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Abstract

This is a draft of the written version of comments on a paper by David Cole, presented orally at the
American Philosophical Association Central Division meeting in New Orleans, 27 April 1990. Following
the written comments are 2 appendices: One contains a letter to Cole updating these comments. The
other is the handout from the oral presentation.

In general, I am sympathetic to Cole’s arguments; my comments seek to clarify and extend the
issues. Specifically, I argue that, in Searle’s celebrated Chinese Room Argument, Searle-in-the-room
does understand Chinese, in spite of his claims to the contrary. He does this in the sense that he
is executing a computer “process” that can be said to understand Chinese. (The argument that the
process in fact does understand Chinese is made elsewhere; here, I merely assume that if anything
understands Chinese, it is a “process” executed by Searle-in-the-room.) I also show, by drawing an
analogy between the way that I add numbers in my head and the way that a calculator adds numbers,
that Searle-in-the-room’s claim that he does not understand Chinese does not contradict the fact that,
by executing the Chinese-natural-language-understanding algorithm, he does understand Chinese.

1 COLE’S ARGUMENT.

David Cole (1990) claims that, in the Chinese Room Argument (Searle 1980, 1982, 1984), “Searle has . . .
succeeded in proving that no computer will ever understand . . . any . . . natural language” (1).1 Cole’s
emphasis, however, is not on it being the case that the computer cannot understand , but on it being the
case that it is the computer that cannot understand, for he goes on to say that “this is consistent with the
computer’s causing a new entity to exist (a) that is not identical with the computer, but (b) that exists solely
in virtue of the machine’s computational activity, and (c) that does understand English” [sic; I assume he
meant to say: (c) that does understand Chinese] (1). The new entity is a “virtual person”, to be thought
of along the lines of what computer scientists call a “virtual machine” (1-2). Cole says that “showing that
the machine itself does not understand does not show that nothing does” (1). Later, he says that “from the
fact that someone [viz., Searle in the room]2 does not understand Chinese it does not follow that no one
understands Chinese” (3).

1
Page references are to Cole’s manuscript unless otherwise indicated.

2
I shall use ‘Searle-in-the-room’ to refer to the person in the Chinese Room who follows the natural-language-processing

algorithm. I shall use ‘Searle’ to refer to John Searle, the author of the Chinese Room Argument.
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Throughout, Cole assumes that there is understanding of Chinese (or, of natural language) going on
in the Chinese Room. I have argued elsewhere that indeed something does understand Chinese (Rapaport
1985, 1986ab, 1988ab). My arguments for this center around two claims: (1) The program being executed
implements the abstract data type of a Chinese-understander. (2) Understanding can be purely syntactic.
But I shall not repeat those arguments here.

My comments will focus on Cole’s claims (1) that it is not Searle-in-the-room or the computer that
understands natural language and (2) that what understands natural language is a “virtual person”, where a
virtual person, according to Cole, is what computer scientists call a “virtual machine”. In particular, I shall
argue (a) that what understands natural language is, not a virtual machine, but what computer scientists
call a “process”, and (b) that, nevertheless, there is a sense in which Searle-in-the-room does understand
Chinese, in spite of his (Searle-in-the-room’s) claim to the contrary. That is, if the virtual person understands
natural language, so does the computer and so does Searle-in-the-room!

2 THE KORNESE ROOM.

Cole’s first argument for the claim that it is not Searle-in-the-room who understands Chinese concerns
the “Kornese” Room (3-5): Imagine a very large AI/natural-language-processing program, as described
in Searle’s original Chinese Room Argument, for “understanding” Chinese (more precisely, for modeling a
cognitive agent, with a distinctive personality, who understands Chinese) as well as for “understanding”
Korean. (In order to be a bit more definite, we might imagine two generalized augmented-transition-network
(ATN) parser-generators that interface with a knowledge-representation and reasoning system (cf. Shapiro
1982, Rapaport 1988b) such that if the input is determined to be in Chinese, a Chinese sub-ATN is jumped
to from the starting node of the ATN, and if the input is determined to be in Korean, a Korean sub-ATN is
jumped to.) Suppose that Searle-in-the-room executes this program. Suppose that there is no information
flow between the two fragments of the program (so neither “knows” about the other; for instance, except for
a common starting node, the two branches of the ATN would be entirely separate, and we would need the
two knowledge bases constructed during the course of the conversation also to be kept separate). Finally,
“suppose that the behavioral evidence is as clear as can be . . . that there are two distinct individuals in
the room” (5). Let Pc be the Chinese-“understanding” individual; let Pk be the Korean-“understanding”
individual.

Now, I have no quarrel with the plausibility of this extension of Searle’s Chinese Room. Indeed,
the SNePS/CASSIE research projects of the SNePS Research Group and the Center for Cognitive Science
at SUNY Bu↵alo consist in the design of just such cognitive agents as are in the Chinese Room. Designing
such dual cognitive agents (as are in the Kornese Room) seems to me an interesting research project.

Cole needs to show that Pc is not Searle-in-the-room; i.e., he needs to show that it is possible
that Searle-in-the-room can fail to understand Chinese while something other than Searle-in-the-room does
understand Chinese. His argument (5-6) is as follows (letting ‘S’ stand for Searle-in-the-room):

1. Pc 6= Pk : assumed in the description of the Kornese Room (4-5)
2. Pc = S i↵ Pk = S : assumed in the description of the Kornese Room (5)
3. (Pc = S & Pk = S) _ (Pc 6= S & Pk 6= S) : from 2, by propositional logic
4. ¬(Pc = S & Pk = S) : else Pc = Pk (by transitivity of ‘=’), contra 1
5. Pc 6= S & Pk 6= S : from 2, 3, by propositional logic
6. Pc 6= S : from 5, by propositional logic

This argument is valid. But, I claim, it is unsound. Or perhaps I should say that it is not expressed
properly. For ‘=’ is the wrong relation between Pc and S (or Pk and S). The relation is, as Cole argues, that
between a virtual machine (roughly, Pc) and a machine (namely, S) that implements it. But implementation
is not identity. (In fact, I believe that implementation is a semantic relation, but that, too, is a story for
another day.) And, I shall claim, S can implement both Pc and Pk without it being the case that Pc = Pk.

Cole’s second argument for the claim that it is not Searle-in-the-room who understands Chinese
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is that “the same mind [i.e., the same P c] could have been realized by the activity of someone other
than Searle—Searle could even lose his job in the Room and be replaced by another—while the Chinese
conversation continues” (9). I certainly agree with Cole’s premise. But what I think follows from it is
not that S 6= Pc or that Searle-in-the-room fails to understand Chinese, but—again—that ‘=’ is not the
relationship between S and Pc. The relationship is one of implementation: S implements Pc, and, of course,
implementation is precisely such that some S0 6= S can also implement Pc.

Cole also argues that it is not the computer that understands either Chinese or Korean: “it would
be a mistake to attribute . . . [understanding Chinese] to the computer itself” (6): If one asks the Kornese
Room in Korean whether it understands Chinese, it will reply that it doesn’t; and, presumably (though Cole
does not say so), if one asks it in Chinese whether it understands Chinese, it will reply that it does. But
does it follow that the computer does not understand Chinese? I think not: I see nothing incompatible with
the computer understanding Chinese but not understanding that it understands Chinese.

To see how this might be the case, consider a student in an introductory computer-science course
who is given a complicated Turing-machine algorithm that, unknown to her, computes the greatest common
divisor (GCD) of two integers. Suppose that the student, as an exercise in using Turing machines, is given
pairs of integers and asked to follow the algorithm. Suppose further (though, no doubt, this is bad pedagogy!)
that she is not told that what she is doing is computing the GCD of the inputs and that she (alas!) does
not even know what a GCD is. Surely, she is computing GCDs, though she does not understand that she
is doing so. (Or consider the Korean Room (introduced in Rapaport 1988b, not to be confused with the
Kornese Room), in which a benighted Korean scholar waxes eloquently about plays that are in fact Korean
translations of Shakespeare, not knowing that they are translations—he understands Shakespeare, but does
not understand that he understands Shakespeare. Or consider the calculator example, discussed in Section
6, below.)

Cole says that in the Kornese Room, “no single entity understands both Chinese and Korean; there
are two subjects, virtual persons: one who understands Chinese and one who understands Korean. These
two virtual subjects are realized by a single substratum, the computer” (6). However, by my arguments,
the computer understands both languages, but it does not “know” that it understands both. (Actually, it’s
not quite right to say that it is the computer that understands both; see below.) Now, if the computer
could share information between its two modes of operation, it should eventually come to realize that it
understands both. For instance, if the two knowledge bases shared information such as visual information,
then it’s highly likely that the system would infer what was happening. Or, for instance, suppose that our
student who is using a Turing machine to compute GCDs learns in her math class what GCDs are and
is given a di↵erent algorithm in that class for computing them. Eventually, she should be able to realize
that the Turing-machine algorithm is also a GCD algorithm. Of course, in the Kornese Room, if there is
no possibility of shared information, then we have a “schizophrenic” mind; for all practical purposes, there
would be two minds. (Or, rather, there would be at most two minds, for Cole’s argument does not deal with
whether anything is understanding Chinese or Korean. For that, of course, we need other arguments, such
as the two I adverted to above.)

So, assume that there is understanding of Chinese going on in the Chinese Room. If it is not Searle-
in-the-room who understands it, then there must be something else that does. Call it a “virtual person”.
Similarly, in the Kornese Room, “there are two subjects, virtual persons: one who understands Chinese and
one who understands Korean” (6). What is a virtual person? It is “a mind realized by” Searle-in-the-room
(9). Cole appears to claim that this virtual person is the virtual machine defined by the natural-language-
understanding program that Searle-in-the-room executes. What, then, is a virtual machine?

3 PROCESSES AND VIRTUAL MACHINES.

According to Andrew S. Tanenbaum’s standard text (1976), “Each machine [i.e., each computer] has some
machine language . . . . In e↵ect, a machine defines a [computer programming] language. Similarly, a
language defines a machine—namely, the machine that can execute all programs written in that language”
(Tanenbaum 1976: 3-4). There can be a sequence of virtual machines, each implemented in the next. So,
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a virtual machine is an abstract machine, defined by a language and implemented in either another virtual
machine or (ultimately) an actual (physical) machine. A program, P , written in language L can be executed
by an L-machine, ML. If ML is a virtual machine, then P is “executed” by ML only in an abstract sense;
ultimately, P is executed by some physical machine.

At this point, we need another technical notion: “A process . . . is . . . a program in execution. It is
an active entity, capable of causing events to happen. . . . A process is in contrast to a program, which is
a passive entity” (Tanenbaum 1976: 12). A process is to a program as a live animal is to “a dead animal,
or model of an animal” (Tanenbaum 1976: 12). As I have argued elsewhere (and I believe that Cole would
agree (1-2)),3 if anything understands Chinese, it is not a Chinese-understanding program, but a process—the
Chinese-understanding program being executed (Rapaport 1988b).

Before pursuing this further, let’s return briefly to the Kornese Room. There we have one program
but, apparently, two virtual persons. Let us agree (at least for the sake of the argument) that the pro-
gram/computer doesn’t understand both languages. The notion of a process can clarify this. First, arguably
there are two programs, not one, even if there is only one piece of code. Since there is no information flow,
the two fragments of “the” program could be teased apart. Second, even if there really is only one program,
there are two separate processes: A process consists of a (static) program (a piece of text) and a (dynamic)
“state vector” (containing information about which instruction of the program is to be executed next, the
current values of the variables, etc.; cf. Tanenbaum 1976: 12). The state vector can be teased apart into
two separate ones because of the lack of information flow . So, it’s not “the program” or “the computer”
that understands natural language (if anything does) or that computes GCDs. Rather, it’s a process that
understands natural language (if anything does) or that computes GCDs. Similarly, it’s not the human brain
that understands natural language (or that computes GCDs); rather, it’s a process (implemented) in the
brain that does so.

So we have the following situation: A given computer, M1, can really only execute instructions in its
machine language, ML. We can write a program, PL, in a “higher-level” (or, at least, easier) language, L,
which is translated into ML; the translation is then executed on M1. (This can be done either by “compiling”
the L-program, PL, into an ML-program, PML, which is then executed on M1, or by “interpreting” each
instruction of PL, step by step, into (usually several) input-output–equivalent instructions in ML and exe-
cuting them before interpreting the next PL-instruction.) Alternatively, we could have a physical computer
M2 whose machine language is L, and we could execute PL directly on M2.

A third alternative is to “imagine the existence of a hypothetical computer or virtual machine
whose machine language is” L (Tanenbaum 1976: 2). This is a level of abstraction: Rather than thinking
of writing L-programs that are translated into ML and run on M1, we can think more abstractly of writing
L-programs to be run directly on A hypothetical M2. This sequence of abstractions can be continued: To
take an example from our own research, the computational cognitive agent (or virtual person, if you will)
that we call ‘CASSIE’ (cf. Shapiro & Rapaport 1987 and forthcoming; Rapaport 1988b and forthcoming)
is essentially a program written in the SNePS knowledge-representation and reasoning system; SNePS is
written in Lisp; the Lisp program is either executed directly on a physical TI Explorer Lisp machine or else
is translated into a C program; the C program is translated into machine language for an Encore Multimax
(another physical computer). So, CASSIE is a virtual machine with respect to SNePS, which is a virtual
machine with respect to Lisp, which is either a virtual machine with respect to the physical Explorer or is a
virtual machine with respect to C, which is a virtual machine with respect to Multimax machine language,
which is a virtual machine with respect to the physical Multimax.

The process corresponding to an L-program PL (such as the SNePS-program CASSIE) that is being
executed “exists” abstractly in the L-machine (the virtual SNePS machine), but it exists actually in the
bottom-level physical machine (either an Explorer or a Multimax).

So, if anything understands natural language, it’s the CASSIE process. Is it also the SNePS process?
(And, ultimately, the Multimax process?) Can we say that CASSIE understands natural language (if she
does) but that SNePS does not? (Or that CASSIE does, but that the Multimax does not?)

3
For even clearer indications of agreement, cf. the revised version (dated 6-6-89) of Cole’s paper, pp. 11, 17.
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4 WHO UNDERSTANDS?

As Yorick Wilks (1984: 109-110) has pointed out, the software/hardware distinction is a matter of convention,
because any software can be hardwired. That is, any virtual machine can be built as a physical machine
(subject only, perhaps, to engineering ingenuity). That is, the virtual-machine/physical-machine distinction
is a matter of convention. But this means that the notion of a virtual person as a solution to the puzzle
of the Chinese Room gets us nowhere as an explanation of who (if anything) understands Chinese. (It will,
however, help explain how Searle-in-the-room can both understand and not understand Chinese! But more
on this below.) Why does the notion of a virtual person not help? For one thing, even though it is a process,
not a machine, that does the understanding—that is, even though Cole’s notion of a virtual person is more
properly to be identified with a process, not with a virtual machine—nevertheless, the virtual machine that
executes the program, resulting in the process, is the embodiment or locus of the understanding.

(Elsewhere, I have characterized a process as like being an actor (read “machine”) playing (read
“executing”) a role in a play (read “program”) (Rapaport 1987, 1988a). Of course, this raises the objection
that an actor who, playing the role of Hamlet, “kills Polonius” does not actually kill Polonius or kill the actor
who is playing Polonius. But the actor playing Hamlet does “talk to Polonius” and is actually talking to the
actor who is playing Polonius. Similarly, if the actor playing Hamlet “kisses Ophelia”, then he actually kisses
Ophelia; i.e., he actually kisses the actor who is playing Ophelia. As with many other cases, sometimes a
simulation of X is an X (cf. Rapaport 1988ab; Shapiro & Rapaport, forthcoming.))

Another answer to the question of why the notion of a virtual person doesn’t help is that, as I hope
to make clear shortly, all levels are executing the “same” process: That is, given a program P in language L,
which is implemented in language L0, which is implemented in . . . which is implemented in machine language
ML, which is implemented in machine M , all of them (working simultaneously) are doing what program P
does. But there is a level that is the “main” one and which is such that it is the primary locus of explanation
and description, and which can be re-implemented elsewhere. That level is the program P (it is CASSIE
in our example, or the Chinese-understanding program in Searle’s case; cf. Dennett’s (1978) theory of the
intentional stance). The bottom (or physical) level does what the top-level program does because the top
level does it; it is the top level that “drives” the bottom level (just as it is the bottom level that implements
the top level).

Now, why do I say that all levels are executing the “same” process? Consider a GCD algorithm,
written in Lisp. Does the Lisp process compute GCDs? Let’s assume that it does (this is fairly, but not
entirely, uncontroversial).4 But suppose that the Lisp program is compiled into C. Does the C process
compute GCDs? Absolutely: I could walk away with the C program and execute it to compute GCDs
without ever knowing that the C program was produced from a Lisp program (compiling is a form of
automatic programming). And similarly down to the machine-language level. Of course, I might not
understand how (or what) the C program (let alone the machine-language program) does if that’s all I
have: Nothing about compilers requires that the compiled program be well-structured, suitably modular,
and adequately self-commenting. It is (only?) the higher-level abstractions in the Lisp program that can
best show me how and why the program works. Similarly for CASSIE: it’s the program at her level of
organization and abstraction that enables me to say what she’s doing.

Strictly speaking, however, it is not the same process that all levels are executing (hence the “scare
quotes” on ‘same’, above). This is because, according to Tanenbaum’s definition, a process consists of
a program and a state vector. If there are two di↵erent programs (two di↵erent pieces of text), then, a
fortiori , there are two di↵erent processes. (Moreover, the variables referred to in the two state vectors
will, in general, be di↵erent.) Nevertheless, just as there is a virtual person, namely, Pc, implemented in a
virtual machine, so is there a Chinese-understanding virtual person implemented by Searle-in-the-room. But
whether or not this Chinese-understanding virtual person is di↵erent from Pc, it is a Chinese-understanding
process.

So, although I am sympathetic to Cole’s claim that it is a “virtual person” that understands Chinese
(or Korean, or whatever) if anything does, I would not only go further and assert that it does understand

4
What I have in mind here is the alleged need of a human to interpret the program’s input and output.
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Chinese (or Korean, or whatever) (as I have argued in Rapaport 1988b) but that the machines—all of
them, all the way down to the physical one—that implement the virtual person also understand Chinese (or
Korean, or whatever). That is, Searle-in-the-room is the embodiment or locus of the understanding. But
this needs a bit more clarification.

5 UNIVERSAL TURING MACHINES.

First, Cole’s example of a virtual machine is too simplistic. He talks of “emulation software [that] may make
a computer built using an Intel 8088 processor behave as though it were a Z80” (7). But the issues are more
general than virtual machines. Let TG be a Turing-machine program that takes as input two integers, a
and b, and that outputs their GCD, g: TG(a, b) = g. Now let U be a universal Turing machine that takes
three items of input: a description (DTG) of TG, a, and b, and that outputs g; so, U(DTG , a, b) = g. What
does U do? One thing is quite clear: U computes GCDs; U does what TG does. Or is it more accurate to
say that U (merely) runs a (virtual) Turing machine (namely, TG), which, in turn, computes GCDs? Now,
one of the major points about universal Turing machines is precisely that they can compute any computable
function. How they do it is irrelevant to what they do: U might, indeed, implement the virtual TG; i.e., U
might run TG on input (a, b). But U might also look at DTG to determine that TG computes GCDs and
then use its own GCD-algorithm to compute them. (Or—though I have some doubts about this, having to
do with the Halting Problem5—U might use its own inductive-inference algorithm to learn what TG does as
well as how it does it, and then write its own algorithm to mimic TG’s behavior.) Or, as John Case (personal
communication) has suggested, U “might just run mysterious code (MC) which happens to compute gcd,
but the MC could be so obscure that one cannot prove in ZF that it does the job. Furthermore, one may
not be able to prove in ZF that the machine is universal even though it is . . . ”. Etc.

So, what the Multimax (or Explorer, or Intel 8088, or whatever) (i.e., the Multimax that is executing
a program that creates a virtual machine that executes a program that . . . that creates CASSIE, who
understands natural language)—what that Multimax is doing is . . . understanding natural language.

6 TWO WAYS OF ADDING.

Second, let me turn to some further considerations on this theme that, I think, clinch the argument that it
is the bottom-level machine (insofar as it is a machine rather than a process running on the machine) that
is understanding natural-language. These considerations will also indicate how it is possible for the machine
(or for Searle-in-the-room) both to understand Chinese and not to understand Chinese.

Most of us lack clear intuitions about how computers work or about universal Turing machines. So
let me give some more mundane examples of analogous situations. First, consider a hand-puppet. A hand-
puppet without my hand in it is like a program; with my hand animating it, it’s like a process. Suppose that,
putting my hand in the puppet, I cause it to pick up a piece of chalk and write a numeral on a blackboard.
Did I write the numeral? It seems to me that I did, though indirectly (but not much more indirectly than
had I been wearing a glove).

Next, consider a marionette. Suppose that, by manipulating its strings, I cause the marionette to
pick up the chalk and write the numeral. Did I write the numeral? Again, it seems to me that I did,
although in a roundabout way (and not quite as clearly as in the hand-puppet case)..

Suppose, next, that I press some buttons that cause a robot to pick up the chalk and write the
numeral. Here, clearly, I did two things: (1) I pushed buttons. (2) I also—in a roundabout way, by pushing
the buttons—wrote the numeral. (Or, to be more cautious about it, I caused the numeral to be written.
There are, it would seem, interesting issues to be pursued here in terms of causation and moral responsibility;
alas, they will have to be left for another time.)

My final example is, for me, the clearest: When I use my pocket calculator to add two numbers, what
5
Thanks to Johan Lammens for pointing this out to me.
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am I doing? Am I pushing buttons? Yes, directly. Am I adding two numbers? Yes, indirectly. But—and,
here, recall the variety of possible universal Turing machines—note that insofar as I am adding, I am not
doing it in the same way that I do it by hand (using the elementary-school paper-and-pencil algorithm we
all know and love) or the way that I do it in my head (there, I use a slightly di↵erent “mental arithmetic”
algorithm). So, I know (or, I have) at least two di↵erent and unrelated ways to add: (1) using my paper-
and-pencil algorithm (or my mental algorithm); (2) pushing buttons in an appropriate manner on a pocket
calculator. It’s irrelevant whether the calculator also uses either of my own algorithms. The important point
is that when I add by pushing buttons on a calculator, I am not using either of those algorithms. The
analogy I wish to draw is this: my using (say) my mental algorithm stands in the same relationship to my
pushing buttons in order to add on my calculator as Searle-in-the-room’s understanding English stands to
his manipulating the cards with “squiggles” on them to understand Chinese. Searle-in-the-room has two
di↵erent ways to understand language: (1) the way he understands English and (2) the way he understands
Chinese. These two ways are unrelated.

Moreover, that Searle-in-the-room can claim that he doesn’t understand Chinese is like a claim that
I might make that I don’t understand what I am doing with my calculator. This seems to me to be a
perfectly reasonable claim. That is, someone might ask me to push certain buttons on a calculator and to
read o↵ the display. In so doing, I am (let us suppose) adding. But I might not understand that that is what
I am doing, and I might even deny that that is what I am doing. (This is even clearer if the “calculator” is
a high-tech one and my button-pushings cause it to compute some obscure-to-me statistical function.) Yet
adding is going on when I push the buttons on my calculator, and I am adding, albeit di↵erently from how
I normally do it, not to mention indirectly (by pushing buttons). Note, though, that it is quite possible that
the calculator’s adding algorithm is precisely the same as my mental algorithm. In that case, the calculator
is not adding di↵erently from how I normally do it. Rather, there are, then, two separate and independent
processes going on. In fact, when adding with a calculator, I often check the arithmetic by simultaneously
doing the addition in my head and comparing my results with the calculator’s. This, then, is how Searle-
in-the-room can implement both Pc and P k even though Pc 6= P k: it is as if Searle-in-the-room were using
two calculators.

Now this would seem to suggest that it is really the calculator , not me, that is adding; I’m just
pushing buttons (I’m just providing the causal energy for the calculator). So, to return to the Chinese Room,
who understands Chinese? Perhaps, after all, it is not Searle-in-the-room, except indirectly and ignorantly.
What is it in the Chinese Room that corresponds to the calculator? Suppose that, instead of cards with
Chinese “squiggles” on them, Searle-in-the-room has a Chinese-natural-language-understanding calculator:
The English program tells Searle-in-the-room which buttons to press. More precisely, let us suppose that
the native Chinese speakers outside the Room push buttons that produce a display on Searle-in-the-room’s
calculator. Searle-in-the-room’s English program tells him which buttons to press in reply, given that display.
He presses them, producing a new display that the native speakers see. And so on. Now, who (or what)
understands Chinese? The calculator plus its program as causally energized by Searle-in-the-room, that is,
the process.

7 CONCLUSION.

So: The native speakers of Chinese are communicating with something that understands Chinese. They are
communicating with a process (call it a virtual person if you will; I have no quarrels with that)—a process be-
ing executed by Searle-in-the-room. Searle-in-the-room can say that he himself does not understand Chinese.
That does not contradict the fact that, by playing the elaborate Chinese-natural-language-understanding
card game, he is also understanding Chinese.

Similarly, when I use a calculator to add two numbers while simultaneously adding the two numbers
in my head, I am executing two processes. If I never learned how to add, but were given instructions on
how to use the calculator, then I would be adding. Yet I could say that I myself did not know how to add.6
That would not contradict the fact that, by pushing calculator buttons, I am adding.

6
This, no doubt, has ramifications for contemporary mathematics education!
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Or would it be better to say merely that there is an adding process going on? The question raised
here—echoing Bertand Russell’s objection to Descartes’s cogito ergo sum7—is: “Where does I come from?”.8
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COMPUTER PROCESSES AND VIRTUAL PERSONS:

Comments on Cole’s “Artificial Intelligence and Personal

Identity”

William J. Rapaport

Department of Computer Science

and Center for Cognitive Science

State University of New York at Buffalo

Buffalo, NY 14260

rapaport@cs.buffalo.edu

18 April 1990

This is an outline of comments on Cole 1990; a full copy is available by writing me at the above address.

1 Outline of Cole’s Argument.

1. ASSUMED (or not argued for here):

There is understanding of
⇢

Chinese
NL

�
going on in the Chinese Room (CR).

2. It’s not

⇢
Searle

the computer

�
who understands

⇢
Chinese

NL

�
.

Arguments that it’s not Searle:

(a) KORNESE ROOM: It’s possible that there are 2 “virtual persons” (Pc, Pk), but only 1 Searle.

(b) Can switch Searle to Searle0, yet same Chinese understander.

Argument that it’s not the computer:
Computer says ‘Yes’ and ‘No’ to: “Do you understand Chinese?”

3. It’s a VIRTUAL PERSON (i.e., a virtual machine) that understands Chinese (& Korean)

(viz., the VM defined by the program that Searle executes)

Argument: There is understanding; it’s not Searle who understands.
) something else understands.
Call it a “VP”.
Then: a VP is a VM.
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2 Rapaport’s Comments.

1. Agreed: There is understanding going on.
[(a) NLU is an abstract data type implementable in different media.
(b) NLU can be purely syntactic] (For arguments, see Rapaport 1985, 1986ab, 1988ab.)

3. VP understands?

Program (text) doesn’t understand.
Computer (inert physical mechanism) doesn’t understand.
COMPUTER RUNNING THE PROGRAM UNDERSTANDS:

• understanding is a process (a program in execution)

• the
⇢

VM
physical M

�
running the program understands.

2. Searle doesn’t understand?

If the high-level VM understands, so does the physical implementing machine.

(a) Universal Turing Machine Argument

Suppose TG(a, b) = g = GCD(a, b).
Let U be a UTM.
U(DTG , a, b) = g. WHAT DOES U DO?

(i) U computes GCDs? YES
(ii) U (merely) runs a (virtual) TM, viz., TG, which (in turn) computes GCDs? MAYBE:

• U might run TG.
• U might determine what TG does & then use its own algorithm to compute GCDs.
• U might run Mysterious Code that computes GCD but which is such that it is impossible to prove

in ZF that MC computes GCD and it is impossible to prove in ZF that U is a UTM. (John Case)

So: what does the bottom-level, physical machine do?
Answer: whatever the higher-level, virtual machine is doing!

i.e.: understanding NL. (This is the level of cognitive explanation.)

(b) Calculator Argument

When I use a calculator to add, what am I doing?

• pushing buttons? YES
• adding? YES

BUT: not in the way that I add “in my head”
AND: I can do both, simultaneously

When I use a calculator to find “standard deviations”, what am I doing?

• pushing buttons? YES
• computing standard deviations? YES

BUT: I don’t know how to compute standard deviations; I don’t even know what they are!

Cf.: Searle understands English, not Chinese; yet Searle understands Chinese
NOT INCONSISTENT (No more inconsistent than my computing yet not knowing how to compute SDs,
or than my adding via calculator while adding in my head.)

In the CR, what understands Chinese?
ANSWER: Searle, playing the Chinese natural-language-understanding card game (i.e., the process)
Cf.: By pushing calculator buttons, I am adding (?)
Or: There is adding going on (cf. Russell on Descartes—not: cogito ergo sum, but: thinking is going on).

WHERE DOES I COME FROM?
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Department of Computer Science
214 Bell Hall
UNIVERSITY AT BUFFALO
STATE UNIVERSITY OF NEW YORK
Buffalo, NY 14260

5 April 1990

Prof. David Cole
Department of Philosophy
University of Minnesota
Duluth, MN 55812

Dear Dave:

Enclosed are my draft comments on your APA paper.  I've thought about
revising them a bit, but I think it's better that I send them off now.
I will, of course, not read them (I'd have to read awfully fast to get
it done in 10 minutes!), but merely summarize a few highlights, as
indicated below.

One way that my view has changed from this draft is that I think I now
have sorted out the relation of machine, virtual machine, program, and
process, and their relations to understanding.  More precisely, I now
believe that understanding (or, understanding natural language) is a
_process_ (i.e., a program being executed by a machine (virtual or actual)),
and it is the machine (virtual _or_ actual) that understands.
Thus, the thrust of my comments will be that if it is a virtual machine
at _any_ level that understands, then so do all virtual machines,
at all levels, all the way down to the physical machine at the bottom
level.  Therefore, Searle _does_ understand Chinese insofar as he is
executing a Chinese-understanding program, even though he doesn't
understand Chinese when he's not executing it.  My oral comments will
focus on Sections 5 (on universal Turing machines) and 6 (on an analogy
with using a calculator to add).

Looking forward to seeing you again.

Sincerely,
Bill

William J. Rapaport
Associate Professor of Computer Science
Interim Director, Center for Cognitive Science
rapaport@cs.buffalo.edu
rapaport@sunybcs.bitnet
(716) 636-3193, 3180
Fax:  (716) 636-3464

cc:  Prof. Andrew Naylor, session chair
     Dept. of Philosophy, IU/South Bend


