and a Fellow of the Institute for clear about. Other central mathematical notions such as equal- ~J~t;';;:;;
A.cademic Technology. He was given programming and t~ch- ity have acqui~ed new meanings in co~puting: the compute:- [1i~~:
rucal support by an IBM/UNC software development project language equation S = S:t- x, where ~ IS not 0, for example, m ~;~~,
grant. the contex.t of a su~matlon loop, mIght be understood as the ~#~;

mathematical equation S(n) = S(n - I) + x(n), while in many ~~{i-
computer language~"S + x = S" is a syntax error. ~~$

On another pOInt, actual programs are usually written in ~;:
Corres ondence higher-l~vel la~guages suc~ as Fortran or C, then translated by ~t

P a compiler or Interpreter Into a lower-level language and exe- ~;:~~j
cuted in connection with operating system software. Such sys- :: c::;t

More on proving computer correctness tems programs may in turn have been written in higher-level ;:(:';;
In the September 1989 column I wrote a piece reporting on a languages and compiled by (anothe~ or partial), compiler. Sys- ~i~;~i,,;,
debate over proofs of program correctness. I also attempted to te~s software (and hardware) provIde the envIronment about :.

shed some light on that debate by appealing to the distinction w~lch l:I°are [6] wrote: "Co~puter programming is an exact ~~,'
between real world phenomena, and mathematical models of scIence m that all the propertIes of a program and all the conse- ;;!~,
them. I analyzed the problem as a failure to distinguish carefully quences of executing it in any given environment can, in princi- 1~
between the two. pIe, be found ~ut from the text of the program itself by means of l.~':;

By and large, the response to this article has been quite posi- purel~ deductive r~asoning" [emphasis added]. Unfortunately j:~}
tive. A number of people in the program correctness community Barwlse [~] calls ~h1S a "famous qu~tat,ion" but omits the phrase (:~
have said that it somehow managed to both shed light on, and I emphas1zed, wIthout even an ellipsIs (...). Even if the mis- ".;"
cool, the controversy. By contrast, Richard Dudley of the M.I.T. quo~e was found in another secondary source, the role of the ;~~:
mathematics department writes: enV1ronment should not have been overlooked. Fetzer [5] also ~~~

mentions and criticizes the "famous passage" without noting ~;;~h . , ~"'..P " O ft o t e m1squotatlon. "..~;'
rogram Ten cation . ,. . ,. c,,'!,

B
arwl.se[l] reports d .. h ' l h Fetzer [4] was, mturn, pnmanlya reaction to DeM11lo, L1P- ",-

on a 1SCUSS1on among p I osop ers espe- d P I ' [2] .
c1.ally Fet [4] .. d h '.. ton an er 1S , who sa1d more or less that correctness of

zer , computer scIentists, an now mat ematlc1ans:

FEBRUARY 1990, VOLUME 37. NUMBER 2 123

..

~-- _1r?-.""",~'.:' . - --;: . ~ ~..- M

,,~

Computers and Mathematics ~i
~

programs was not being proved effectively in the 1970s because there was an elipsis in earlier versions of his article, but that it
people were not checking others' proofs. Fetzer thought that somehow disappeared along the way. If the missing words are
one should go further and say that proofs of program correct- replaced, the ambiguity between the real world and the mathe-
ness are not possible. For opinions in favor of such proofs both matical phenomena persists, since the term "environment" has
Fetzer [4,5] and Barwise [I] cite Hoare [6,7]. Fetzer [4] quoted two meanings. One reading would take it to be the actual envi-
selectively from Hoare [7], who did write: ronment in which a program is run on a physical computer. The

"I hold the opinion that the construction of computer pro- other usage is where environments are certain abstract mathe-
grams is a mathematical activity like the solution of differential matical objects. Both are quite common in computer science.
equations, that programs can be derived from their specifica- In terms of my analysis of the larger debate, the term "environ-
tions through mathematical insight, calculation, and proof, us- ment" is itself ambiguous between the physical environment,
ing algebraic laws as simple and elegant as those of elementary and a mathematical model of it, or rather, of certain aspect of
arithmetic. .. . Computers are mathematical machines. .. com- it omitted from the model of the computer itself. If we interpret
puter programs are mathematical expressions... a program- all this in terms of the real thing, then Fetzer's argument applies
ming language is a mathematical theory. .. programming is a and proving programs correct is impossible. If we interpret it as
mathematical activity." applying to the mathematical model, then it is possible, but only

But neither Fetzer nor Barwise tells us that Hoare [7] went as useful as the fit between the model and the real thing. Which
on as follows: Hoare had in mind, if he was in fact clear about the distinction,

"HOWEVER. .. [emphasis in original] does not seem to important. For the point of my piece was not
These are general philosophical and moral principles, but to attack or defend Hoare or Fetzer or anyone else, but to try to

all the actual evidence is against them. Nothing is as I have illuminate a controversial special case of applied mathematics.
described it, neither computers nor programs nor programming
languages nor even programmers."

I'm afraid Barwise and Fetzer have done us a disservice by Uses of computers in mathematics
their incomplete quotations. But at the beginning of [4], Fet- This portion of the column is devoted to short articles detailing
zer wrote "There are those, such as Hoare... who maintain ways mathematicians have found to use computers in some as-
that computer programming should strive to become more like pect of mathematics: teaching, research, writing, Readers
mathematics." That, I believe, is a fair summary of what Hoare are invited to submit articles to the editor: Jon Barwise, CSLI,
was actually saying, and it may be arguable, but in full and in Ventura Hall, Stanford, CA 94305, or in ~TEX by email at:
context I think Hoare was addressing a question of what will barwise@csli.stanford.edu.
work best in the future for computer programmers. Hoare [7],
even according to one quote given in Fetzer [4, p. 1058] (but not
Fetzer [5] or Barwise [I]) was negative about proofs of program
correctness in typical current environments.

~here ar~ ~athematically inter~sting ~nd ~ifficult issu.es in Com puters in Mathematicsprecisely denvmg a program from its specificatIons. Even If the
specification calls for evaluating a given polynomial, the results at Lafayette College
are non-unique since in current computer arithmetic addition, . .
done to a fixed number of binary or decimal places, is not as- Clifford A. Relter and Thomas R. Yuster
sociative. It is unfortunate that these real issues were obscured Lafayette College
in the philosophical discussion.

The computational environment at Lafayette is different
References than at Grinnel and the University of Wisconsin-Madison

I. Barwise, J. Mathematical proofs of computer system correct- as described in this column by Gene Herman in March
ness. Notic~s 36 (198~), 844-851. .. 1989 and Rod Smart in May/June 1989. Yet there are

2. DeMillo, R., LIpton, R., and Perl1s, A. SocIal processes some obvious similarities in the hardware and instruc-
and proofs of theorems and programs. CACM 22 #5 (May 1979), tional use. You will see that our department is active
271-280. h.

b d h3. Dobson, J. and Randell, B. Program verification: Public m USIng computIng m teac mg ut ?es not ave any
image and private reality. CACM 32, 4 (April 1989) 420-422. gra~d progra.ms (yet). We have acquIred m~s~ of ~ur

4. Fetzer, J. H. Program verification: the very idea. CACM equIpment WIth support from the college admInIstratIon
31 (1988) 1048-1063. and Pennsylvania state grants. The department has been

5. Fetzer, J. H. (letter). Notices 36 (1989) 1352-1353. active in letting the administration know its needs.
6. Hoare, C.A.R. An axiomatic basis for computer program- Lafayette College has just under 2000 full time

ming. CACM 12 (1969), 576-580, 583. undergraduate students and a small part time program
7. Hoare, C.A.R. Mathematics of programming. Byte, Au- but no graduate program. Engineering accounts for 20-

gust 1986, 115-121. 30% of the student body. Computer Science is a separate

Reply: I plead guilty to misquoting Hoare, omitting the phrase department. The mathematics department has 16 full
"in any given environment." I simply took the quote from Fet- time faculty. About ten sections of the scientific calculus
zer's article without checking the original. Fetzer tells me that sequence are taught each semester with 24 students per

124 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

I

I "

