THE DIGITAL PHOENIX

How Computers Are
Changing Philosophy

Edited by

TERRELL WARD BYNUM and JAMES H. MOOR

Published in cooperation with the Committee
on Philosophy and Computers of the
American Philosophical Association

and also with the journal
Metaphilosophy

. [B)BLACKWELL

Pub[lsh r

@ 148

© Copyright Blackwell Publishers, Ltd and
The Metaphilosophy Foundation 1998

First published 1998
Revised edition 2000

Blackwell Publishers Ltd
108 Cowley Road
Oxford, OX4 1JF

UK

and

Blackwell Publishers Inc.
350 Main Street

Malden, MA 02148

UsA

All rights reserved. Except for the quotation of short passages for the
purposes of criticism and review, no part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of The Metaphilosophy
Foundation and the publisher.

Except in the United States of America, this book is sold subject to the
condition that it shall not, by way of trade or otherwise, be lent, resold,
hired out or otherwise circulated without a similar condition including
this condition being imposed on the subsequent purchaser.

British Library Cataloguing in Publication Data has been applied for.

Library of Congress Cataloguing-in-Publication Data has been applied for.
ISBN 0-631-203524

Typeset in 10 pt Book Antiqua

Printed in Great Britain by Whitstable Litho Ltd, Kent

CONTENTS

INTRODUCTION

How Computers Are Changing Philosophy

TERRELL WARD BYNUM and JAMES H. MOOR

PART I: THE IMPACT OF COMPUTING ON
PHILOSOPHICAL ISSUES

Epistemology

Procedural ERislemology -« .o iviivicoe e dii

JOHN L. POLLOCK

Epistemology and Computingc.cceveeue

HENRY KYBURG

Philosophy of Science

Computation and the Philosophy of Science........

PAUL THAGARD

Anomaly-Driven Theory Redesign: Computational

Philosophy of Science Experiments

LINDLEY DARDEN

Reason and Argument

Representation of Philosophical Argumentation.....

THEODORE SCALTSAS

Computers, Visualization, and the Nature

OF IRSEBOIINE o v i Lob e Bt s b s s

JON BARWISE and JOHN ETCHEMENDY

Metaphysics
ThHpibal Melaphyales .. .o vvaavnivoveisas s siadnsss 117
ERIC STEINHART

Philosophical Content and Method of Artificial Life 135
MARK A. BEDAU

Philosophy of Mind
The Neural Representation of the Social World 153
PAUL M. CHURCHLAND

Qualitative Experience in Machines................. 171
WILLIAM G. LYCAN

Philosophy of Artificial Intelligence
enpanre b D CENOR . & .« oo b v e e 193
HUBERT L. DREYFUS

Assessing Artificial Intelligence and Its Critics 213
JAMES H. MOOR

Philesophy of Computation
Philosophy and "Super" Computation 231
SELMER BRINGSJORD

Philosophy and Computer Science: Reflections on
the Program Verification Debate 253
JAMES H. FETZER

Ethics and Creativity
Global Information Btleso iinaes 274
TERRELL WARD BYNUM

How Computers Extend Artificial Morality 292
PETER DANIELSON
Computing and Cyeabiveily c.vvosvi v vi 308

MARGARET A. BODEN

PART II: THE IMPACT OF COMPUTING ON
PROFESSIONAL PHILOSOPHY

Teaching Philosophy on the Web
Teaching Philosophy in Cyberspace an
RON BARNETTE

Philosophy Teaching on the World Wide Web 333
JOHN DORBOLO

Philosophy and Multimedia

Multimedia and Research in Philosophy 341
ROBERT CAVALIER
Teaching of Philosophy with Multimedia............ 354

JOHN L. FODOR

Philosophical Resources on the Web
Resources in Ethics on the World Wide Web 359
LAWRENCE M. HINMAN

The APA Internet Bulletin Board and Web Site....... 379
SAUL TRAIGER

American Philosophical Association Reports
Using Computer Technology for Philosophical
Research: An AFS Report , 0o vacdei o 388
ROBERT CAVALIER

Using Computer Technology for Teaching
Philosophy: An APAReport. . .c..ccoicvuiennnne 393
RON BARNETTE

Using Computer Technology for Professional
Coopemtion: An APA REPOTt , .. vooioueoaibibives s 397
LAWRENCE M. HINMAN

Rogers, Hartley. (1967) Theo 1 1
, Ha vy of Recursive Functions and Effecti -
putability, New York, NY: McGraw-Hill. iy

Searle, John. (1992 1 ;]
- e.I.s ‘ (1992) The Rediscovery of the Mind, Cambridge, MA: MIT

Siegelmann, Hava. (1995) “Computatio
. : B 1 2 2s 07
Science 268: 545-548, p n Beyond the Turing Limit,

Siegelmann, Hava and E. D. Sonta i
b s 91D 3 g (1994) “Analog Computation Vi
Neural Nets,” Theoretical Computer Science 131:3%1-360? s

Turing, Alan. (1950) “On Computable Numbers with Applications to

the Entscheidungsproblem,” Proceedi]
sy oy edings of the London Mathematical

252

i
¥

PHILOSOPHY AND COMPUTER SCIENCE:
REFLECTIONS ON THE PROGRAM
VERIFICATION DEBATE

JAMES H. FETZER

During 1986-87, four other philosophers and I participated in a special
fifteen-month, post-doctoral program offered by Wright State Univer-
sity for Ph.D.s in linguistics and philosophy who wanted to study

computer science and artificial intelligence.' The program extended
over five quarters, with courses distributed over the first four and the-
sis work toward an M.S. degree the following summer. Among the
courses for the fall quarter was one on programming languages, which
was taught by Professor Al Sanders.

The course requirements included a term paper on one or more
articles listed in the references for the course text by Michael Marcotty
and Henry F. Ledgard, Programming Language Landscape [1986]. The
most intriguing item I noticed was “Social Processes and Proofs of
Theorems and Programs” by Richard DeMillo, Richard Lipton and
Alan Perlis, which had appeared in Communications of the ACM in
1979. It had generated several letters and an authors’ responses and
looked as if it might be of philosophical interest.

‘When I located the paper itself and had the chance to read it
through, 1 was fairly astonished. The authors were appraising the
prospects for using formal methods to enhance our confidence in the
reliability of software in computer systems. The advocates of this ap-
proach, who are an influential group within computer science, main-
tain that computer science ought to be modeled on mathematics as its
paradigm, a conception that DeMillo, Lipton and Perlis on various
grounds were intent to reject as an unattainable ideal.

The analogy embraced by advocates of formal methods takes the
following form. In mathematics, proofs begin by identifying the prop-
ositions to be proven and proceed by deriving those propositions from
premises (“axioms”) as conclusions (“theorems”) that follow from
them by employing exclusively deductive reasoning. In computer sci-
ence, proofs may begin by identifying the proposition to be proven (in
this case, specifications of desired program performance), where de-
ductive reasoning applied to the text of a program might show it satis-
fies those specifications and thereby prove it is “correct”.

253

DeMillo, Lipton and Perlis sought to undermine the force of this
analogy by discussing several respects in which “proofs” of mathemat-
ical theorems differ from “verifications” of program correctness. Their
most important argument focused upon the role of social processes in
evaluating proofs of theorems, where mathematicians consult other
mathematicians to secure agreement that proofs are valid. In their
view, the complexity of program verifications means that no compara-
ble social processing ever takes place.

They found words to express what they wanted to convey in vivid
and forceful prose. Supporting their position, for example, they re-
marked that, the verification of even a puny program can run into
dozens of pages, and there’s not a light moment or a spark of wit on
any of those pages. Nobody is going to run into a friend’s office with a
program verification. Nobody is going to sketch a verification outon a
paper napkin. Nobody is going to buttonhole a colleague into listening
to a verification. Nobody is ever going to read it. One can feel one’s
eyes glaze over at the thought. [DeMillo, Lipton, and Perlis 1979, 276]
Thus, according to DeMillo, Lipton and Perlis, the absence of social
mechanisms in the program-verification community parallel to those
found in the theorem-proving community destroys the comparison
with mathematics.

As a student in search of a thesis, I had stumbled upon what ap-
peared to be a philosopher’s bonanza. While the authors described
themselves as appraising the prospects for using formal methods to
enhance confidence in the reliability of software, I sensed the aim of
program verification was to guarantee the performance of programs
when they are executed by machine. Having come of age intellectually
in the logical empiricist tradition, I was confident that formal methods
alone could not attain that objective.

Since DeMillo, Lipton and Perlis were not very specific on this
point, I had some homework to do, which led me to publications by C.
A. R. Hoare of Oxford, who was among the leading figures in the pro-
gram verification movement. Imagine my feelings at finding the fol-
lowing passage in which Hoare had articulated what 1 had conjectured
to be the implicit conception:

Computer programming is an exact science in that all the
properties of a program and all the consequences of executing
it in any given environment can, in principle, be found out
from the text of the program itself by means of purely deduc-
tive reasoning. [Hoare 1969, 576]

It was immediately apparent to me that this conception, which asserts
that purely formal methods can guarantee the performance of a com-
puter when it executes a program, implies the existence of synthetic a
priori knowledge.

254

Although I was already convinced that the program verification
movement was predicated upon a misconception about the scope and
limits of formal methods, I was not inclined to argue the case in my
paper by denying the existence of synthetic a priori knowledge. An
approach of this kind would have compelled the introduction of the
analytic/synthetic distinction within this context, even though many
philosophers reject this framework. And while I was confident that
their reasons for its rejection were not well-founded, I was reluctant to

base my critique upon such a disputed premise.2

As a consequence, I introduced other distinctions that I suspected
would be easier to convey to computer scientists and that could not be
derailed on the basis of purely philosophical concerns. I therefore ar-
gued that a distinction had to be drawn between algoritims as effective
solutions to problems and programs as causal models of those algo-
rithms, where the latter but not the former possess the capacity to ex-
ercise causal influence over computers when they execute a program. 1
emphasized the differences between pure and applied mathematics
and between abstract models and causal systems.

Computer programming, of course, is ordinarily conducted by
means of (what are called) ligl-level programming languages, such as
Pascal, LISP, and Prolog, where there is a one-to-many relationship
between commands in programs and instructions executed by a ma-
chine. Assemby language, by comparison, provides a low-level lan-
guage, where something closer to a one-to-one relationship between
commands obtains. Digital machines operate on the basis of strings of
zeros and ones (or of high and low voltage), which would be difficult
if not impossible to program directly. The causal connection between
programs in high-level languages and target machines is therefore ef-
fected by interpreters and compilers, which translate them.

This means that programs are ordinarily written for virtual ma-
chines, which may or may not have physical counterparts. A mini-lan-
guage CORE introduced as a pedagogical device by Marcotty and
Ledgard [1986, Ch. 2] to illustrate the elements of programming lan-
guages but for which there is no interpreter or compiler afforded a
perfect illustration, because “proofs” of program correctness in CORE
could be constructed in relation to virtual machines that were guaran-
teed to execute them as definitional properties of those machines.
These machines are abstract models of CORE machines.

Mistakes could still be made in programming, of course. Marcotty
and Ledgard [1986, pp. 45-46] identified various sources of error, such
as undefined value errors, overflow errors, negative value errors, and
so forth, which could lead to the abnormal termination of a program.
My point was not that programs written in CORE could never be im-
perfect, but rather that the performance of computers executing pro

255

grams written in CORE could be guaranteed in the sense that, assum-
ing there were no programming errors, there could be no possible
failure of a machine to execute a CORE program.

The crucial difference thus becomes that between virtual machines
for which there are no physical counterparts and virtual machines for
which there are physical counterparts. Virtual machines only exist as
abstract entities beyond space/time for which definitional properties
but no causal relations can obtain. Physical machines, by comparison,
are causal systems in space/time, which can exert causal influence
upon other things in space/ time. While it may be possible to prove the
correctness of a program using purely deductive reasoning, I urged,
those formal methods cannot possibly guarantee what will happen
when a target machine executes that program.

The analysis, in other words, was an elaboration of the epistemo-
logical ramifications that accompany the ontological difference be-
tween abstract entities and causal systems. Thus, I argued that the
conclusive verification of a virtual machine was logically possible
when it had no physical counterpart, because its behavior could be
definitively established on the basis of purely deductive reasoning
from stipulated axioms. The behavior of a target machine, however,
might deviate arbitrarily from those axioms and, as a consequence,
could never be definitively established by purely deductive reasoning.
The behavior of causal systems must be established inductively.

The term paper I submitted thus suggested that, in contending
that program verification could not guarantee what happens when a
computer executes a program, DeMillo, Lipton and Perlis had arrived
at the right general conclusion but for the wrong specific reasons. The
problem was not rooted in the social processing of proofs but in the
causal character of computers. When Al Sanders subsequently re-
turned our papers, a lively discussion ensued, during which he re-
ported that he had found mine to be “fascinating!” This enthusiastic
reception moved me to send it to Communications of the ACM, which
had published the original paper by DeMillo, Lipton and Perlis.

The paper was submitted 26 November 1986 with the title, “Social
Processes and Causal Models of Logical Structures”, which led James
Maurer, the Executive Editor, to send it to Rob Kling, who was the
area editor for social aspects of computing. Over the next 18 months,
he would ask me to revise it four times in order to insure that my ar-
guments would be accessible to readers of the magazine. Having pub-
lished a 500-page book manuscript without having to change even one
word [Fetzer, 1981], this was not something I expected. Each time that
he asked me to make further revisions, I became more and more dis-
enchanted with our progress.

In the meanwhile, I had been hired as full professor by the Univer-
sity of Minnesota in Duluth, and my colleagues were aware of my

256

research on this topic. Sometime between the forth and fifth drafts,
David Cole showed me a list of “I/O Statements” from the IBM PC
manual for Microsoft BASIC, which included the following commands
and their expected consequences:

Statement Action

BEEP Beeps the speaker.

CIRCLE (x, y) r Draws a circle with center x, y
and radius r.

COLOR b, p In graphics mode, sets background
color and palette of foreground
colors.

LOCATE row, col Positions the cursor.

PLAY string Plays music as specified by string.

While David had intended these findings as counterexamples to my
thesis, I was euphoric, because they were perfect illustrations: there
was no way formal proofs could guarantee a speaker would beep or mu-
sic would play!

No doubt in part because I incorporated these examples into the
fifth draft of my text, the paper was finally acceptable to Rob Kling,
and on 13 June 1988, I received a formal acceptance from James Mau-
rer. Since my discussion was no longer primarily criticism of DeMillo,
Lipton and Perlis [1979] but a general critique of the limits of formal
methods in computer science, Kling suggested I provide a new title for
the paper. I responded with “Program Verification: The Very Idea”.
Since it had taken so long to reach this point, I was surprised when it
came out three months later.

The cover of that issue of Communications featured a head extend-
ing from an enormous pile of computer printouts crying for help. My
greatest fear at this point was that my article had finally appeared but
no one would even notice or, worse yet, that it would be greeted with
yawns as belaboring the obvious. I was therefore pleasantly surprised
when my good friend, Chuck Dunlop, with whom I had participated
in the program at Wright State, sent me a copy of a message from the
Risks Forum, an electronic bulletin board devoted to issues related to
computer reliability.

In this posting of 5 October 1988, Brian Randell explained that he
had just finished my article “with great interest and enjoyment” and
affirmed,

In my opinion it is a very careful and lucid analysis of the dis-

pute between, e.g., DeMillo, Lipton and Perlis on the one

257

hand, and Hoare on the other, regarding the nature of pro-
gramming and the significance of program verification.
[Randell 5 Oct 88 9:56:39 WET DST]

He included the text of the abstract and ended his message by quoting
the last lines of the paper, where I suggest these matters are not only
important theoretically for computer science but practically for the
human race.

Chuck advised me that many other messages were now appearing
over the nets, which I found reassuring. My worst fears had been al-
layed: the article was not being ignored, and the initial response had
been positive. Shortly thereafter, moreover, I received a letter from
Robert Ashenhurst, who edits the Forum for the magazine, dated 1
November 1988. Included were copies of six Letters to the Editor of
Communications, which Ashenhurst thought were appropriate for pub-
lication. He invited me to reply. I agreed with his judgment concerning
five and submitted my response.

The letters reflected a variety of attitudes, ranging from a com-
plaint [by James Pleasant] that I had traded upon ambiguity by failing
to distinguish exactly what I had in mind by the term “program”, to a
thoughtful critique [by William Bevier, Michael Smith, and William
Young], who suggested that, at the level of logic gates, the difference
between abstract entities and causal systems virtually disappears, to
additional arguments [by Stephen Savitzky] that supplied further
grounds supporting my position in the case of useful programs that
are not merely unverifiable but even verifiably incorrect, where the
most important requirements of programs may be ones that are not
formalizable, etc. [Pleasant, et al., 1989].

Pleasant posed no problem (since I had been entirely explicit on
this point); Bevier, Smith and Young could be disarmed (since the dif-
ference at stake does not disappear); and Savitzky had come to my de-
fense. The potentially most damaging letter in the set, however, was
from Lawrence Paulson, Avra Cohn, and Michael Gordon of Cam-
bridge University, who castigated me for contending that programs
must work perfectly, for asserting that verification is useless because it
cannot guarantee perfection, and for condemning a subject of which I
knew nothing. Since I had not made the claims they attributed to me, I
was invulnerable to their criticisms, which were based on drastic
oversimplifications of my arguments [Fetzer, 1989b]. But it was be-
ginning to dawn that I might have touched a sensitive nerve.

The worst was yet to come. In correspondence dated 12 December
19-88, Robert Ashenhurst sent along four more letters. Three of these
[by Harald Muller, by Christopher Holt, and by Arron Watters] were
not unexpected. Muller suggested that I was implicitly drawing a
(Platonic) distinction between the world of the pure (abstract entities)

258

and the world of the real (causal systems), whereas computers (as con-
structed artifacts) instead fall in between. Holt suggested that the issue
was the correctness of the implementation of the language in which a
program is written in the hardware, which most verificationists as-
sume as an axiom. And Watters maintained that the truly important is-
sues were not those discussed in my article but those previously raised
by DeMillo, Lipton and Perlis [Muller et al., 1989].

What I liked about Muller’s letter was not his Platonic framework
"but the introduction of artificially contrived machines. As I explained
in reply, two modes of operation are available. Either the machine is
f:reated in accordance with the design (axioms) or the design (axioms)
is created in accordance with the machine. Either way, however, it is
necessary to discover precisely how the machine behaves in order to dete;-mine
whether or not it is in accordance with the design [Fetzer, 1989c, 511; origi-
nfil emphasis]. While it may be possible to determine the properties of
virtual machines by stipulation as a matter of definition (for abstract
en'tities), it is only possible to discover the properties of target ma-
chines by the use of induction (for causal systems), thereby reasserting
the basic elements of my position.

There was much about Holt's letter with which I completely
agreed, so I sought to accent the subtle points of disagreement. While
we are all entitled to assume whatever we want for the sake of hypo-
thetical reasoning, there is an important difference between assuming
something to be the case and its being the case. President Reagan, I ob-
served, presumably assumed that we could lower taxes, increase
spending, and nevertheless balance the budget. The issue is not
whether or not assumptions can be made but under what conditions
an assumption is justified, warranted or true.

Arguments based upon hypothetical “axioms” may be valid but
are not therefore also sound. Since Hoare had made observations that
appeared to conform to Holt's conception, I offered an illustration that
is by no means unproblematic:

When the correctness of a program, its compiler, and the hard-
ware of the computer have all been established with mathe-
matical certainty, it will be possible to place great reliance on
the results of the program and predict their performance with
a confidence limited only by the reliability of the electronics.
[Hoare, 1969, 579]

The catc.h, I remarked, is that this conditional has an antecedent that
may be 1pcapable of satisfaction, since the correctness of the program,
its compiler, and the hardware can never be established “with mathe-

matit?al certainty” — unless it happens to be an abstract rather than a
physical machine!

259

If the first three letters were not surprising, the fourth was some-
thing else entirely. A scathing diatribe of the likes of which I had never
seen before, this letter not only raked me across the coals for misrepre-
senting the goals and methods of program verification but damned the
editors as well:

by publishing the ill-informed, irresponsible, and dangerous
article by Fetzer, the editors of Communications have abrogated
their responsibility, to both the ACM membership and to the
public at large, to engage in serious inquiry into techniques
that may justify the practice of computer science as a socially
responsible engineering practice. The article is ill-informed
and irresponsible because it attacks a parody of both the intent
and the practice of formal verification. It is dangerous because
its pretentious and ponderous style may lead the uniformed to
take it seriously. [Ardis, Basili, et al., 1989, 287]

The letter was signed by ten prominent members of the program
verification community. In a handwritten note, Robert Ashenhurst
penned that he had just learned that this letter had been forwarded to
Peter Denning, the Editor-in-Chief, who planned to respond regarding
the review process.

I was stunned. Were this letter, which was receiving special treat-
ment, to appear without a response from me, whether or not I might
have forceful and convincing replies to the charges they had raised
would not matter: My reputation would have already endured seri-
ous, irretrievable damage. In his cover letter, Ashenhurst also men-
tioned that “the original package” had apparently been “bumped”
from January to February. This gave me hope that perhaps something
could be done. I called the Executive Editor to plead for the opportu-
nity to provide a response of my own that would appear in Communi-
cations at the same time as this extraordinary letter.

James Maurer listened patiently as I explained that, while I greatly
appreciated the fact that Peter Denning was going to respond on be-
half of the editors concerning the review process, it was essential for
me to have an opportunity to respond on my own behalf concurrent
with the publication of this letter. I observed that it was my name at-

tached to this article and that it was my reputation at stake. I was
enormously relieved when, after extensive consultation, the Executive
Editor and the Editor-in-Chief decided that I was entitled to respond at
the time of its publication. This meant in turn that the “package”
would be moved from February to March.

260

Under considerable pressure, I began to systematically disentangle
the objections the authors had raised and consider my replies. There
appeared to be at least six issues involved here, some of which were
far more serious than others. They asserted, for example, that there are
no published claims to “conclusive absolute verification”, a phrase
that I had used; that assembly language programs are amenable to
verification procedures, a prospect they contended I had denied; and
that I seemed to be “totally unaware” of a large body of work applying
formal procedures to compilers and hardware, which indicated to me
that these authors had apparently not understood my views.

The absence of the phrase “conclusive absolute verification” from
the literature, of course, did not mean that the concept was not pre-
sent, and formal methods could do no more for compilers or for
hardware than they could for programs. The point about assembly
language was bothersome, but the only sentence supporting their in-
terpretation concerned the control mechanism of missile systems pro-
cessing real-time streams of data, “where, to attain rapid and compact
processing, their avionics portions are programmed in assembly lan-
guage—a kind of processing that does not lend itself to the construc-
tion of program verifications” [Fetzer, 1988, 1062]. Having originally
discussed this point with Chuck Dunlop, I thought that I ought to call
him once again.

While we were going though the program, Chuck and I had con-
sidered many of these issues before, but perhaps never with such ben-
eficial effect. While it was true in the example I used that the pro-
gramming was done in assembly language and that programs written
in assembly language could indeed be subjected to program verifica-
tions, the circumstances of this case precluded that, since these mis-
siles were able to reprogram themselves in flight. We speculated about
possible conditions under which such programs could be verified and
laughed at our thoughts. I slept very well that night.

My published response, which appeared immediately following
the letter in the March issue of Communications, began with the follow-
ing observation:

The ancient practice of killing the messenger when you do not
like the message receives its latest incarnation in the unfortu-
nate letter from Ardis, Basili, et al. (“The Gang of Ten”). The
authors allege (a) that I have misrepresented the goal of pro-
gram verification (thereby attacking a “straw man”); (b) that I
have misunderstood the role of mathematics in any engineer-
ing endeavor (especially within computer science); and (c) that
my conclusion, if it were true, would undermine research in
vast areas of computer science (including most theoretical
work). [Fetzer, 1989, 288]

261

In rebuttal, I observed (a) that, since I was attacking Hoare’s posi-
tion, as I had clearly explained, I was attacking a “straw man” only if
Hoare's position was a “straw man'; (b) that the role of mathematics in
engineering qualifies as applied mathematics when used to describe
physical structures and as pure mathematics when used to describe ab-
stract structures; and (c) that it was hard to believe these authors could
seriously maintain that computer science could benefit from misrepre-
senting the certainty of its findings.

I remarked that the authors had “misdescribed” my conclusion,
since it was not my position that program verification was useless or
even harmful because it provides no certainty. My point, on the con-
trary, was that “since program verification cannot guarantee the per-
formance of any program, it should not be pursued in the false belief
that it can— which, indeed, might be entertained in turn as the “ill-in-
formed, irresponsible and dangerous dogma’ that my paper was in-
tended to expose” [Fetzer, 1989a, 288].

My favorite passage, however, was one inspired by my discussion
with Chuck. While acknowledging that the sentence I used in describ-
ing assembly-language programming as a type that did not lend itself
to program verifications might have been misleading, I reaffirmed the
force of my example involving real-time transmission of streams of
data from sensors to processors:

the specific avionics example that [was discussing . . . reflects
a special type of programming that can be found in cruise mis-
siles and other sophisticated systems with the capacity to re-
program themselves en route to their targets. The only tech-
nique that would permit the verification of these programs as
they are generated in flight would be procedures permitting
the correctness of these programs to be established as they are
constructed. Perhaps the authors of this letter could volunteer
to accompany these missiles on future flights in order to
demonstrate that this is a type of programming that actually
does lend itself to the construction of program verifications, af-
ter all. [Fetzer , 1989, 288]

I find it impossible to reread this passage without smiling even to this
day.

yHaving discovered that the Journal of Automated Reasoning was
about to publish a new paper by Avra Cohn entitled, “The Notion of
Proof in Hardware Verification”, in which she acknowledged that ver-
ification “involves a pair of models that bear an uncheckable and pos-
sibly imperfect relation to the intended design and to the actual de-
vice” [Cohn, 1989, 132], I cited it as “display[ing] a great deal of sensi-

262

tivity to the basic issues at stake in my article”, in spite of the fact that
“she is one of three Cambridge scholars who reject my analysis on pe-
ripheral grounds elsewhere” in this magazine.

I concluded my reply by praising the efforts expended on my be-
half by the editors and staff of Communications, especially Rob Kling,
“in providing sympathetic criticism and in enforcing high standards”.
I finished with observations about the tone and quality of the letter
from the Gang of Ten:

In its inexcusable intolerance and insufferable self-righteous-
ness, this letter exemplifies the attitudes and behavior ordin-
arily expected from religious zealots and ideological fanatics,
whose degrees of conviction invariably exceed the strength of
the evidence. [Fetzer, 198%a, 289]

I remain enormously indebted to James Maurer and to Peter Denning
for granting my plea to publish my response at the same time as their
letter.

The March 1989 issue of Communications thus began with that let-
ter, which took up a full-page of the Forum, followed by my reply. Pe-
ter Denning, the Editor-in-Chief, true to his word, offered a powerful
defense of the editorial process, observing that the paper had been put
through four rounds of revision and noting that “the article was sub-
jected to a review more rigorous than is required by ACM policy, and
that the review process was fair and professionally sound. I stand fully
behind my editors.” [Denning, 1989, 289]. The letters from Pleasant,
the three Cambridge scholars, et al. appeared with my replies as
“Technical Correspondence”.

The April 1989 issue published the letters from Muller, Holt, and
Watters, which was something that I expected, together with an
OP/ED piece entitled, “Program Verification: Public Image and Pri-
vate Reality”, which I had not [Dobson and Randell, 1989]. The au-
thors were John Dobson and Brian Randell, the same “Brian Randell”
who had posted a favorable notice of my article on the Risks Forum.
was therefore somewhat distressed to read that, while their initial
opinion had been quite favorable in viewing it as “an interesting, and
unusually literate, contribution to the literature on the theoretical limi-
tations of program verification”, they had now reached the conclusion
that it was “undoubtedly . . . misconceived” but perhaps useful in cor-
recting overselling of their product by the verification community.

Thus, although I was alleged to have “failed to give this topic the
careful scrutiny it so clearly needs, they said the program verification
community had not done so either. Their principal objections to my
analysis of the theoretical limitations of program verification, how-

263

ever, were two in number: (1) “the (unfortunately justifiable) fear that
[my] paper will be misinterpreted by laymen, particularly those in-
volved in funding” [Dobson and Randell, 1989, 420] and, (2) their be-
lief that I had mistakenly entertained proofs of program correctness as
intended to provide explanatory rather than evidential reasons:

it seems to us that Fetzer thinks the verificationists have been repre-
senting their work as providing explanatory reasons for program cor-
rectness, whereas they claim their work provides merely evidential
reasons [Dobson and Randell, 1989, 421, original emphasis].

I was acutely disappointed that an author who had been so positive
about my work had now withdrawn his support as I began to draft my
response.

Before they raised the issue, I had not considered —even re-
motely —whether or not an analysis of the scope and limits of formal
methods in computer science had any financial ramifications. The
“fear” that my paper might be “misinterpreted” by those who fund
verification projects and that they might be “persuaded” to reallocate
their resources for more promising activities, of course, is a classic ex-
ample of the informal fallacy known as “the appeal to pity”, where the
unfortunate consequences that might follow if a certain position were
accepted as true are treated as though they counted as evidence that it
is false. But this was no reason to suppose I was wrong.

Their first objection, therefore, was simply fallacious, although I
could appreciate why those whose profession, promotions, or tenure
depend on funding of this kind might have been unsettled by my
analysis. In asserting that I had mistaken “evidential” for “explana-
tory” reasoning, however, they raised issues of a different caliber en-
tirely. Their second objection, which implied that I had attacked a
straw man by portraying the function of proofs of program correctness
as explanatory in relation to executions when they should be under-
stood as evidential, after all, represented a set of issues which to any
philosopher of science would be extremely familiar.

There is in fact a fundamental distinction between evidential reason-
ing and explanatory reasoning, as Carl G. Hempel, some time ago, ex-
plained by distinguishing “explanation-seeking” questions (such as,
“Why is it the case that p?”) from “reason-seeking” questions (say,
“What grounds are there for believing that p?”). While adequate an-
swers to explanation-seeking questions also provide potential answers
to corresponding reason-seeking questions, the converse is not the case
[Hempel, 1965, 335]. To that extent, of course, I thought that Dobson
and Randell had drawn a relevant distinction.

It was fascinating to observe them illustrating the difference that
they wanted to invoke with two examples regarding the height of a
tree, which might be explained by considerations such as, “that it is a

264

tree of such-and-such a sort, growing in this sort of climate in this sort
of soil, and that under such conditions trees of that type can sustain a
height of about 100 feet”, on the one hand, or established evidentially
by considerations such as, “that it casts a shadow of 50 feet at a time of
day when a 10-foot pole casts a shadow of 5 feet” [Dobson and Ran-
dell, 1989, pp. 420-421]. The parallel with Sylvain Bromberger’s flag-
pole example was both obvious and remarkable.

When Dobson and Randell claimed that mathematical logic pro-
vides “explanatory reasons”, however, they committed a blunder.
Logic specifically and formal methods generally are context indepen-
dent: they are applicable for deriving conclusions from premises with-
out any concern for the purpose of the arguments thereby constructed.
Indeed, the flagpole case—and their own example! —clearly indicate
that the ability to deduce a conclusion (about the height of a flagpole,
for example) is not the same as the ability to explain that phenomenon
(why the flagpole has that height). No student of the symmetry thesis
would have been prone to commit this mistake [Fetzer, 1974].

Since I had drawn a distinction between algorithms as logical struc-
tures and programs as causal models of those structures, they properly
noticed that I focused on the causal contribution of programs to the
performance of computers. An important ramification of my position
is the claim that the outcome of executing a program “obviously de-
pends upon various different causal factors, including the characteris-
tics of the compiler, the processor, the printer, the paper and every
other component whose specific features influence the execution of
such a program” [Fetzer, 1988, 1057].

Since programs are only partial causes of the effects of their execu-
tion, if I were taking formal proofs to be explanatory, when their pro-
ponents only intend them to be evidential, then I would be holding
them at fault for failing to guarantee what a computer will do when it
executes a program when their reasoning is merely evidential. This
position, however, not only contradicts Dobson and Randell’s assump-
tion that formal proofs are always explanatory but also overlooks the
consideration that differences between virtual machines and causal
systems still remain whether program verifications are viewed as evi-
dential or as explanatory reasoning.

Even when we overlook the inconsistency in their position by
supposing that program verifications as formal proofs of correctness
are merely intended to provide evidential reasons for believing that a
computer will perform correctly when that program is executed, the
difference between conclusive and inconclusive evidence for a conclu-
sion also persists. Thus, the fundamental objective of my analysis was
to establish that, for target machines as opposed to virtual machines,
the kind of evidence which program verifications can appropriately
provide is uncertain rather than certain evidence, which not only does

265

not contradict the possibility that program verifications are evidential
but even implies it [Fetzer, 1989, 920].

When I submitted my response to Dobson and Randell [1989],
however, Peter Denning balked. I asked for equal time by having it
run as an OP/ED piece, which is technically known there as a
“Viewpoint”, but he wanted to edit it drastically and to print it as a
Letter to the Editor instead. It finally appeared in the August issue
[Fetzer, 1989¢]. In the meanwhile, the magazine published a letter in
which I extended the distinction between algorithms and programs to
the problem of patent and copyright protection in the June issue
[Fetzer, 1989d] and another set of Letters to the Editor regarding the
program verification debate in the July issue [Hill et al., 1989].

These events were insignificant by contrast with the next devel-
opment, however, which occurred when Jon Barwise devoted his col-
umn in Notices of the AMS [American Mathematical Society] to the
program verification controversy. He began by discussing the cele-
brated debates that occurred early in the 20th century over the founda-
tions of mathematics which, after extended deliberations that seemed
to generate more heat than light, led to the formulation of various po-
sitions about the nature of mathematics, such as Platonism, logicism,
formalism and intuitionism, which have contributed to our under-
standing of the subject and have “kept the wolf from the door”.

Barwise drew an explicit comparison between the debates over the
foundations of mathematics and the program verification debate,
which he described as concerning the relation of mathematics “to the
rest of the world™:

Today a similar controversy about the nature of mathematics
and its relation to the rest of the world is raging out of sight of
most mathematicians in the pages of CACM, the Com-
munications of the Association for Computing Machinery. The de-
bate is almost as exciting and at least as acrimonious. . . . The
present debate swirls around an article called “Program Verifi-
cation: The Very Idea”, written by the philosopher James Fet-
zer. [Barwise, 1989, 844]

Barwise suggested that the program verification debate might con-
tribute to our understanding of the nature of applied mathematics as
the earlier debates contributed to our understanding of the nature of

pure mathematics.
I was enormously flattered. Barwise followed Bevier, Smith and

Young in characterizing my position by means of three key con-
tentions as follow:

266

(1) The purpose of program verification is to provide a
mathematical method for guaranteeing the performance
of a program.

(2) This is possible for algorithms, which cannot be executed
by a machine, but not possible for programs, which can
be executed by a machine.

(3) There is little to be gained and much to be lost though
fruitless effort to guarantee the reliability of programs
when no guarantees are to be had. [Barwise, 1989, 845]

:ﬁmd he reported that I accepted this summary as perfectly reasonable
“so long as the first premises is intended as a reflection of the positior;
that is — implicitly or explicitly — endorsed by the proponents of
program verification.”

‘ In' my estimation, the discussion by Barwise was a valuable con-
tribution to the debate, partially because, in general, he endorsed my
position. But I also took exception to some of his arguments in a letter
that subsequently appeared in his column. In particular, he alleged
that I had committed the Fallacy of Identification by viewing “proofs”
as purely syntactical entities, an objection to which I took exception on
th.e grounds that this conception of “proof” was the relevant one
w1thin. this context; and he claimed that I had failed to sufficiently dif-
ferentlate “programs” as (abstract) types and “programs” as (causal)
instances, a conception fundamental to my position.

I therefore responded to this objection by distinguishing pro-
grams-as-texts (unloaded) from programs-as-causes (loaded), where
(human) verification involves the application of deductive methods to
programs-as-texts:

Hoare and I both assume that programs-as-causes are repre-
sented by programs-as-texts. The difference is that Hoare as-
sumes that programs-as-causes are always appropriately repre-
sented by programs-as-texts, an assumption that I challenge.
[Fetzer, 19891, 1353]

Thus, programming languages themselves function as models of
(actual or virtual) machines, where the degree of correspondence be-
tween them is a matter that, in the case of target machines, unlike that
of virtual machines, cannot possibly be ascertained on the basis of
purely deductive reasoning.

There have been several interesting developments since then. In
1990, for exampie, the Association for Computing Machinery invited
me to participate in a formal debate on the scope and limits of formal
metl.lods in software engineering. My opponents were Mark Ardis and
David Gries, two of “The Gang of Ten”. More significantly, in 1991, I

267

received an invitation to contribute a 10,000 word entry on “program
verification” from Allen Kent and James G. Williams, the editors of the
Encyclopedia of Microprocessors, an entry that they also included in their
Encyclopedia of Computer Science and Technology, both published by
Marcel Dekker [Fetzer, 1993a and 1994].

In my more recent work on this subject, I have emphasized the dif-
ferences between formal systems, scientific theories, and computer
programs. While mathematical proofs, scientific theories and com-
puter programs qualify as syntactical entities, scientific theories and
computer programs have a semantic significance (for the physical
world) that proofs (in pure mathematics) do not possess. And com-
puter programs possess causal capability that even scientific theories
do not enjoy, which reflects the fact that each of them can be subjected
to different methods of evaluation [Fetzer, 1991].

I have also collaborated with Tim Colburn and Terry Rankin in
editing a collection of classic and contemporary articles on program
verification, which includes papers by John McCarthy, Peter Naur,
Robert Floyd, C. A. R. Hoare, William Scherlis and Dana Scott,
Bertrand Meyer, Bruce Blum, Christiane Floyd, Brian Smith, and other
papers [have discussed [Colburn et al., 1993]. In my capacity as the
editor of Minds and Machines, 1 have sought to nurture the fledgling
field of “the philosophy of computer science”, as | think of it, and have
had the opportunity to publish several important articles by Colburn
[1991] and David Nelson [1992 and 1994], among others.

Opinions appear to differ over whether or not the program verifi-
cation debate has had any impact on the computer science community.
A book entitled Fatal Defect by Ivars Peterson will appear next month

[Peterson, 1995]. He discusses a series of mishaps and accidents in-
volving computer systems and reviews contributions by many experts
in the field, including four of “The Gang of Ten”. He describes the
program verification debate, accurately quoting passages from
“Program Verification: The Very Idea™:

#The limitations involved here are not merely practical: they
are rooted in the very character of causal systems themselves”,
Fetzer emphasized. “From a methodological point of view, it
might be said that programs are conjectures, while executions
are attempted—and all too frequently successful —refuta-
tions.” [Peterson, 1995, 181]

Nevertheless, he concludes that, “In the end, the debate didn’t settle
much of anything, and Fetzer's arguments did not derail program ver-
ification”, although its proponents are perhaps “less extravagant” in
their claims and “less casual” in their use of the language of “proof”
[Peterson, 1995, 183].

268

During a vi.sit to England last November, however, 1 had the plea-
sure of presenting a lecture at King's College of the University of Lon-
don,Adurmg which I reviewed many of these matters. During the dis-
cussion, I was fascinated to learn from a member of the audience th;it
he had been in Japan recently and that, while waiting at a train station
outsfide Tokyo, he had encountered C. A. R. Hoare. He took the oppor-
tunity to ask Hoare about something he had heard of but did not then
understand, the program verification debate. Hoare almost immedi-
ately launched into an explanation of how the use of formal methods
may detect problems in programs at an early stage and thereby yield
better average performance under statistical controls.*

. Whether or not philosophy has contributed to computer science in
this instance, there appears to be an important interaction phe-
nomenon here that deserves to be considered. As I previously ex-
plained, I deliberately chose to pursue these issues without appealin
to Ithe analytic/synthetic distinction, first, because it would have reg-
quired explanation for the benefit of computer scientists, and, second
bec_ause many philosophers deny it. Even though I myself ha've neve;
believed there were appropriate grounds for its rejection, I was reluc-
tant to rest my case on such a disputed premise.

The more | have examine these problems, however, the more
cc?nylnced I have become of the tenability — and even vitality —of that
distinction. The differences between virtual and physical machines
between abstract entities and causal systems, between algorithms anc'l
programs, between pure and applied mathematics, and between va-
lidity and soundness upon which these crucial issues depend are di-
verse manifestations of the underlying difference between kinds of
knowledge that are analytic and a priori and kinds of knowledge that
are syn_thetic and a posteriori. To those who remain skeptical of this
distinction, I ask you to consider the significance of the program veri-
fication debate as a form of vindication of the distinction.

My sfudies of computer systems have also convinced me that the
more serious the consequences of making mistakes, the greater our
f)bhgatmn to insure that they are not made. This obligation in turn
implies that purely formal methods must give way to program testing
and system prototyping as the degree of seriousness of making mis-
takes increases, as follows:

F arrlnal Proofs Program Testing System Prototyping
b ' |
a priori a posteriori
: Caceana Degrees of Seriousness of Mistakes - - - - - >
owest highest

269

Thus, this appears to me to be one situation in which philosophy
makes a (non-trivial) difference to important issues of public policy
[Fetzer, 1996].

ACKNOWLEDGMENTS

I am deeply indebted to Chuck Dunlop, Al Sanders, Rob Kling, David
Cole, David Nelson and Tim Colburn. For further discussion, see Col-
burn [1993].

NOTES

! The program had been inspired by David Hemmendinger, a philoso-
phy Ph.D. who had acquired an M.S. in computer science and had
joined the faculty at Wright State. The other participants were Charles
E. M. Dunlop, an old friend who convinced me that I should join him
in taking advantage of this program while it lasted; Ken Ray, a former
student of his and of mine when we were visiting faculty at the Uni-
versity of Cincinnati during 1978-80; Adam Drozdek, who recently re-
ceived tenure at Duquesne University; and Joe Sartorelli, who was
then on leave from Arkansas State University.

2 My grounds for rejecting Quine’s critique of the analytic/synthetic
distinction are elaborated, for example, in Fetzer [1990, 105-110], and
in Fetzer [1993b, 16-21]. Indeed, my first written assignment in gradu-
ate school at Indiana University in 1966 was composing a critique of
“Two Dogmas” . While I disagreed with Quine even then regarding the
first “dogma”, I agreed with him regarding reductionism; see Fetzer
[1993b, 51-55].

3 |f the paper had begun with this title, however, it might not have
been published. Years later, I was advised that the area editor for de-
pendable computing, John Rushby, had said that, if it had come to him
for editorial review, he would have killed it Such are the vicissitudes
of publication.

4 The audience member turned out to be the philosopher Donald
Gillies.

REFERENCES

Ardis, M., V. Basili et al. (1989) “Editorial Process Verification”, Com-
munications of the ACM, March 1989: 287-288.

Barwise,]. (1989) “Mathematical Proofs of Computer System Correct-
ness”, Notices of the AMS. September 1989: 844-851.

270

Cohn, A. (1989) “The Notion of Proof i
% in Hardware Verification” E
nal of Automated Reasoning 5: 127-139. e

Colburn, T. R. (1991) “Program Verification, Defensible Reasoning

and Two Conceptions of Computer Science”, Mi i
ety ooy P ience”, Minds and Machines

C’o!l:g)m, T. R. (1993) “Computer Science and Philosophy”, in T. R.
olburn, J. H. Fetzer, and T. L. Rankin, Eds., Program Verification
Dordrecht, The Netherlands: Kluwer Academic Publishers, 3-31.

Colburn, T. R.,]. H. Fetzer, and T. L. Rankin, Eeds. (1993) Program Ver-

ification. Dordrecht, The Netherlands: Kluwer Academic Publish-
ers.

DeMillo, R., R. Lipton and A. Perlis. (1979) “Social Processes and

Proofs of Theorems and Programs” , Communicat
g munications Of the ACM,

Denning. (1989) “Reply from the Editor i ief” i
n Chief 1
the ACM, March 1989: 289-290. e

Dobson, J. and B. Randell. (1989) “Program Verification: Public Image

:2; Private Reality”, Communications of the ACM, April 1989: 420-

Fetzer,]. H. (1974) “Grunbaum’s ‘Defense’
; (se’ of the S T8
Philosophical Studies, April 1974: 173-187. ye———

Fetzer,]. H. (1981 ientifi
. I{eidel(_) Scientific Knowledge. (Dordrecht, The Netherlands:

Fetzer, J. H. (1988) “Program Verification: The Vi
i : The Very Idea”, C ira-
tions of the ACM, September 1988: 1048-1063. e

Fetzer, J. H. (1989a) “Response from the A e icati
uthor”, Ci
ol s g gy ommunications of the

Fetzer, J. H (1989b) “Program Verification Reprise: The Author’s Re-
sponse”, Communications of the ACM, March 1989: 377-381.

Fetzer, J. H. (1989c) “ Author’s Response”, C icati
adoipnd e s p , Communications of the ACM,

271

Fetzer,]. H. (1989d) “Patents and Programs”, Communications of the
ACM, June 1989: 675-676.

Fetzer,]. H. (198%) “Another Point of View”, Communications of the
ACM, August 1989: 920-921.

Fetzer, J. H. (1989f) “Mathematical Proofs of Computer System Cor-
rectness: A Response”, Notices of the AMS, December 1989: 1352-
1353.

Fetzer, J. H. (1990) Artificial Intelligence: Its Scope and Limits, Dordrecht,
The Netherlands: Kluwer Academic Publishers.

Fetzer, J. H. (1991) “Philosophical Aspects of Program Verification”,
Minds and Machines, May 1991: 197-216.

Fetzer, J. H. (1993a) “Program Verification”, Encyclopedia of Computer
Science and Technology, Vol. 28. New York, NY: Marcel Dekker,
237-254.

Fetzer,]. H. (1993b) Philosophy of Science. New York, NY: Paragon
House Publishers.

Fetzer, J. H. (1994) “Program Verification”, Encyclopedia of Microproces-
sors, Vol. 14. New York, NY: Marcel Dekker, 47-64.

Fetzer, J. H. (1996) “Computer Reliability and Public Policy: Limits of
Knowledge of Computer-Based Systems”, Social Philosophy & Pol-
icy, 13: 229-266.

Hempel, C. G. (1965) Aspects of Scientific Explanation. New York, NY:
The Free Press.

Hill, R., R. Conte et al. (1989) “More on Verification”, Communications
of the ACM, July 1989: 790-792.

Hoare, C. A. R. (1969) “An Axiomatic Basis for Computer Program-
ming”, Communications of the ACM, October 1969: 576-583.

Marcotty, M and H. E. Ledgard. (1986) Programming Language Land-
scape, 2nd ed. Chicago, IL: Science Research Associates, 1986.

Muller, H., C. Holt, and A. Watters. (1989) “More on the Very Idea”,
Communications of the ACM, April 1989: 506-510.

272

Nelsgn, D. (1992),"’De§ucﬁve Program Verification (A Practitioner’s
ommentary)”, Minds and Machines, August 1992: 283-307.

Nelson, D. (1994) Discussion Review of Robert S. Boyer and J Strother
‘I‘\;’oore_:, A Computational Handbook, and] Strother Moore (ed.)
pecial Issue on System Verification”, Journal of Automated'

1();1_50’“"8’ December 1989, Minds and Machines, February 1994, 93-

Peterson, 1. (1995) Fatal Defect: Chasing Kill
s : er Computer Bugs. "
Random House/Times Books. . Pt By P v

Pleasant, J., L. Paulson et al. (1989) “Th
3] 10 173 ! e Very Idea” icati
the ACM, March 1989, 374-377. b,

273

