Rolf Herken (ed.)

The Universal Turing Machine
A Half-Century Survey

Second Edition
1995

SPRINGER-VERLAG
Wien New York
Kreisel, G.
1972 Which number theoretic problems can be solved in recursive progressions on \(\Pi^1_1 \)-paths through \(O \)? J. Symb. Log. 37 (1972) 311–334.

Paris, J., and L. Harrington

Post, E.L.

Simpson, S.G.

Takeuti, G.

Turing, A.M.
1939 Systems of logic based on ordinals. P. Lond. Math. Soc. (2) 45 (1939) 161–228 (reprinted in Davis 1965).

Visser, A.

Weyl, H.

Mathematical Logic and the Origin of Modern Computers*

Martin Davis

The very word computer immediately suggests one of the main uses of these remarkable devices: an instrument of calculation. But it is a matter of widespread experience that modern computers can be used for many purposes having no evident connection with numerical computation. The main thesis of this article is that the source of this generalized conception of the scope of computers is to be found in the vision of a computer as an engine of logic implicit in the abstract theory of computation developed by mathematicians.

The connection between logic and computing is apparent even from the everyday use of language: the English word "reckon" means both to calculate and to conclude. Without trying to understand this connection in any very profound manner, we can certainly see that computation is a (very restricted) form of reasoning. To see the connection in the opposite direction, imagine our seeking to demonstrate to a skeptic that some conclusion follows logically from certain assumptions. We present a "proof" that our claim is correct, only to be faced by the demand that we demonstrate that our proof is correct. If we then attempt a proof that our previous "proof" was correct, we quickly are faced with an infinite regress. The way out that has been found is to insist on a purely algorithmic criterion for logical correctness—a proof is correct if it proceeds according to rules whose correct application can be verified in a purely computational manner.

There are many examples of important concepts and methods first introduced by logicians which later proved to be important in computer science. Tracing the paths along which some of these ideas found their way from theory to practice is a fascinating (and often frustrating) task for the historian of ideas. The subject of this paper is Alan Turing's discovery of the universal (or all-purpose) digital computer as a mathematical abstraction. This concept was introduced by Turing as part of

* This paper was first published in Studies in the History of Mathematics, ©1987 by The Mathematical Association of America, and is reprinted here with their permission.
his solution to a problem that David Hilbert had called the "principal problem of mathematical logic" (Hilbert and Ackermann 1928). We will try to show how this very abstract work helped to lead Turing and John von Neumann to the modern concept of the electronic computer.

But first, before discussing the work of Alan Turing, we will see how some of the underlying themes of computer science had already appeared in the seventeenth century in the work of G.W. Leibniz (1646–1716).

1. Leibniz’ Dream

It is striking to note the many different ways in which Gottfried Leibniz anticipated what later came to be central concerns in computer science. He made an important invention, the so-called Leibniz’ wheel, which he used as early as the 1670s to build a mechanical calculating machine that could add, subtract, multiply, and divide. He showed keen awareness of the great advantages to be expected from the mechanization of computation. Thus, Leibniz said of his calculator:

And now that we may give final praise to the machine we may say that it will be desirable to all who are engaged in computations – managers of financial affairs, merchants, surveyors, geographers, navigators, astronomers… But limiting ourselves to scientific use, we can say that the old geometric and astronomical tables could be corrected and new ones constructed… it will pay to extend as far as possible the major Pythagorean tables: the table of squares, cubes, and other powers; and the tables of combination, variations, and progressions of all kinds… Also the astronomers surely will not have to continue to exercise the patience which is required for computation… For it is an extremely important to have a machine to laborious like slaves in the labor of computation. (Smith 1929, pp. 183–181)

Leibniz was one of the first (Ceruzzi 1983, p. 40, footnote 11) to work out the properties of the binary number system, which of course has turned out to be fundamental for computer science. He proposed the development of a calculus of reason or calculus ratiocinator and actually proceeded to develop what amounts to a fragment of Boolean algebra (Parkinson 1966, pp. 132–133; Davis 1983, pp. 2–3). Finally, there was Leibniz’ amazing program calling for the development of a universal language – a lingua characteristica – which would not only incorporate the calculus ratiocinator, but would also be suitable for communication and would include scientific and mathematical knowledge. Leibniz hoped to mechanize much of thought, saying that the mind “will be freed from having to think directly of things themselves, and yet everything will come out correctly.” (Parkinson 1966, p. xvii). Leibniz imagined problems in human affairs being handled by a learned committee sitting around a table and saying (Kneale and Kneale 1962, p. 328); “Calculusmus i.e., “Let us calculate!”

The importance with which Leibniz regarded these projects is clear from his assessment:

For if praise is given to the men who have determined the number of regular solids – which is of no use, except to show how pleasant it is to construct – and if it is thought to be an exercise worthy of a mathematical genius to have brought to light the more elegant properties of a conchoid of cissoid, or some other figure which barely has any use, how much better will it be to bring under mathematical laws human reasoning, which is the most excellent and useful thing we have. (Parkinson 1966, p. 105)

It is at times amusing to imagine some great person from a past age reacting to one of the marvels of the contemporary world. Confronted by a modern computer, Leibniz would surely have been awestruck by the wonders of twentieth century technology. But perhaps he would have been better equipped than any other seventeenth century person to comprehend the scope and potential of these amazing machines.

2. Alan Turing’s Analysis of the Concept of Computation

A century and a half ago, Charles Babbage already had conceived of an all-purpose automatic calculating machine, his proposed but never constructed analytical engine. Babbage’s device was intended to carry out numerical computations of the most varied kind that arise in algebra and mathematical analysis. To emphasize the power and scope of his engine, Babbage remarked facetiously that “it could do everything but compute country dances” (Huskey and Huskey 1980, p. 300). A contemporary computer expert seeking a figure of speech to bring home to a popular audience the widespread applicability of computers would select a different example. For we know that today’s computers can perfectly well be programmed to compose country dances (although presumably not of the finest quality). While for Babbage it was self-evident that calculating machines could not be expected to compose dances, it does not strike us today as being at all out of the question. Clearly, our very concept of what constitutes “computation” has been altered drastically. We shall see how the modern view of computation developed out of the work in mathematical logic of Alan Turing.

Babbage never succeeded in constructing his engine, in large part because of the limitations of nineteenth century technology. In fact, it was only with some of the electro-mechanical calculators that began to be built during the 1930s (for example, by Howard Aiken at Harvard University) that Babbage’s vision was fully realized. But during the 1930s and 1940s no one involved with this work suggested the possibility of designing an automatic computer that not only could do everything that Babbage had envisioned, but also could be used for commercial purposes, or
for that matter, to "compose country dances". Even as late as 1956, Howard Aiken, himself a pioneer of modern computing, could write:

If it should turn out that the basic logics of a machine designed for the numerical solution of differential equations coincide with the logics of a machine intended to make bills for a department store, I would regard this as the most amazing coincidence that I have ever encountered. (Ceruzzi 1985, p. 43)

If Aiken had grasped the significance of a paper by Alan Turing that had been published two decades earlier (Turing 1936-7), he would never have found himself in the position of making such a statement only a few years before machines that performed quite well at both of the tasks he listed were readily available.

Alan Mathison Turing was born on June 23, 1912 in London. His father was a civil servant in India, and Turing spent most of his childhood away from his parents.1 After five years at Sherborne, a traditional English public school, he was awarded a fellowship to King's College at Cambridge University. Turing arrived at Cambridge in 1931. This was just after the young logician Kurt Gödel had startled the mathematical world by demonstrating that for any formal system adequate for elementary number theory, arithmetic assertions could be found that were not decidable within that formal system. In fact Gödel had even shown that among these "undecidable propositions" was the very assertion that the given formal system itself is consistent. This last result was devastating to Hilbert's program in the foundations of mathematics, which called for proving the consistency of more and more powerful formal systems using only very restricted proof methods, methods that Hilbert called finitistic. John von Neumann was probably the most brilliant of the young people who had been striving to carry out Hilbert's program. In addition to his contributions to Hilbert's program, von Neumann's intense interest in logic and foundations is also evidenced by his early papers on axiomatic set theory (von Neumann 1925). However, after Gödel's discovery, von Neumann stopped working in this field. In the spring of 1935, Turing attended a course of lectures by the topologist M.H.A. Newman on Foundations of Mathematics in which Hilbert's program and Gödel's work were among the topics discussed. In particular, Newman called the attention of his audience to Hilbert's Entscheidungsproblem, a problem which Hilbert had called the "principal problem of mathematical logic".

In 1928, a little textbook of logic by Hilbert and Wilhelm Ackermann, entitled Grundzüge der theoretischen Logik, had been published. The book emphasized first order logic, the logic of and, or, not, if . . . then, for all, and there exists, which the authors called the engere Funktionenkalkül. The authors showed how the various parts of mathematics could be formalized within first order logic, and a simple set of

1 In his authoritative biography, Andrew Hodges (1983, p. 132) quotes Turing as having, on at least one occasion, attributed his homosexuality to his childhood in boarding schools in England far from his parents in India. (Hodges himself makes it clear that he does not accept this explanation.)

rules of proof was given for making logical inferences. They noted that any inference that can be carried out according to their rules of proof is also valid, in the sense that in any mathematical structure in which all the premises are true, the conclusion is also true. Hilbert and Ackermann then raised the problem of completeness: if an inference is valid (in the sense just explained), would it always be possible, using their rules of proof, to obtain the conclusion from the premises? This question was answered affirmatively two years later by Gödel in his doctoral dissertation at the University of Vienna. Another problem raised in the Grundzüge by Hilbert and Ackermann was the Entscheidungsproblem, the problem of finding an algorithm to determine whether a given proposed inference is valid. By the completeness theorem from Gödel's dissertation, this problem is equivalent to seeking an algorithm for determining whether a particular conclusion may be derived from certain premises using the Hilbert-Ackermann rules of proof. The Entscheidungsproblem was called the "principal problem of mathematical logic", because an algorithm for the Entscheidungsproblem could, in principle, be used to answer any mathematical question: it would suffice to employ a formalization in first-order logic of the branch of mathematics relevant to the question under consideration. Alan Turing's attention was drawn to the Entscheidungsproblem by Newman's lectures, and he soon saw how to settle the problem negatively. That is, Turing showed that no algorithm exists for solving the Entscheidungsproblem. The tools that Turing developed for this purpose have turned out to be absolutely fundamental for computer science.

If a positive solution of the Entscheidungsproblem would lead to algorithms for settling all mathematical questions, then it must follow that if there is even one problem that has no algorithmic solution, then the Entscheidungsproblem itself must have no algorithmic solution. Now, the intuitive notion of algorithm serves perfectly well when we only need to verify that some proposed procedure does indeed constitute a positive solution to a given problem. However, remaining at this intuitive level, we could not hope to prove that some problem has no algorithmic solution. In order to be certain that no algorithm will work, it would appear necessary to somehow survey the class of all possible algorithms. This is the task that Turing set himself.

Turing began with a human being who would carry out the successive steps called for by some algorithm; that is, Turing proposed to consider the behavior of a "computer". Here the word computer refers to a person carrying out a computation; that was how Turing (and everyone else) used the word in 1935. Turing then proceeded (Turing 1936-7), by a sequence of simplifications, each of which could be seen to make no essential difference, to obtain his characterization of computability.

Turing's first simplification was to assume that "the computation is carried out on one-dimensional paper, i.e., on a tape divided into squares" since "it will be agreed that the two-dimensional character of paper is no essential of computation". Turing continued:
The fallacy in this argument lies in the assumption that β is computable. It would be true if we could enumerate the computable sequences by finite means, but the problem of enumerating computable sequences is equivalent to the problem of finding out whether a given finite set of quintuples determines a circle-free machine, and we have no general process for doing this in a finite number of steps. In fact, by applying the diagonal process argument correctly, we can show that there cannot be any such general process.

In other words if there were such a "general process", it could be used to delete non-circle-free machines from an enumeration of all possible finite sets of quintuples, thereby producing an enumeration of "the computable sequences by finite means". But then β, as defined above, would be computable, and we would be led to a contradiction. The only way out is to conclude that "there cannot be any such general process." The problem of determining whether the Turing machine defined by a given finite set of quintuples is circle-free has no algorithmic solution! Of course, in this form the result depends on accepting Turing’s analysis of the computation process. However, it is possible to state the result in the form of a rigorously proved theorem about Turing machines. For this purpose, let us imagine the very quintuples constituting a Turing machine themselves placed on a Turing machine tape. We could then seek to construct a Turing machine M which, given a set of quintuples defining any particular Turing machine N on its tape, will eventually halt with an affirmative or a negative message on its tape, according as N is or is not circle-free. Turing’s argument can then be used to prove that there cannot be such a Turing machine M. (To make this entirely precise, it is necessary to be explicit as to how the quintuples, as well as the affirmative and negative output messages, are to be coded on the tape in terms of a finite alphabet. But this causes no difficulty.)

Turing next showed that there is no algorithm for the:

Blank Tape Printing Problem: To determine whether a given Turing machine, starting with a blank tape, will ever print some particular symbol, say \dollar.

Turing’s proof of this result proceeds by showing that if there were such an algorithm, then there must also be an algorithm for determining whether a given Turing machine is circle-free. This argument is a bit complicated, and we outline a simpler proof that uses another diagonalization. First we show that there is no algorithm for the:

General Printing Problem: To determine whether a given Turing machine, starting with a given string of symbols on its tape, will ever print \dollar.

Suppose there were an algorithm for this problem. Then, in particular, there would be an algorithm to determine whether a given Turing machine, starting with its own set of quintuples on its tape, will ever print \dollar. So, it would follow from Turing’s analysis that a Turing machine M could be constructed that would respond to a set of quintuples on its tape by printing \dollar if and only if the machine defined by that set of quintuples *never* prints \dollar when started with its own set of quintuples on its tape. Now, what happens when M is started with its own set of quintuples on its tape? It eventually prints \dollar if and only if it never prints \dollar! This contradiction shows that there can be no algorithm for the general printing problem. Finally, if there were an algorithm for the blank tape printing problem, it could also be used to solve the general printing problem. Namely, given the quintuples constituting a Turing machine M together with the string of symbols σ on its tape, we can construct a machine N that, beginning with a blank tape, first prints the string σ, and then behaves exactly like M. So N will eventually print \dollar beginning with a blank tape if and only if M will eventually print \dollar beginning with the string σ on its tape.

Turing used the fact that there is no algorithm for the blank tape printing problem to show that Hilbert’s Entscheidungsproblem is likewise unsolvable. With each Turing machine M, he associated a formula $\alpha(M)$ of first-order logic which, roughly speaking, describes the behavior of M starting with a blank tape. He constructed a second formula β which has the interpretation that the symbol \dollar eventually appears on the tape. It was then not difficult to see that β follows from $\alpha(M)$ by the Hilbert-Ackermann rules if and only if the Turing machine M eventually prints \dollar. Thus, an algorithm for the Entscheidungsproblem would lead to an algorithm for the blank tape printing problem.

The notion of Turing machine was developed in order to solve Hilbert’s Entscheidungsproblem. But it also enabled Turing to realize that it was possible to conceive of a single machine that was capable of performing all possible computations. As Turing expressed it: "It is possible to invent a single machine which can be used to compute any computable sequence." Turing called such a machine universal. A Turing machine U was to be called universal if, when started with a (suitably coded) finite set of quintuples defining a Turing machine M on its tape, U would proceed to compute the very same sequence of 0’s and 1’s that M would compute (beginning with an empty tape). Now, intuitively speaking, there clearly exists an algorithm that does what is required of the universal machine U: the algorithm just amounts to carrying out the instructions expressed by M’s quintuples. Thus, the existence of a universal Turing machine is a consequence of Turing’s analysis of the concept of computation. On the other hand, it is a rather implausible consequence. Why should we expect a single mechanism to be able to carry out algorithms for "the numerical
solution of differential equations" as well as those needed to "make bills for a department store". However, Turing did not simply depend on the validity of his analysis. He proceeded to produce in detail the actual quintuples needed to define a universal machine. Thus, in the light of the apparent implausibility of the existence of such a machine, Turing was entitled to regard his success in constructing one as a significant vindication of his analysis. The universal machine \(U \) actually given by Turing can be thought of as being specified by what is nowadays called an \textit{interpretative} program. \(U \) operates by scanning the coded instructions (that is, quintuples) on its tape and then proceeding to carry them out. Of course, many interpretative programs have been constructed in recent years to make it possible to run programs written in such languages as \textsc{basic}, \textsc{lisp}, \textsc{snobol}, and \textsc{prolog}, but Turing's was the first.

Turing's analysis provided a new and profound insight into the ancient craft of computing. The notion of computation was seen as embracing far more than arithmetic and algebraic calculations. And at the same time, there emerged the vision of universal machines that "in principle" could compute everything that is computable. Turing's examples of specific machines were already instances of the art of programming; the universal machine in particular was the first example of an interpretative program. The universal machine also provided a model of a "stored program" computer in which the coded quintuples on the tape play the role of a stored program, and in which the machine makes no fundamental distinction between "program" and "data". Finally, the universal machine showed how "hardware" in the form of a set of quintuples thought of as a description of the functioning of a mechanism can be replaced by equivalent "software" in the form of those same quintuples in coded form "stored" on the tape of a universal machine.

While working out his proof that there is no algorithmic solution to the Entscheidungsproblem, Turing did not suspect that similar conclusions were being reached on the other side of the Atlantic. In fact, Newman had already received the first draft of Turing's paper, when an issue of the American Journal of Mathematics arrived in Cambridge containing an article by Alonzo Church of Princeton University, entitled "An Unsolvable Problem of Elementary Number Theory". In this paper, Church had already shown that there were algorithmically unsolvable problems. His paper did not mention machines, but it did point to two concepts, each of which had been proposed as explications of the intuitive notion of computability or, as Church put it, 'effective calculability'. The two concepts were \(\lambda \)-definability, developed by Church and his student Stephen Kleene, and general recursiveness, proposed by Gödel in lectures at the Institute for Advanced Study in Princeton during the spring of 1934) as a modification of an idea of J. Herbrand. The two notions had been proved to be equivalent, and Church's unsolvable problem was in fact unsolvable with respect to either equivalent notion. Although in this paper Church had not drawn the conclusion that Hilbert's Entscheidungsproblem was itself unsolvable with respect to these notions, volume 1 (1936), number 1 of the new quarterly Journal of Symbolic Logic contained a brief note by Church in which he did exactly that. A later issue of the same journal contained an article by Emil Post, taking cognizance of Church's work, but proposing a formulation of computability very much like Turing's. Turing quickly showed that his notion of computability was equivalent to \(\lambda \)-definability, and he decided to attempt to spend some time in Princeton.

Thus, much of what Turing had accomplished amounted to a rediscovery of what had already been done in the United States. But his analysis of the notion of computation and his discovery of the universal computing machine were entirely novel, going beyond anything that had been done in Princeton. In particular, although Gödel had remained unconvinced by the evidence available in Princeton, that Church's proposal to identify effective calculability with the two equivalent proposed notions was correct, Turing's analysis finally convinced him.

Turing was at Princeton for two academic years beginning in the summer of 1936. Formally, he was a graduate student, and indeed he did complete the requirements for a doctorate with Alonzo Church as his thesis adviser. His doctoral dissertation was his deep and important paper Turing 1939, in which he studied the effect on Gödel undecidability of transfinite sequences of formal systems of increasing strength. This paper also introduced the key notion of an oracle, which made it possible to classify unsolvable problems, and which is playing a very important role in current research in theoretical computer science. Some writers have been confused about the circumstances under which Turing was a graduate student at Princeton, and have assumed that Turing's earlier work on computability had been done at Princeton under Church's supervision. A circumstance that may have helped lead to this confusion is that the published account (Turing 1936–7) of the work on computability concludes with an appendix (in which a proof is outlined of the equivalence of Turing's concept of computability with Church's \(\lambda \)-definability) dated August 28, 1936 at "The Graduate College, Princeton University, New Jersey, U.S.A.".

6 For a discussion of some of the historical issues involved in these developments, as well as references, see Davis 1982.
7 Thus suppose that we could somehow come to possess an oracle or "black box" which can tell us for a given set of quintuples whether the Turing machine defined by that set of quintuples is circle-free. Then it is not difficult to show that it is possible to construct a Turing machine which can solve either of the two unsolvable printing problems if only the machine is permitted to ask the oracle questions and make use of the answers. However, this will not work in the other direction. This is expressed by saying that the circle-free problem is of a higher degree of unsolvability than the printing problems.
8 Many important open questions in computer science ask whether certain inclusions between classes of sets of strings are proper. (The famous \(P = NP \) problem is of this character.) In many cases (including the \(P = NP \) problem), although the original question remains unsolved, it has proved possible to obtain answers when the problem is modified to permit access to suitable oracles.
9 Actually even this appendix must have been completed before Turing left England. Turing's departure was on September 23.
Fine Hall10 in 1936 housed not only the mathematics faculty of Princeton University, but also the mathematicians who were part of the recently established Institute for Advanced Study. The great influx to the United States of scientists fleeing the Nazi regime had begun. The concentration of mathematical talent at Princeton during the 1930’s came to rival and then surpass that at Göttingen, where David Hilbert held sway. Among those to be seen in the corridors of Fine Hall were Solomon Lefschetz, Hermann Weyl, Albert Einstein, and ... John von Neumann.11 During Turing’s second year at Princeton, he held the prestigious Procter Fellowship. Among the letters of recommendation written in support of his application was the following:

June 1, 1937

Sir,

Mr. A.M. Turing has informed me that he is applying for a Proctor [sic] Visiting Fellowship to Princeton University from Cambridge for the academic year 1937-1938. I should like to support his application and to inform you that I know Mr. Turing very well from previous years: during the last term of 1935, when I was a visiting professor in Cambridge, and during 1936-1937, which year Mr. Turing has spent in Princeton, I had an opportunity to observe his scientific work. He has done good work in branches of mathematics in which I am interested, namely: theory of almost periodic functions, and theory of continuous groups. [Emphasis added]

I think that he is a most deserving candidate for the Proctor [sic] Fellowship, and I should be very glad if you should find it possible to award one to him.

I am, Respectfully, John von Neumann (Hodges 1983, p. 131)

Thus, as late as June 1937, either von Neumann was unaware of Turing’s work on computability, or he did not think it appropriate to mention it in a letter of recommendation. There have been tantalizing rumors of important discussions between the two mathematicians about computing machinery, during the Princeton years, or later, during the Second World War. But there does not appear to be any real evidence that such discussions ever took place.12 However, von Neumann’s friend and collaborator Stanislaw Ulam, in a letter to Andrew Hodges (Hodges 1983, p. 145), mentioned a game that von Neumann had proposed during the summer of 1938 when he and Ulam were traveling together in Europe; the game involved “writing down on a piece of paper as big a number as we could, defining it by a method which indeed has something to do with some schemata of Turing’s.”13 Ulam’s letter also stated that “von Neumann mentioned to me Turing’s name several times in 1939 in conversations, concerning mechanical ways to develop formal mathematical systems.” On the basis of Ulam’s letter it seems safe to conclude that, by the outbreak of the Second World War in September 1939, von Neumann was well aware of Turing’s work on computability and regarded it as important.

When did Turing begin to think about the possibility of constructing a physical device that would be, in some appropriate sense, an embodiment of his universal machine? According to Turing’s teacher, M.H.A. Newman, this was in Turing’s mind from the very first. In an obituary article in The Times, Newman wrote:

The description that he then gave of a "universal" computing machine was entirely theoretical in purpose, but Turing’s strong interest in all kinds of practical experiment made him even then interested in the possibility of actually constructing a machine on these lines. (quoted in Hodges 1983, p. 545)

In Princeton, Turing’s “practical” interests included a developing concern with cryptanalysis. Possibly in this connection, he designed an electro-mechanical binary multiplier, and gaining access to the Physics Department graduate student machine shop,14 he constructed various parts of the device, building the necessary relays himself. Another of Turing’s interests during this period – an interest which combined the theoretical with practical computation – was the famous Riemann Hypothesis concerning the distribution of the zeros of the Riemann \(\xi \)-function. Shortly after Turing returned to England in the summer of 1938, he applied for and was granted \$40 to build a special purpose analogue computer for computing Riemann’s \(\xi \)-function,15 which Turing hoped to use to test the Riemann hypothesis numerically (Hodges 1983, pp. 138-140, 155-158). But even as Turing was beginning serious work on this machine, the Second World War intervened and moved him in quite another direction. The \(\xi \)-function machine was never completed.

10 Fine Hall in 1936 (and indeed through the 1950’s) was a low-level attractive red brick building. The building where Princeton’s mathematics department is housed today is also called Fine Hall; it is visible as a concrete tower from Highway US 1, a mile away.

11 Kurt Gödel, who had lectured at the Institute for Advanced Study during the spring of 1934, was unfortunately not in Princeton during Turing’s stay. Gödel left Princeton in the fall of 1935 and did not return until after the Second World War had begun.

12 In the doctoral dissertation Aspray 1980, (pp. 147-148) there is a reference to discussions between Turing and von Neumann at this time, on the question of whether “computing machines could be built which would adequately model any mental feature of the human brain”. Aspray based his account on an interview with J.B. Rosser. However, in a conversation with the present author, Aspray explained that Rosser had not claimed to have himself overheard such discussions, and that Rosser had been unable to remember his source. Aspray indicated that he no longer believes that such a conversation actually occurred. In a recent letter, Alonzo Church indicates that he neither recalled nor could find any record of such “consultations”. See also Randell 1972.

13 This sounds very much as though von Neumann had anticipated the important Chaitin-Kolmogorov notion of descriptive complexity.

14 The Palmer Physics Laboratory was located next door to Fine Hall – there was even a convenient passageway joining the two buildings.

15 The design of this computer was based on that of a machine in Liverpool which was used to predict the tides.
3. To Build a Brain

Turing spent the war years at Bletchley Park, a country mansion that housed Britain's brilliant group of cryptanalysts. The Germans had developed improved versions of a commercial encrypting machine, the Enigma. The task of breaking the Enigma code fell to the group at Bletchley Park. They were given a head start in their task by having access to the work of a group of Polish mathematicians who had succeeded with an earlier and considerably simpler version of the Enigma. Building on this work, Turing and Gordon Welchman (an algebraic geomenter from Cambridge) progressed to the point where machines, called Bombes (the name first used by the Poles for their much more primitive device) could be built to decode everyday German military communications. Naval communications were Turing's special province, and by the summer of 1941, the information derived from the Bombes enabled the British Admiralty to defeat the German submarine offensive against Atlantic shipping that had been threatening to strangle a beleaguered Britain (Welchman 1982; Hodges 1983, pp. 160-210). 16 But this great success was a precarious one. It was clear that if the Germans introduced more complexity into their procedures, the Bombe would be overwhelmed. And so, more ambitious machines (which indeed turned out to be necessary) were constructed: first the Heath Robinson series, and later the Colossus. The latter, constructed in 1943 under the direct supervision of M.H.A. Newman, used vacuum tube circuits to carry out complex Boolean computations very rapidly. The Colossus contained 1500 tubes and was built in the face of skepticism on the part of the engineers that so many vacuum tubes could work together without a failure, long enough to get useful work done.

Thus, when the war ended, Turing had a solid basic knowledge of electronics, and was aware that large scale computing machines could be constructed using electronic circuits. The significance for Turing of this practical knowledge can not be fully grasped without taking into account the new conceptual framework for thinking about computing to which his work on computability had led him. For Turing had been led to conclude that computation was simply carrying out the steps in some "rule of thumb" process (as Turing expressed it in an address to the London Mathematical Society (Turing 1947, p.107)). A "rule of thumb" process is to be understood as one which can be carried out simply by following a list of unambiguous instructions referring to finite discrete configurations of whatever kind. Turing's work had also shown that, without loss of generality, one could restrict oneself to instructions of an extremely simple kind. Finally, it was possible to construct a single mechanical device capable, in principle, of carrying out any computation whatever. "It can be shown that a single machine ... can be made to do the work of all" (Turing 1947, p.112). As exciting as this prospect must have appeared, it was only part of Turing's remarkable vision. Turing dared to imagine not only that computation encompassed far more than mere calculation, but that it actually included the human mental processes that we call "thought". He was interested in much more than a machine capable of very rapid computation; Alan Turing wanted to build a brain. This vision had been the subject of much discussion at Bletchley Park, where Turing focused on chess as an example of human "thought" that should be capable of mechanization. The full scope of Turing's thought was only exposed to the public later, in Turing 1947 and in his new classical essay Turing 1950. In 1947 Turing was already speaking of circumstances in which "one is obliged to regard the machine as showing intelligence. As soon as one can provide a reasonably large memory capacity it should be possible to experiment along these lines" (Turing 1947, p.123). As we shall see, Turing was eager to help build such machines. But for a second time, Turing's professional life was profoundly affected by developments in the Western Hemisphere.

4. Von Neumann and the Moore School

As has already been noted, by the summer of 1938 von Neumann was very much aware of Turing's work on computability. There is also evidence that, early on, he perceived that Turing's work had implications for the practice of computation. A wartime colleague of von Neumann recalled that "in about 1943 or 44 von Neumann was well aware of the fundamental importance of Turing's paper of 1936 ... and at his urging I studied it ... he emphasized ... that the fundamental conception is owing to Turing" (Hodges 1983, pp.145, 304). Herman Goldstine (who was von Neumann's close collaborator) said, "There is no doubt that von Neumann was thoroughly aware of Turing's work ..." (Goldstine 1972, p.174).

As with Turing, von Neumann's wartime work involved large-scale computation. But, where the cryptoanalytic work at Bletchley Park emphasized the discrete combinatorial side of computation, so in tune with Turing's earlier work, it was old-fashioned, heavy, number-crunching that von Neumann needed. Although he had tried to inform himself about new developments in computational equipment, von Neumann learned of the ENIAC project quite fortuitously on meeting the young mathematician Herman Goldstine at a railway station during the summer of 1944.
Von Neumann quickly became a participant in discussions with the ENIAC group at the Moore School in Philadelphia.

The Colossus with its 1500 vacuum tubes was an engineering marvel. The ENIAC with 18,000 tubes was simply astonishing. The conventional wisdom of the time was that no such assemblage could do reliable work; it was held that the mean free path between vacuum tube failures would be a matter of seconds. It was the chief engineer on the ENIAC project, John Prosper Eckert, Jr., who was largely responsible for the project’s success. Eckert insisted on extremely high standards of component reliability. Tubes were operated at extremely conservative power levels, and the failure rate was kept to three tubes per week. The ENIAC was an enormous machine, occupying a large room. It was a decimal machine and was programmed by connecting cables to a plugboard (Burks and Burks 1981), rather like an old-fashioned telephone switchboard.

By the time that von Neumann began meeting with the Moore School group, it was clear that there were no important obstacles to the successful completion of the ENIAC, and attention was focused on the next computer to be built, tentatively called the EDVAC. Von Neumann immediately involved himself with the problems of the logical organization of the new machine. As Goldstine (1972, p. 186) recalls, "Eckert was delighted that von Neumann was so keenly interested in the logical problems surrounding the new idea, and these meetings were scenes of greatest intellectual activity." Goldstine comments:

This work on the logical plan for the new machine was exactly to von Neumann’s liking and precisely where his previous work on formal logics [sic] came to play a decisive role. Prior to his appearance on the scene, the group at the Moore School concentrated primarily on the technological problems, which were very great; after his arrival he took over leadership on the logical problems. (Goldstine 1972, p. 188)

A key idea emphasized in the meetings was that any significant advance over the ENIAC would require a substantial capacity for the internal storage of information. This was because communication with the exterior would be at speeds far slower than the internal electronic speeds at which the computer could function, and therefore constituted a potential bottleneck. Once again, John Eckert played a crucial role. He had previously shown how to modify a device called a delay line (originally developed by the physicist W.B. Shockley, who later invented the transistor) so as to be a working component of radar systems. These delay lines (which stored information in the form of a vibrating tube of mercury) were just what was needed.

The communication bottleneck just mentioned would be evident in the case of any computation involving the manipulation of large quantities of data. But it was even more crucial for the instructions that the computer would carry out. Indeed, it would make little sense for a computer to produce the results of a calculation rapidly, only to wait idly for the next instruction. The solution was to store the instructions internally with the data; what has come to be called the "stored program concept".

The computers of the postwar period differed from previous calculating devices in having provision for internal storage of programs as well as data. But they were different in another more fundamental way. They were conceived, designed, and constructed, not as mere automatic calculators, but as engines of logic, incorporating the general notion of what it means to be computable and embodying a physical model of Turing’s universal machine. Whereas there has been a great deal of discussion concerning the introduction of the "stored program concept", the significance of this other great, but rather subtle, advance has not been fully appreciated. In fact, the tendency has been to use the single term "stored-program concept" to include all of the innovations introduced with the EDVAC design. This terminological confusion may well be responsible, at least in part, for the fact that there has been so much acrimony about who deserves credit for the revolutionary advances in computing which took place at this time (see for example the report Aspray 1982).

The key document in which this new conception of computer first appeared was the draft report von Neumann 1945 which quickly became known as the EDVAC Report. This report never advanced beyond the draft stage and is quite evidently incomplete in a number of ways. Yet it was widely circulated almost at once and was very influential. In fact the conception of computing machine it embodies has come to be known as the "von Neumann architecture". One element of controversy, which will probably never be fully resolved, is the question of how much of the EDVAC report represented von Neumann’s personal contribution. Although Eckert and his consultant J.W. Mauchly later denied that von Neumann had contributed very much, shortly after the report appeared they wrote as follows:

During the latter part of 1944, and continuing to the present time, Dr. John von Neumann ... has fortunately been available for consultation. He has contributed to many discussions on the logical controls of the EDVAC, has prepared certain instruction codes, and has tested these proposed systems by writing out the coded instructions for specific problems. Dr. von Neumann has also written a preliminary report in which most of the results of earlier discussions are summarized. ... In his report, the physical structures and devices ... are replaced by idealized elements to avoid raising engineering problems which might distract attention from the logical considerations under discussion. (Goldstine 1972, p. 191; Metropolis and Worlton 1980, p. 55)

Goldstine (apparently unaware of Turing’s claim to be mentioned in this connection) comments:

Von Neumann was the first person, as far as I am concerned, who understood explicitly that a computer essentially performed logical functions, ... he also made a precise and detailed study of the functions and mutual interactions of the various parts of a computer. Today this sounds so trite as to be almost unworthy of mention. Yet in 1944 it was a major advance in thinking. (Goldstine 1972, pp. 191–192)
One way in which the EDVAC report betrays its unfinished state is by the large number of spaces clearly intended for references, but not filled in. Almost every page contains the abbreviation "cf." followed by a space. All the more significant is the one reference that von Neumann did supply: the reference, supplied in full, was to the paper McCulloch and Pitts 1943 in which a mathematical theory of idealized neurons had been developed. Von Neumann suggested that basic vacuum tube circuits could be thought of as physical embodiments of these neurons. Here there are two connections with Turing’s ideas. The first, more obvious one, is that, like Turing, von Neumann was thinking of a computer as being like a brain (or at least a nervous system). In Ulam’s letter to Hodges quoted above, Ulam alluded to this confluence, writing in a postscript: “Another coincidence of ideas: both Turing and von Neumann wrote of ‘organisms’ beyond mere computing machines.”17 But a more explicit connection with Turing’s work becomes evident on further study. McCulloch (see von Neumann 1963, p. 319) later stated that the paper which von Neumann did reference had been directly inspired by Turing 1936-7. In fact, the paper itself cites the fact that a universal Turing machine can be modeled in a suitable version of the neural net formalism as the principal reason for believing in the adequacy of the formalism.

There is other evidence that von Neumann was concerned with universality in Turing’s sense. Thus he spoke (Randell 1982, p. 384) of the “logical control” of a computer as being crucial for its being “as nearly as possible all purpose”. In order to test the general applicability of the EDVAC, von Neumann wrote his first serious program, not for numerical computation of the kind for which the machine’s order code was mainly developed, but rather to carry out a computational task of a logical-combinatorial nature, namely the efficient sorting of data.18 The success of this program helped to convince von Neumann that “it is legitimate to conclude already on the basis of the now available evidence, that the EDVAC is very nearly an ‘all purpose’ machine, and that the present principles for the logical controls are sound” (Goldstine 1972, p. 209). Articles written within a year of the EDVAC report confirm von Neumann’s awareness of the basis in logic for the principles underlying the design of electronic computers. The introduction to one such article states:

In this article we attempt to discuss [large scale computing] machines from the viewpoint not only of the mathematician but also of the engineer and the logician, i.e. of the person or group of persons really fitted to plan scientific tools. (Goldstine and von Neumann 1946)

Another article (Burks, Goldstine, and von Neumann 1946) clearly alludes to Turing’s work, even as it indicates that purely logical considerations are not enough:

It is easy to see by formal-logical methods that there exist codes that are in abstracto adequate to control and cause the execution of any sequence of operations which are individually available in the machine and which are, in their entirety, conceivable by the problem planner. The really decisive considerations from the present point of view, in selecting a code, are of more practical nature: simplicity of the equipment demanded by the code, and the clarity of its application to the actually important problems together with the speed of its handling those problems. It would take us much too far afield to discuss these questions at all generally or from first principles.

There has been much acrimony over the question of just what von Neumann had contributed; indeed, this question even became the subject of extensive litigation. Much of the controversy concerns the relative significance of the contributions of von Neumann on the one hand, and of Eckert and Mauchly on the other. In particular, some recent studies challenge the belief that von Neumann’s technical contributions were of much importance. (See the semi-popular history Shurkin 1984 and the meticulously researched Stern 1981.) It is not difficult to understand why this should be. The Turing–von Neumann view of computers is conceptually so simple and has become so much a part of our intellectual climate that it is difficult to understand how radically new it was. It is far easier to appreciate the importance of a new invention, like the mercury delay line, than of a new and abstract idea.

5. The ACE

Meanwhile, what of Turing? His mother (quoted in Hodges 1983, p. 294) reports him saying “round about 1944” that he had plans “for the construction of a universal computer”. During the war, he had been telling colleagues that he wanted to build a “brain”. He proposed to construct an electronic device that would be a physical realization of his universal machine. Early in 1945, while on a trip to the United States, J.R. Womersley, Superintendent of the Mathematics Division of the National Physical Laboratory of Great Britain, was introduced to the ENIAC and to the EDVAC report. As early as 1938, Womersley had considered the possibility of constructing a “Turing machine using automatic telephone equipment”. His reaction to what he had learned in the United States was to hire Alan Turing (Hodges 1983, pp. 306–307). By the end of 1945, Turing had produced his remarkable ACE report (Turing 1945). The excellent article Carpenter and Doran 1977 contains an analysis of the ACE report, comparing it in some detail with von Neumann’s EDVAC report. They note that, whereas the EDVAC report “is a draft and is unfinished . . . more important . . . is incomplete . . .”, the ACE report “is a complete description of a computer, right down to the logical circuit diagrams” and even including “a cost

17 I am grateful to Andrew Hodges for making a copy of this letter available to me.
18 The sorting algorithm that von Neumann implemented belongs to the family of so-called “merge” sorts. For a very interesting discussion of this program and of the proposed EDVAC order code, see Knuth 1970.
6. Logic and the Future

Machine T-F was a very practical version of the type of machine I was considering. Nevertheless, it cannot be intelligent exactly. But these theorems say nothing about how much intelligence a machine can possess if, in principle, it is possible to express machine intelligence. Turing may be displayed if a machine makes no pretense to be a machine or to be a machine, and if it does not make any pretense at all. Therefore, there is a considerable difference in the degree of intelligence of the two machines. F.

Reference

Acknowledgement

The work on this article was done while I was a John Simon Guggenheim Foundation Fellow (1933-1934). The research is a part of a comprehensive study of the relation between logic and computation, and it is supported by the National Science Foundation, the Office of Naval Research, and the Institute for Advanced Study, Princeton, New Jersey.

Davis, M.

Goldstine, H.H.

Hilbert, D. and W. Ackermann

Hodges, A.

Huskey, V.R. and H.D. Huskey

Kneale, W. and M. Kneale

Knuth, D.E.

McCall, W.S. and W. Pitts

Metropolis, N., J. Howlett, and G.C. Rota (eds.)

Metropolis, N. and J. Warlton

Parkinson, G.H.R.

Post, E.

Randell, B.

Randell, Brian (ed.)

Shunkin, J.

Smith, D.E.

Stern, N.

Turing, A.M.

von Neumann, J.

Wang, H.

Webb, J.C.
Welchman, G.

Woodger, M.

Part II