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Abstract

This project concerns the development and implementation of a computational theory of how
human readers and other natural-language-understanding systems can automatically expand
their vocabulary by determining the meaning of a word from context. The word might be
unknown to the reader, familiar but misunderstood, or familiar but being used in a new sense.
‘Context’ includes the prior and immediately surrounding text, grammatical information, and
the reader’s background knowledge, but no access to a dictionary or other external source of
information (including a human). The fundamental thesis is that the meaning of such a word
(1) can be determined from context, (2) can be revised and refined upon further encounters with
the word, (3) “converges” to a dictionary-like definition if enough context has been provided
and there have been enough exposures to the word, and (4) eventually “settles down” to a
“steady state”, which, however, is always subject to revision upon further encounters with
the word. The system is being implemented in the SNePS-2.1 knowledge-representation and
reasoning system, which provides a software laboratory for testing and experimenting with the
theory. This research is a component of an interdisciplinary, cognitive-science project to develop
a computational cognitive model of a reader of narrative text.

0 SUMMARY. This project concerns the development and implementation of a computational
theory of how human readers and other natural-language-understanding systems can automatically
increase their lexicon (i.e., expand their vocabulary) by determining the meaning of a word from
context. The word might be unknown to the reader, familiar but misunderstood, or familiar
but being used in a new sense. ‘Context’ includes the prior and immediately surrounding text,
grammatical information, and the reader’s background knowledge, but no access to a dictionary or
other external source of information (including a human).

The fundamental thesis is that the meaning of such a word (1) can be determined from
context, (2) can be revised and refined upon further encounters with the word, (3) “converges”
to a dictionary-like definition if enough context has been provided and there have been enough
exposures to the word, and (4) eventually “setftles down” to a “steady state”, which, however,
is always subject to revision upon further encounters with the word. FEach encounter with the
word yields a definition—a hypothesis about meaning. FEach subsequent encounter provides an
opportunity to revise this hypothesis in the light of new evidence. The revision is unsupervised:
There is no (human) “trainer” and no “error-correction” techniques. Finally, no domain-specific
antecedent background information is required for the development and revision of the hypothesized
definition (with the exception of the word’s lexical category (part of speech)).



The system is being implemented in the SNePS-2.1 knowledge-representation and reasoning
system. SNePS’s inference package allows rules for both deductive and default reasoning. In the
presence of a contradiction, a belief-revision package allows the user to remove from the context
in which the contradiction arose one or more of the propositions from which the contradiction
was derived. Once the offending premise is no longer asserted, the conclusions that depended on
it also cease to be asserted in that context. This mechanism is used to revise definitions that
are inconsistent with a word’s current use. SNePS also has an English lexicon, morphological
analyzer/synthesizer, and a generalized ATN parser-generator that translates the input English
directly into a propositional semantic network.

The vocabulary-expansion system, called ‘Cassie’, consists of SNePS-2.1 and a knowledge
base of background information. Cassie’s input consists, in part, of information from the text
being read, which is input directly in the knowledge-representation formalism. A major part of
the proposed research is updating and further developing the grammar in order to automate the
transduction of sentences from the text into information in the knowledge base. The sentences
themselves will still be entered by hand, although experiments are planned using on-line text
corpora. Cassie’s other input is questions asked about the material being read. In particular,
we can ask, “What does (word) mean?” This triggers a deductive search of the knowledge base,
consisting of background information plus information from the story, all marked with its “degree”
of immunity from revision. Qutput consists of a report of Cassie’s current definition of the word,
or answers to other queries.

This system, which provides a software laboratory for testing and experimenting with the
theory, is a component of an interdisciplinary, cognitive-science project to develop a computational
cognitive model of a reader of narrative text. The proposed research will be an important con-
tribution to this and similar projects, since to fully model a reader, it is important to model the
ability to learn from reading, in particular, to expand one’s vocabulary in a natural way while
reading, without having to stop to ask someone or to consult a dictionary. Moreover, a complete
lexicon could not be manually encoded, nor could it contain neologisms or new meanings given
to old words in new contexts. Text-understanding, message-processing, or information-extraction
systems need to be robust: They should not break down just because they have encountered an
unknown expression. This is especially the case for systems that use unconstrained input text
and must operate independently of human intervention. One application is to “intelligent agents”,
which ought to be able to figure out a human user’s instructions without necessarily stopping to
ask what each new word means. Other possible applications include language-acquisition studies
and computational lexicography. Issues to be investigated include: elaborating the algorithms for
defining verbs, modifiers, and proper names; dealing with synonyms and ill-formed input; using
etymological and morphological clues for definitions; inducing generalizations from instances; and
determining which parts of a hypothesis to revise.

1 INTRODUCTION. We propose to continue our development of a computational theory of
how readers (or natural-language-understanding (NLU) systems) can automatically increase their
lexicon (i.e., expand their vocabulary) by determining the meaning of a word from context [20].
The word might be unknown to the reader, familiar but misunderstood, or familiar but being used
in a new sense. By ‘context’, we include the prior and immediately surrounding text, grammatical
information, and the reader’s background knowledge, but no access to a dictionary or other external
source of information (including a human).



Our fundamental thesis is that the meaning of such a word (1) can be determined from
context, (2) can be revised and refined upon further encounters with the word, (3) “converges”
to a dictionary-like definition if enough context has been provided and there have been enough
exposures to the word, and (4) eventually “setftles down” to a “steady state”, which, however,
is always subject to revision upon further encounters with the word. FEach encounter with the
word yields a definition—a hypothesis about meaning. FEach subsequent encounter provides an
opportunity to revise this hypothesis in the light of new evidence. The revision is unsupervised:
There is no (human) “trainer” and no “error-correction” techniques. The hypothesized definitions
are not guaranteed to converge to a (or the) “correct” meaning of the word (if such exists). However,
they do converge on a meaning that is stable with respect to further encounters. Finally, no
domain-specific antecedent background information is required for the development and revision of
the hypothesized definition (with the exception of the word’s lexical category (part of speech)).

Evidence for our thesis can be seen in the psychological literature and in (informal) protocols
that we have taken from subjects who were asked to reason out loud about their definition-forming
and revision procedures when shown passages containing unknown words. These same passages
have served as input to a computational system that develops and revises definitions in ways similar
to the human subjects.

This system serves two purposes: (1) It provides a software laboratory for testing and
experimenting with the detailed implementation of our theory. (2) It is a component of a larger
project to develop a computational cognitive model of a reader of narrative text, summarized in [19]
(see also: [1] [5], [7], [17], [19], [22], [35], [45], [48], [50]-[53], [60]-][62], [70], [73]-[77], [85], [90]-[92],
194 [96]).

2 SIGNIFICANCE. The proposed research will be an important contribution to this and simi-
lar projects, since to fully model a reader, it is important to model the ability to learn from reading
([62], [64]), in particular, to expand one’s vocabulary in a natural way while reading, without having
to stop to ask someone or to consult a dictionary.

This research is also of independent significance. It is part of the task of lexical processing
of text, dealing, in particular, with the need to process new or unknown words. As pointed out in
[98], no assumption of a “fixed complete lexicon” can be made: It could not be manually encoded,
nor could it contain neologisms or new meanings given to old words in new contexts. As an
issue in computational linguistics, we want NLU systems (a.k.a. “text-understanding”, “message-
processing”, or “information-extraction” systems) to be (as) robust (as humans): They should
not break down just because they have encountered an unknown expression. This is especially
the case for systems that use unconstrained input text and must operate independently of human
intervention. E.g., “intelligent agents” ought to be able to figure out a human user’s instructions
without necessarily stopping to ask what each new word means. Similarly, a system designed to
locate “interesting” news items from an online information server should not be limited to keyword
searches; e.g., if the user is interested in news items about dogs, and the filter detects items about
“brachets” (a term mnot in its lexicon), it should deliver those items as soon as it figures out that a
brachet is a kind of dog.

Two key features of our system mesh nicely with these desiderata; they can be summarized
as the advantages of learning over being told: (1) Being told requires human intervention, whose
availability cannot be guaranteed. Qur system operates independently of a human teacher or trainer



(with one exception that we propose to overcome). (2) One can’t predict all information that might
be needed to understand unconstrained, domain-independent text; hence, the system must be able
to learn on its own. Qur system does not constrain the subject matter (the “domain”) of the text.
Although we are primarily concerned with narrative text, our techniques are perfectly general; we
propose to extend them to other kinds of texts and knowledge-sharing applications. Assuming the
availability of an appropriate grammar, we are developing (and propose to elaborate on) algorithms
for producing definitions independent of domain. However, the definitions are dependent on the
system’s background knowledge: The more background knowledge the system has, the better the
definitions will be, and the more quickly they will “converge”. We are not proposing a system that
develops “correct” definitions (see §3); rather, we propose a system that develops dictionary-like
definitions that enable the reader to continue with the task of understanding the text.

Other possible applications of our system include its use in language-acquisition studies
in cognitive science, since our implemented model will be a good “laboratory” for comparing
vocabulary-learning behaviors of humans and computers. We plan also to investigate its appli-
cability to computational lexicography: i.e., the automatic construction of dictionary entries given
samples of use-in-context of words to be defined.

3 THEORETICAL BACKGROUND. Ourimplemented theory at least partially tests the the-
sis that symbol manipulation (syntax) suffices for NLU [60], [63]. Humans understand one another
by interpreting the symbols they read or hear. This interpretation is a mapping from the speaker’s
(or writer’s) syntax to the hearer’s (or reader’s) concepts (semantics). We take the meaning of a
word (as understood by a cognitive agent) to be the position of that word in a highly interconnected
network of words, propositions, and other concepts. Le., a word’s meaning is its (syntactic) relation
to other words, and words of similar meaning will have similar connections [55], [56]. However, even
words whose meanings are very similar to one another do not have identical connections to other
terms and are, therefore, distinguishable from one another in the context of the agent’s experience.
We thus adopt Quine’s view that the beliefs held by a cognitive agent form an interconnected web,
where a change or addition to some portion of the web can affect other portions that are linked to
t [57]. Such an agent’s understanding of natural-language (NL) input will, therefore, be a part of
such a web or semantic network composed of internal (mental) objects. If we take these mental ob-
jects to be symbols, then the interpretation of linguistic input is a syntactic operation, and formal
symbol manipulation is sufficient for attaching meanings to words [60], [63].

Objects about which we can think, speak, or write need not exist. On a purely referential,
or extensional, semantics, words for such non-existent objects would be meaningless. However, in
a syntactically based semantics, the linguistic contexts in which words for such objects are found
can provide meanings for them. The meaning of an expression (for an agent, in a context) can
be viewed as a mental object made of the internal representation of fragments of linguistic input
previously encountered by the agent. E.g., the meaning of ‘bachelor’ for agent A in context C
might be (_s are unmarried, John is a _, that guy is a _, no women are _s, _s are men, etc.). As
different uses of a word are heard or read, new contexts come into being. Since we take meaning to
be context, an agent’s understanding of a word’s meaning is thus revised by successive encounters
with it [58].

In this (idiolectic) sense, the meaning of a word for a cognitive agent is determined by
idiosyncratic experience with it. In another sense, the meaning of a word is its dictionary definition,
which usually contains less information than the idiolectic meaning. Taken to its fullest extent,



the contextual meaning described above includes a word’s relation to every concept in the agent’s
mind. The meaning of ‘bachelor’ would involve all the concepts connected to ‘unmarried’, ‘John’,
‘that guy’, ‘women’, ‘men’, and all the concepts connected to those concepts, etc., throughout the
entire web of the agent’s thoughts. Thus, unless the agent has two completely unrelated networks
of ideas, the extreme interpretation of “meaning as context” defines every word in terms of every
other word an agent knows. This is too circular and too unwieldy to be of much use. We need to
limit the connections used to provide the definition.

In a related project [36], Hill proposed a SCOPE function that selects a subnetwork con-
taining only those concepts reachable from a particular concept by a path of connections that is no
longer than a given length. Consider a case where agent A has direct links from ‘bachelor’ to ‘John’,
‘John’ to ‘tall’, and ‘tall’ to ‘big’. Suppose there is no shorter path from ‘bachelor’ to ‘big’ than that
which runs through ‘John” and ‘tall’. Then, if b represents A’s concept of ‘bachelor’, the function
SCOPE(b, 2) would select from A’s mental network a subnetwork containing A’s concepts of ‘John’
and ‘tall’, but not ‘big’. SCOPE(b, 3) would include ‘big’, but not other concepts reachable from
it, unless they had other, shorter paths to ‘bachelor’.

Rather than selecting a subnetwork of a particular scope in order to limit the connections
used to provide a definition, we select for particular kinds of information. Not all concepts within
a given subnetwork need be equally salient to a conventional, dictionary-style definition of a word.
Agent A may have a direct mental connection from ‘bachelor’ to ‘John’, but agent B may never
have heard of him, yet A and B may be able to agree on a definition of ‘bachelor’. In the attempt
to understand and be understood, people abstract certain conventional information about words
and accept this information as a definition. When a new word is encountered, people begin to
hypothesize a definition.

There are two approaches to lexicography: On the prescriptive approach, the definitions
given are the “correct” definitions, and any other use is, by definition, incorrect. The other approach
is descriptive: A word means what it is used to mean by those who use it. E.g., the prescriptive
definition of the phrase ‘4 la mode’ is “in the current fashion”, but a descriptive definition of the
phrase as observed in American contexts would be something like “with ice cream”. Our system
produces descriptive definitions (cf. §8.7).

4 TIMPLEMENTATION. Our system is being implemented in the SNePS-2.1 semantic-network
knowledge-representation and reasoning (KRR) system developed by S.C. Shapiro and the SNePS
Research Group [71], [76], [78], [80]. SNePS has been and is being used for a number of research
projects in NLU [1]-]2], [48]-[53], [59]-[60], [62]-[63], [65], [72]-[73], [76]-[77], [79], [89]-[94], [96]-
[97].

SNePS is an appropriate KRR system for our approach to lexical semantics. Each node
in a SNePS network represents a concept or mental object (possibly built of other concepts),
with labeled arcs linking the concepts. All information, including propositions, is represented
by nodes, and propositions about propositions can be represented without limit. Arcs merely
form the underlying syntactic structure of SNePS. This is embodied in the restriction that one
cannot add an arc between two existing nodes. That would be tantamount to telling SNePS a
proposition that is not represented by a node. Paths of arcs can be defined, allowing for path-
based inference, including property inheritance within generalization hierarchies. There is a 1-1
correspondence between nodes and represented concepts. This uniqueness principle guarantees



that nodes will be shared whenever possible and that nodes represent intensional objects such as
concepts, propositions, properties, algorithms, and objects of thought including fictional entities
(e.g., Sherlock Holmes), non-existents (e.g., the golden mountain), and impossible objects (e.g., the
round square) [76], [77].

SNePS’s inference package allows one to write rules for ordinary deductive reasoning as well
as for default reasoning, which allows the system to infer “probable” conclusions in the absence of
specific information to the contrary. When certain combinations of asserted propositions lead to
a contradiction, the SNeBR belief-revision package allows the user to remove from the context in
which the contradiction arose one or more of the propositions from which the contradiction was
derived [47]. Once the offending premise is no longer asserted, the conclusions that depended on it
also cease to be asserted in that context. We use this mechanism to revise those beliefs about the
meanings of words that turn out, upon further encounters with the words, to be inconsistent with
their use.

We have developed algorithms for partially automating the identification and removal or
modification of the offending premise, based on SNePSwD, a default belief-revision system that
enables automatic revision [16], [46]. We propose to explore techniques for fully automating it.

SNePS also has an English lexicon, morphological analyzer/synthesizer, and a generalized
ATN parser-generator that, rather than building an intermediate parse tree, translates the input
English directly into a propositional semantic network ([72], [73]; see [60], [62], [79] for detailed
examples).

5 CURRENT STATUS. “Cassie”, our vocabulary-expansion system, consists of SNePS-2.1
(including SNeBR and the ATN parser-generator), SNePSwD, and a knowledge base (KB) of back-
ground information. Currently, the KB is hand-coded, because it represents Cassie’s antecedent
knowledge; how she acquired this knowledge is irrelevant. We begin with what some might call a
“toy” KB, but each of our tests so far has included all previous information, so the KB grows as
we test more words. This raises the problem of controlling and localizing the reasoning process.
Although we do not have a panacea for this, some results have been obtained in a related project
on SNePS reasoning [11]; see also §§8.2, 8.3.

Cassie’s input consists, in part, of information from the text being read. Currently, this,
too, is input directly in the KRR formalism. However, a major part of our proposed research is
the updating and further development of our grammar in order to automate the transduction of
sentences from the text into information in the KB. The sentences themselves will still be entered
by hand, although we plan to experiment with using an on-line text corpus that could be interfaced
with SNePS, such as the tagged Wall Street Journal (WSJ) corpus, the (tagged) Brown Corpus,
or other corpora available from sources such as the Linguistic Data Consortium. Cassie’s other
input is questions asked about the material being read. In particular, we can ask, “What does
(word) mean?” This triggers a deductive search of the KB, consisting of background information
plus information from the story, all marked with its “degree” of immunity from revision. Qutput
consists of a report of Cassie’s current definition of the word, or answers to other queries.

5.1 Algorithms. At present, we have developed algorithms for hypothesizing and revising mean-
ings for nouns and verbs that are unknown, mistaken, or being used in a new way. Cassie was



provided with background information for understanding the King Arthur stories in the Morte
Darthur [43]. E.g., when presented with a sequence of passages involving the hitherto unknown
noun ‘brachet’, Cassie was able to develop a theory that a brachet was a dog whose function is to
hunt and that can bay and bite. ( Webster’s Second [88] defines it as “a hound that hunts by the
scent”.) However, based on the first context in which the term appeared (viz., “Right so as they sat,
there came a white hart running into the hall with a white brachet next to him, and thirty couples
of black hounds came running after them with a great cry.”), the initial hypothesis was merely that
a brachet was a physical object that may be white. Fach time the term appeared, Cassie was asked
to define it. To do so, she deductively searched her background KB, together with the information
she had read in the narrative to that point, for information concerning (1) direct class inclusions
(especially in a basic-level category), (2) general functions of brachets (in preference to those of
individuals), (3) the general structure of brachets (if appropriate, and in preference to those of
individuals), (4) acts that brachets perform (partially ordered in terms of universality: probable
actions in preference to possible actions, actions attributed to brachets in general in preference
to actions of individuals, etc.), (5) possible ownership of brachets, (6) part/whole relationships
to other objects, (7) other properties of brachets (when structural and functional description is
possible, the less salient “other properties” of particular brachets are not reported, although we do
report any properties that apply to brachets in general), and (8) possible synonyms for ‘brachet’
(based on similarity of the above attributes). Some of these are based on psycholinguistic studies
of the sort of vocabulary expansion we are modeling [21], [39], [86]. In the absence of some or all
of this information, or in the presence of potentially inconsistent information (e.g., if the text says
that one brachet hunts and another doesn’t), Cassie either leaves certain “slots” in her definitional
framework empty, or includes information about particular brachets. Such information is filled in
or replaced upon further encounters with the term.

In another test, Cassie was told that ‘to smite’ meant “to kill by hitting hard” (a mistaken
belief actually held by the PI before reading [43]). Passages in which various characters were smitten
but then continued to act triggered SNeBR, which asks the user (i.e., the reader) which of several
possible “culprit” propositions in the KB to remove in order to block inconsistencies. Ideally,
the reader then decides which belief to revise. Although the decision about which proposition
(representing an incorrect definition) to withdraw and which new proposition (representing a revised
definition) to add has been partially automated (using SNePSwD), this remains the one area still
occasionally requiring human intervention. Automating this will be a major focus of our research.

A third case is exemplified by ‘to dress’, which Cassie antecedently understood to mean
“to put clothes on (something)”. This is a well-entrenched meaning, which should not be rejected.
However, upon reading that King Arthur “dressed” his sword, SNeBR detects an inconsistency.
Rather than rejecting the prior definition, we add to it. In this case, Cassie decides that to dress
is either to put clothes on or to prepare for battle. We plan to investigate getting Cassie to
generalize in situations like this: Since getting dressed is also a form of preparation (as is the use
of salad “dressing”), Cassie should be able to induce a more general meaning (while maintaining
such everyday meanings as putting clothes on).

Applying the principle that the meaning of a term is its location in the network (here,
a network of background information and story information), our algorithms for defining terms
deductively search the network for information appropriate to a dictionary-like definition. The
following sections sketch our algorithms for defining nouns and verbs and for revision. We assume
that our grammar has been able to identify the unknown word as a noun or a verb.



5.2 Noun-Defining Algorithm. Let N be the unknown noun.

PROCEDURE List1l

PROCEDURE List2

PROCEDURE

BEGIN

list (1) structure of Ns, (2) functions of Ns,
(3) stative properties of Ns only if there are general rules about
them.

list (1) direct class inclusions of N,
(2) actions of Ns that can’t be deduced from class inclusions,
(3) ownership of Ns, (4) synonyms of ‘N’.

List3 ::= BEGIN List2;
IF the system finds structural or functional information about Ns,
THEN List1 END.

IF N represents a basic-level category, THEN List3

ELSIF N
BEGIN

END
ELSIF N
ELSIF N

BEGIN

END
ELSIF N
BEGIN

END

represents a subclass of a basic-level category, THEN

report that N is a variety of the basic-level category that includes it;

IF Ns are animals, THEN list non-redundant acts that Ns perform;

list if known: functions of Ns, structural information about Ns,
ownership of Ns, synonyms of ‘N’;

list stative properties only if there are general rules about them

represents a subclass of animal, THEN List3
represents a subclass of physical object, THEN
List2;
IF system finds structural or functional information about Ns, THEN Listil
ELSIF system finds actions of N or synonyms of ‘N’, THEN
BEGIN list them; list possible properties of Ns END
ELSIF N is an object of an act performed by an agent, THEN
BEGIN report that; list possible properties of Ns END

represents a subclass of abstract object, THEN
list direct class inclusions of N & ownership of Ns;
IF system finds functional information about Ns, THEN
list: function, actions of Ns that can’t be deduced from class inclusions,
stative properties only if there are general rules, & synonyms for ‘N’
ELSE BEGIN list possible properties of Ns;
IF system finds actions of N or synonyms for ‘N’, THEN list them
ELSIF N is an object of an act performed by an agent,
THEN report that
END

ELSE {we lack class inclusions, so:}

BEGIN

END
END.

list: any named individuals of class N, ownership, possible properties;
IF system finds information on structure, function, actions, THEN list it
ELSIF N is object of act performed by agent, THEN report that



In all cases, we try to find functional information, and in all cases except that of abstract
nouns, we look for structural information. If such information can be found, we look for stative
properties only as general rules. We do not seek stative properties of individuals once we have data
about structure or function unless we are lacking any class inclusions, because such descriptions are
not usually salient to a dictionary-style definition. If we have no class inclusions, and are working
solely with individuals, we report stative descriptive properties even if we find some structural
or functional information about the individuals: When we have no class inclusions, we need any
information we can get. However, we do not bother trying to find synonyms, because we cannot
make any reasonable guesses at synonyms without class inclusions. We look for actions attributed
to Ns or, failing that, to individuals of class N in all cases except where N represents a variety
of an inanimate basic-level category. (If we know that we’re talking about a type of chair, there’s
no reason to look for actions, but if we know only that we’re talking about a physical or abstract
object, we don’t know enough to rule out the possibility that it can act.) If our class inclusions
are either limited to vague categories such as physical or abstract object, or lacking altogether,
and if we can find no information about structure, function, or actions (i.e., if the only slots in our
standard framework that may be filled are stative properties and possible ownership of individuals),
then we look for occurrences of the target word as the object of an act performed by an agent.

Deciding what information to look for is largely controlled by what we know about class
inclusion, especially whether the target noun represents a subordinate, superordinate, or basic-
level category [66]. We infer this information to make certain that any implicit class inclusions are
noticed by the system. Once the deduction is made, however, we search the network to abstract
the classes. All other definitional information is also abstracted by finding specific paths in the
network.

5.3 Verb-Defining Algorithm. Let V be the unknown verb.

BEGIN
report on cause and effect; categorize the subject;
IF V is used with an indirect object, THEN categorize objects and indirect object
ELSIF V is used with a direct object distinct from its subject,
THEN categorize the object
ELSIF V is used with its subject as direct object, THEN list the object as "itself"
END.

To define V', we currently report its predicate structure, a categorization of its arguments, and any
causal or enablement information we can find. To categorize an argument of V', we look for, in
order of preference, its membership in a basic-level category, membership in a subclass of animal,
or membership in some other known category.

5.4 Revision. When humans encounter a discrepancy between the way a word is used and their
previous understanding of it, they must either assume that the word is used incorrectly or decide
that their previous understanding requires revision. When Cassie encounters a contradiction de-
rived from combining story information with background knowledge, she must decide which of the
premises leading to the contradiction should be revised. To facilitate this, we tag each assertion
in the KB and the story with a “knowledge category” (kn_cat). (Assertions having no kn_cat
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are beliefs Cassie has derived.) These are ordered in a hierarchy of certainty of belief, so that the
system can restrict the field from which she chooses a belief for revision to premises believed with
the least certainty. The hierarchy of kn_cats, from greatest certainty of belief to least, is:

1. kn_cat intrinsic: Facts about language, including simple assertions and rules; very basic or
fundamental background knowledge. Found in the KB, not (usually) in stories. E.g., the
temporal relation “before” is transitive; containment of an item in a class implies contain-
ment in superclasses; encountering the usage V(agent, object, indobj) implies that V' can be
bitransitive.

2. kn_cat story: Information present in the story being read, including stated propositions and
propositions implicit in the sentence (necessary for parsing it); the SNePS representation that
would be built on parsing a sentence in the story. E.g., “Sir Gryflette left his house and rode
to town” contains the following story facts: Someone is named Sir Gryflette. That someone
left his house. That someone rode to town.

3. kn_cat life: Background knowledge expressed as simple assertions without variables or in-
ference. E.g., taxonomies (e.g., dogs are a subclass of animals), assertions about individuals
(e.g., Merlin is a wizard).

4. kn_cat story-comp: Information not directly present in the story, but inferred by the reader
to make sense of it. Such “story completion” [69] uses background knowledge, but isn’t the
background knowledge itself. Few (if any) assertions should be tagged with this kn_cat, since
any necessary story completion should (ideally) be derived by Cassie. We include it for cases
where a gap in her KB might leave her unable to infer some fact necessary to understanding
the story. Using the example from the kn_cat story, story completion facts might include:
Sir Gryflette is a knight; Sir Gryflette mounted his horse between leaving his house and riding
to town.

5. kn_cat life-rule.1: Background knowledge represented as rules for inference (using variables)
reflecting common, everyday knowledge. F.g., if z bears young, then z is a mammal; if z is
a weapon, then the function of z is to do damage; if  dresses y, then y wears clothing.

6. kn_cat life-rule.2: Background knowledge represented as rules for inference (using variables)
reflecting specialized, non-everyday information. E.g., if  smites y, then z kills y by hitting

Y.

7. kn_cat questionable: A rule that has already been subjected to revision because its original
form led to a contradiction. E.g., if 2 smites y, then z hits y and possibly kills y. This is
the only kn_cat that is never a part of input. Cassie attaches this tag when she revises a
rule that was tagged as a [ife-rule.2. Tt is a temporary classification while Cassie looks for
confirmation of her revision. Once she settles on a particular revision, the revised rule is
tagged as a life-rule.2.

In case of contradiction, Cassie selects, from among the conflicting propositions, a proposi-
tion of greatest uncertainty as a candidate for revision. If only one belief has the highest level of
uncertainty in the conflict set, it will be revised. If several alternatives exist with the same (highest
present) kn_cat, Cassie looks for a verb in the antecedent (humans more readily revise beliefs about
verbs than about nouns [24]). If this is still insufficient to yield a single culprit, then, in the current
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implementation, a human “oracle” chooses one (although this hasn’t been needed in our tests to
date). Ideally, Cassie would use discourse information to make the decision between possible cul-
prits at the same level of certainty. E.g., in the case of dressing a sword before fighting, the rule
about what it means to dress something might be selected for revision because it is unrelated to the
topic of fighting, whereas swords are closely associated with the topic. We will explore refinements
of this hierarchy as part of the proposed research.

At present, all the kn_cats (except for questionable) are assigned by a human when the
proposition is input. The assignment of the kn_cat story could be handled automatically: Cassie
would simply include it as a part of each proposition built from the parse of a sentence in a story
[62], [64]. Since story-comp is only a stop-gap measure, we need not worry about how Cassie might
assign it: Either she wouldn’t make any such assignment, or she would tag all derived propositions as
being derived as is already done by SNeBR. How might Cassie categorize the non-derived assertions
in her KB? Rules can be readily distinguished from non-rules, so the question breaks down into
two parts: How do we tell an entrenched rule (life-rule.1) from a less-entrenched rule (life-rule.?2),
and how do we tell an entrenched fact (intrinsic) from a less-entrenched fact (life)? We make the
distinction based on an intuitive feeling for how basic a concept is, or how familiar we are with a
concept. We plan to investigate how such intuitions can be formalized and automated.

Finally, a set of rules for replacing discarded definitions with revised definitions is being
developed. Here are two samples of such rules:

If the culprit has kn_cat life-rule.2, and if there are multiple consequents, cq1 & . .. &eq,,
and if cq, says that cg; is the cause of cq;, and if cg; is contradicted, then substitute two
rules. The first says that the original antecedent implies cq1 & . .. &Possibly(eq)& ... &eqn_q
and has kn_cat questionable. The second conjoins the original antecedent with cg; to
form a new antecedent, has as its only consequent ¢gq,, and has kn_cat life-rule.2.

E.g., suppose the culprit were: If x smites y, then z hits y & y is dead & z hitting y causes y to
be dead (kn_cat life-rule.2). On first encountering a smitee who survives, substitute the pair of
rules: (1) If z smites y, then z hits y & possibly y is dead (kn_cat questionable); (2) If z smites y
and y is dead, then z hitting y causes y to be dead (kn_cat life-rule.2). If asked for a definition of
‘smite’ now, Cassie will report that the result of smiting is that z hits y and possibly y is dead.

If the culprit has kn_cat life-rule.1 and has a single consequent (that is not a disjunc-
tion), then substitute a version of the culprit rule with a consequent that is an exclusive
disjunction of the old consequent with the place-holder SOMETHING.

E.g., suppose we had a rule: If  dresses y, then z puts clothes on y (kn_cat life-rule.7). On
encountering a contradiction, substitute the rule: If z dresses y, then z puts clothes on y xor
SOMETHING (kn_cat life-rule.1). This is used when the definition is well-entrenched, and we are
adding a new meaning.
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6 AN EXAMPLE. Here, we sketch Cassie’s handling of ‘smite’, with this background informa-
tion in the KB: There is a king named King Arthur. There is a king named King Lot. There is a
sword named Fxcalibur. Fxcalibur is King Arthur’s sword. Horses are animals. Kings are persons.
Knights are persons. Dukes are persons. “Person” is a basic-level category. “Horse” is a basic-level
category. “Before” and “after” are transitive relations. If x is dead at time t, x can perform no
actions at t or at any subsequent time. If x belongs to a subclass of person, x is a person. If a
person acts, the act performed is an action. If an agent acts on an object, and there is an indirect
object of the action, then the action is bitransitive. If an agent acts on an object, then the action
is transitive. If an agent acts on itself, then the action is reflexive. If x is hurt at time t, then x is
not dead at t. If x is not dead at time t, then x was not dead at any prior time. If x smites y at
time t, then x hits y at t, and y is dead at t, and the hitting caused the death. (Note that the last
is the only information about ‘smite’ in the KB.)

Cassie is then given a sequence of passages containing ‘smite’ ([43]: 13ff) interspersed with
questions and requests for definitions (Pn = passage #n; Dn = the definition created after Pn;
Qn = a question asked after Pn; Rn = the answer.)

P1: King Arthur turned himself and his horse. He smote before and behind. His horse was
slain. King Lot smote down King Arthur.

D1: A person can smite a person. If x smites y at time ¢, then x hits y at ¢, and y is dead at ¢.

Q1: What properties does King Arthur have?

R1: King Arthur is dead.

P2: King Arthur’s knights rescued him. They sat him on a horse. He drew Excalibur.

Q2: When did King Arthur draw?

The inference required to reply to Q2 triggers SNeBR,, which reports that King Arthur’s drawing
(i.e., acting) is inconsistent with his being dead. Cassie automatically removes the proposition
reporting her belief that smiting entails killing, which is replaced with two beliefs: that although
smiting entails hitting, it only possibly entails killing (kn_cat questionable), and that if smiting
results in a death, then the hitting is the cause of death. (These rules are not built in, ready to be
called when needed. They are inferred by the sorts of revision rules discussed in §5.4.)

D2: A person can smite a person. If  smites y at time ¢, then x hits y at ¢ and possibly y is dead
at t.

P3: Two of King Claudas’s knights rode toward a passage. Sir Ulfyas and Sir Brastias rode
ahead.  Sir Ulfyas smote down one of King Claudas’s two knights.  Sir Brastias
smote down the other knight. Sir Ulfyas and Sir Brastias rode ahead. Sir Ulfyas fought
and unhorsed another of Claudas’s knights. Sir Brastias fought and unhorsed the last of
Claudas’s knights. Sir Ulfyas and Sir Brastias laid King Claudas’s last two knights on the
ground. All of King Claudas’s knights were hurt and bruised.

The information that the knights were hurt was added in forward-chaining mode to allow Cassie to
notice that that they were still alive at the time that they were hurt and therefore could not have
died earlier at the time that they were smitten. Cassie has now heard of two cases in a row (King
Arthur, and the two knights) where a smitee has survived being smitten, with no intervening cases
of death by smiting, yielding:

D3: A person can smite a person. If x smites y at time ¢, then x hits y at .

Further encounters with ‘smite’ cause no further revisions. Not only has the definition stabilized
(“converged”), but it has done so in a manner similar to our human protocols.
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7 RELATED WORK. We have endeavored to incorporate, or be consistent with, research in
psycholinguistics on language acquisition, notably the work already cited in §§5.1, 5.4. We plan to
elaborate our theory of verb acquisition in the light of research on verb meanings [25], [26].

In computational linguistics, there have been many language acquisition and definition
projects. In addition to those already cited, there are: [3], [4], [9], [10], [27]-[33], [40], [54], [81]-
[83]. There are, of course, many more. In this section, we can only briefly discuss a few of these.

7.1 Zernik & Dyer [98] compiles definitions of words and phrases, especially figurative phrases,
from conversation into a hierarchical lexicon. Figurative phrases are linguistic patterns whose
meaning cannot be understood by composition of the meanings of their component words (e.g., “to
put one’s foot down”). Their system has a pattern constructor that analyzes parsing failures and
modifies its patterns accordingly, and a concept constructor that selects from a set of strategies
according to background information about the goals and plans a person is likely to have in various
situations. If the first interpretation of a phrase is inconsistent with that information, the system
queries the user. It then suggests various interpretations more consistent with the goals of persons
in the story until the user confirms that a correct interpretation has been reached.

Since we focus on literary, rather than conversational, discourse, Cassie is not informed by
a human user when she misunderstands. This does not mean that her errors will always remain
undetected. As long as the misunderstanding is compatible with further encounters with the word
and with Cassie’s general knowledge, there is no reason for Cassie to revise her understanding.
However, if further reading leads to the conclusion that a previous definition was in error, Cassie
revises her understanding without explicit instruction.

We have not attempted to deal with figurative phrases or idioms. Cassie treats all words
literally. Some multi-word lexical entries exist, but they are treated as words, rather than as
phrases, and their meanings are not derived from (nor even necessarily related to) the meanings
of their component words. If the literal interpretation of a word that was used figuratively should
cause a contradiction with Cassie’s general knowledge, she may revise her prior understanding of
the word by creating a secondary meaning. Such a secondary meaning might correspond to the
figurative sense of the word, but Cassie would not know that it was figurative, nor would she be
able to construct a new multi-word lexical entry from input of a series of single words. We propose
to explore these possibilities further.

7.2 Pustejovksy [54] has discussed defining unknown verbs, using an “Extended Aspect Cal-
culus”, in terms of their associated case-roles or arguments, using certain semantic and syntactic
markers, including a notion of canonical English word order. He also uses simulated visual infor-
mation in conjunction with his Calculus, so that his system “sees” the action of a sentence while
“hearing” it. This was an attempt to model a child gaining an understanding of a verb by observing
an “extensional definition”. His focus in this research was on how a child might identify particular
thematic roles with specific grammatical functions in a sentence. Thematic roles are not assigned
randomly to verbs, but exist in a hierarchy. A verb will not, for example, have a Goal unless it first
has a Theme. In addition to the dependencies among roles, meaning can be marked as positive
or negative with respect to motion, abstraction (tangibility vs. intangibility), directness, complete-
ness, and animacy. The theory is that the thematic roles and the markedness can be perceptually
observed, and used to understand a sentence by mapping the roles to the parts of the sentence.
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Thus, if Pustejovsky’s system, TULLY, is informed of an animate agent with direct motion and
an animate object negative as to motion (at beginning, middle, and end times) while hearing the
sentence: “Mary hit the cat”, TULLY will map Mary to the role of agent and the cat to the role
of patient, and so understand the sentence.

Because we focus on how a linguistically competent agent may learn new words, rather than
on how children initially acquire language, we are not concerned with how to map thematic roles
to words in a sentence. We assume Cassie has a sufficiently sophisticated knowledge of grammar
that such assignments are made automatically while reading. We do, however, use information
about the argument structure of a verb, and about what types of nouns can serve as arguments to
a particular verb, in synthesizing its definition. We do not use any form of extensional definition,
since one almost never has such information available when one encounters a new word in narrative.
Cassie must produce her definitions of verbs, as of other words, strictly from NL context and stored
knowledge.

7.3 Hastings [30]-[32] presents several versions of a system, Camille, that uses knowledge of a
given domain to infer a word’s meaning. Hastings’s approach is like ours in that the goal is to allow
the system to read and acquire word meanings “on its own”, without the intervention of a human
tutor. His approach differs, however, in the types of information sought as the meaning of a word,
and in the nature of the KR.

For each domain, the initial KB consisted of a taxonomy of relevant objects and actions.
Camille attempts to place the unknown word appropriately in the domain hierarchy. In this respect,
Camille can be viewed as an implementation of the theory of [40]. To this basic system, Hastings
has added: a mutual exclusivity constraint (to avoid mapping too many words to the same concept);
a script applier that allows Camille to match the unknown word with a known word that has filled
the same slot in a particular script, or, in the case of a verb, with a known word whose arguments
(slot-fillers) match those of the target word; and an ability to recognize the existence of multiple
senses for a word (so that the same word may fit more than one place in the domain hierarchy).
In most instances, the meaning sought appears to be synonymy with a known word, unlike Cassie,
which can create new concepts (defined in terms of preexisting ones). In one version, however,
Camille is given the capacity to create a new node, and insert it into the domain hierarchy. This,
however, is only available for unknown nouns. Verbs can be “defined” only by mapping them to
their closest synonyms.

Hastings’s evaluation of Camille’s performance is given in terms of “correctness” of word
meaning. The focus of the work is on the comparative precision and accuracy of the various versions
of Camille as they attempt to map unknown terms onto known nodes. For us, such a notion of
“correctness” does not apply.

7.4 Siskind [82], [83] is concerned with learning the meanings of words, as we are, but his focus
is on first-language acquisition during childhood, whereas ours is on relatively mature cognitive
agents who already know a large part of their language and are (merely) expanding their vocab-
ulary. Nonetheless, some of our techniques are applicable to the sorts of cases Siskind considers;
we plan to investigate this further. There are, however, important differences in our approaches.
Siskind takes as given (1) an utterance, (2) a simultaneous visual perception, (3) a mental rep-
resentation of the situation perceived, which is caused by it, and (4) an assumption that the
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utterance means that mental representation. He has implemented algorithms that assign parts of
the mental-representation-meaning to parts (words) of the utterance. Given “multiple situations,”
these algorithms “converge” to “correct word-to-meaning mappings”.

Although we also assume an utterance (a sentence from the text being read) and a mental
representation that the utterance means (the SNePS network built as a result of reading the sen-
tence), Cassie does not use visual perception to produce the mental representation. In most cases
of reading, any mental representation (including any mental imagery) would be produced by the
text, so visual perception of a real-world situation simply does not arise. There is, however, an
obvious exception: illustrated texts. Although Cassie currently does not make use of any illustra-
tions, she could (in principle): First, assuming appropriate techniques for transducing illustrations
to (mental) representations in the KB, such representations could then be used to help determine
meanings, since they would be part of the KB. This could be done in one of at least two ways:
(1) by using propositional representations of the illustrations, in which case our algorithms would
work more or less as they do now, or (2) by having explicit reference to imagistic representations,
including these as part of the meaning [38]. Second, we have already experimented with techniques
for merging illustrations and text, so we already have mechanisms in place for carrying this out

[84], [85].

Another difference between our systems is that Siskind’s begins with a mapping between
a whole meaning and a whole utterance, and infers mappings between their parts. Cassie already
has both of those mappings and instead seeks to find or infer definition-style relations between the
unknown word and the rest of the KB. Moreover, as explained in §§3, 8.7, it does not make sense
in our theory to speak of “correct” word-to-meaning mappings.

Finally, Siskind claims that his theory provides evidence for “semantic bootstrapping”—
using semantics to aid in learning syntax. In contrast, our system uses syntactic bootstrapping
(using syntax to aid in learning semantics [25], [26]), which seems more reasonable for our situation.

8 NEXT STEPS.

8.1 Developing the Grammar. One significant improvement that we must undertake is the
development of a generalized ATN grammar that can parse simplified forms of the sentences in
[43] (cf. §6). The grammar for a previous version of SNePS (SNePS-79) that was capable of
parsing a reasonable fragment of English directly into SNePS network representations needs to
be updated for SNePS-2.1, and needs a capacity to add new words to the lexicon when they are
encountered. Developing such a capacity means only that a combination of morphological analysis
and grammatical constraint on the parse of the sentence will be used to determine the new word’s
part of speech. This will suffice to allow the parse of sentences that contain the word, and to permit
Cassie to decide whether to use her noun-definition algorithm or her verb-definition algorithm when
we ask what the word means. (Such a determination does not actually require a word’s presence
in the lexicon as separate from the KB: Its position in the network can identify its part of speech.
But a simple look-up in the lexicon is faster than searching through the network. As long as we
are using a system that requires a separate lexicon for parsing, we may as well take advantage
of it.) In addition to adapting the SNePS-79 grammar to SNePS-2.1, we especially intend our
new grammar to build appropriate representations of causal and hyponym-hypernym [33] relations
between clauses.
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8.2 Believing Reported Synonyms. Although Cassie does not add her definitions to her KB, she
believes almost all the elements of the reported definitions. I.e., the class inclusions and assorted
properties of nouns and the results of actions are all present in her KB. However, this is not always
true of the reported synonyms. If Cassie believes some word to be a synonym of the target noun,
that will be reported, but our system also reports other synonyms without building that information
into the KB. This means that we can avoid requiring Cassie to withdraw belief in the synonymy of
a pair of words as she learns more about their meanings, but it also means that our system cannot
be considered identical with Cassie, since it reports information she does not believe.

We intend to address this problem for the sake both of cognitive validity and of reduced
computational expense. In our current implementation, all candidate synonyms (those sharing
a superclass with the target noun) must themselves become, in a sense, target nouns subject to
portions of the noun-definition algorithm. In a KB of any size, the need to partially define many
candidate synonyms each time we wish to define one noun could quickly become prohibitively costly.
If Cassie already believes that a word is synonymous with the target noun, it is not necessary to
define it.

One approach is to subject all candidates to the partial definition process when we first look
for synonyms. Those that survive are asserted in the KB to be possible synonyms. The next time,
those possible synonyms that survive the process are asserted to be probable synonyms. The third
time a candidate synonym survives having its partial definition compared with the target noun,
we asgsert that it is a synonym. Subsequent requests for a definition of the target noun will then
simply report the synonym without it having to be defined. If, later, Cassie learns that her belief
in the synonymy of two words was erroneous, then she will need to revise its beliefs.

Another approach is to base the decision about whether a term is a possible, probable, or
definite synonym on the amount of definitional information present, rather than the number of
times a definition has been reported. If we have structural and functional information on both the
target noun and the candidate synonym as well as several matching class inclusions, we might assert
the candidate to be a synonym immediately. In a case where we lacked much of the significant
information, the candidate might be asserted to be only a possible synonym even if we’d asked for
a definition of the target noun many times.

Where we have much relevant information, the second of these approaches could save com-
putational resources. Where we have less information, we might be forced to go through the
definition of a candidate many times to see whether its status should be upgraded from possible
to probable, or from probable to definite synonymy, rather than being done with it after a fixed
number of passes. Fither approach, however, would be an improvement on our current system.

8.3 Compiling Definitions. It appears that humans don’t store compiled definitions [39]. Rather,
we link various aspects of meaning to words, and different portions of a word’s meaning “come to
mind” depending on the context in which they are used. The only time we are apt to store a
compiled definition is when we expect a need to produce that definition, as with a student who
must memorize definitions for an exam. Our decision not to build definitions into the KB seems,
therefore, to be both cognitively valid and practical (since Cassie need not withdraw “belief” in an
early stage of a definition once she learns more).

However, every time we ask her for a definition, she must search out the information afresh
even if she has just told us the same thing many times in a row. We currently have no mechanism for
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compiling a definition, or even of keeping track of how many times a definition has been reported.
We are considering the possibility of allowing Cassie to come to believe that certain portions of
her knowledge constitute a definition. In §8.2, we discussed using either completeness or stability
of definition to determine synonymy. It seems likely that we would want both completeness and
stability before allowing the system to store a compiled definition. The stability criterion, however,
would require the development of some method for keeping track of how often a particular definition
has been presented.

8.4 Verb Definitions. Compared with our noun-definition algorithm, our verb-definition algo-
rithm is sketchy. It could be improved by developing synonym-finding procedures and by the use
of some scheme for classifying verbs of different types. One such scheme already available is Con-
ceptual Dependency’s primitive acts [67]. Another possibility would be to attempt to develop a
classification of verbs analogous to Rosch’s basic-level, or subordinate categories [66]. If such a
classification is possible, the concepts associated with Schank’s primitive acts might be seen as su-
perordinate categories, as would English words such as ‘move’ or ‘go’. ‘Walk’ might be a basic-level
verb, while ‘amble’, ‘pace’, ‘stroll’, ‘stride’, and ‘hobble’ might be considered subordinate level. If
we can establish such a structure for the classification of (at least some types of ) verbs, then, just
as we defined ‘brachet’ as a type of dog, we might define ‘striding’ as a type of walking.

Determining the class to which a particular verb belongs, as well as determining synonyms,
will depend largely on our ability to analyze the results of actions and events. To date, we have paid
relatively little attention to the flow of a narrative. In defining nouns, the propositional content
of individual sentences seems usually to suffice. In defining the verbs ‘dress’ and ‘smite’, it was
necessary to notice somewhat the sequence of events. Dressing a sword was reported to enable
fighting, because such activities were observed to occur immediately before fighting. The definition
of ‘smite’ had to be revised because the sequence of events in the story had Arthur acting after
Lot smote him, which would have been impossible had the smiting resulted in his death. To be
generally effective at defining verbs, however, Cassie’s capacity for inferring causal or enabling
relations between actions and events should be expanded.

Looking for textual markers is an obvious step in deducing causality from narrative. ‘So
(modifier) that’ is a proverbial cause/effect marker, as are ‘therefore’, ‘because’, and ‘since’; to
a lesser extent, ‘therewith’, ‘so that’, and ‘for then ... when’ are markers of a cause/effect pair,
or at least of enablement/effect. Other such markers exist. Qur grammar, once in place, should
recognize at least some of these, and build the appropriate relations between the propositions of
the surrounding clauses. Temporal terms like ‘until’ can also be clues. If one activity or state of
affairs continues until some event occurs (or other state obtains), the new event or state may cause
the termination of the previous activity or state. In the case of a terminated activity, it may end
because its goal is accomplished, or because the activity is no longer possible. (The related work of
Almeida [1], [2] on time in narratives may be of some use here, as would Cohen’s work on textual
markers [13], [14].

Sequence of action may be considered in terms of whether it suggests a causal or enabling
link. In general, an act by one agent followed by the act of a different agent is not apt to be causal
or enabling unless a textual marker is present. When the first verb in a sequence is the action of a
living agent and the second is not, the first may be causal. In defining ‘dress’, we used the heuristic
that, when the second verb in a time sequence is a second action by the same agent, the first act
may enable the second, or it may enable a larger activity of which the second act is a part. The
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difficulty with this heuristic is that a list of actions may be effectively simultaneous, if they are
done to enable something else. In this passage:

Then Gryflette took his horse in great haste, dressed his shield, took a spear in his hand,
and rode a fast gallop till he came to a fountain. ([43]: 32; italics added.)

the actions listed are sequential, but each action does not enable the next. Rather, the sequence of
actions together enables something. Clearly Gryflette is pursuing a plan for accomplishing a goal.
What the goal may be isn’t clear from this fragment alone: Taking horse and riding enables coming
to the fountain, but dressing shield and taking spear and being at the fountain enable something
further (presumably combat, considering the usual associations of spears and shields).

To a large extent, inferring causal or enabling relations in narrative is a matter of hav-
ing sufficient background knowledge, and does not require changes in our definition algorithms.
However, determining which verbs (and how many) form a sequence will require some type of dis-
course analysis that Cassie currently lacks. A better understanding of a story can only improve the
understanding of the words in it.

8.5 Research Priorities. Developing the grammar, resolving the question of when to assert syn-
onymy, and improving the automation of SNeBR/SNePSwD so that beliefs are automatically ranked
when a contradiction is noticed and revised rules are automatically asserted in the appropriate con-
text rather than simply being built are system-building tasks we intend to pursue in the immediate
future. Deciding if and when to store compiled definitions, adding some capacity for discourse
analysis, adding a synonym finder for verbs, and—most importantly—devising some method of
classifying them in order to improve the verb-definition algorithm, are research tasks we plan to
undertake during the first year and a half of the project, with implementation to be initiated si-
multaneously (as an essential part of the research) and completed in the second year and a half.
Other tasks that remain are discussed next.

8.6 Modifiers and Proper Names. The three major types of open-class words are nouns, verbs,
and modifiers. We need to abstract definitions for adjectives or adverbs, and consider methods for
defining proper names. For some adjectives, e.g., ‘humongous’, morphological information might
be of use (‘humongous’ might mean “large”, since it seems to be a portmanteau of ‘huge’ and
‘tremendous’). Definitions of color terms might be facilitated using the techniques from related
work on color recognition and color naming [41]. Proper names, of interest in applications to
reading news items, ought to be handleable by extending our noun-definition algorithm (perhaps
to include slots for city/state/country, function, occupation, etc.).

8.7 Malformed Input and Misused Words. When an unknown word is encountered in a text, it
may be a genuinely unknown word, or it may be a misspelling or other typographical error. Ideally,
Cassie would have a facility for recognizing malformed input, so that it would not be necessary to
add ‘scjool” to the lexicon and attempt to develop a definition for it just because the text says
that Jimmy’s mother picked him up after scjool. In practice, this is not something we intend to
address. If such a typographical error occurs once, Cassie will simply fail to fully understand the
sentence in which it occurs. If it occurs repeatedly, Cassie should eventually have enough contextual
information to notice its synonymy with the correct spelling.
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Our assumption is that all words in a story are used “correctly”. This is not a completely
accurate model of human reasoning. We do sometimes believe that an author or speaker has used
a word incorrectly. However, since we are taking a descriptive approach to the definition of words
and are interested in allowing Cassie to determine what is meant by a word in a given context,
we have not considered any means to allow her to come to the conclusion that a word has been
misused. If the usage does not agree with previous understanding, our approach is to develop a
secondary definition for it. For the texts we have been using, this approach is quite appropriate. At
some time in the future, it would be desirable to give Cassie the ability to recognize some common
misusages, such as the frequent confusion between ‘imply’ and ‘infer’, so that she does not come to
believe that they mean the same thing. For the immediate future, however, we shall continue to
focus our efforts on defining words that are used correctly.

8.8 Using Etymological Roots. When encountering a new word, human readers sometimes look
for clues to its meaning in the word itself. Some such clues can be very misleading (e.g., ‘brachet’
rhymes with ‘latchet’ so perhaps it refers to some sort of hardware or fastener), but others may be
quite relevant, especially those that are etymological. If one has never before encountered ‘theri-
odont’ but is familiar with ‘orthodontist’ and ‘periodontal’, one can guess that the new word relates
to teeth. In some cases, a familiarity with Greek, Latin, or other roots can allow a reasonable inter-
pretation of a new word even if the context is not very informative. If combined with an informative
context, such etymological knowledge can permit very rapid acquisition of a word’s meaning. Al-
though Cassie has no mechanism for considering pieces of words, SNePS’s morphological analyzer
gives some of this information, and we will explore adapting it for this use.

8.9 Generating Rules from Cases. By the time a human being is aware of many instances of
a category, knowledge of the properties of that category (especially of natural kinds) is usually
summarized as default information. Qur system searches first for rules containing such information
when asked for a definition. If a term (e.g., ‘brachet’) has only recently been encountered, such
rules may not yet be present, and reference must be made to those specific individuals of which
the system has read. This is not a problem when the number of such individuals is small. But if
further reading introduces more individuals, with more properties, there ought to be some means
by which rules can be generated from individual cases.

As an example, consider the color of brachets. If we (as human readers) encountered
various brachets, all of whom were white, we would probably conclude at some point that brachets,
in general, tend to be white. Cassie is able to deduce that the function of brachets, in general,
is to hunt, and therefore the stative descriptions of the individual brachet are dropped from the
definition. But if she reads of many more white brachets (and none, or few, of any other color), it
would be appropriate to build a general rule and return “white” to the definition, this time as a
general rather than an individual property.

However, suppose a human reads of black, brown, white, and grey brachets. Such a reader
might well conclude (though perhaps not consciously) that no single color is typical of brachets
and omit all mention of color if asked for a definition. If Cassie had encountered brachets of many
colors before being able to deduce anything about function, our current implementation would
simply have listed them all. If she knew of many different actions attributed to members of some
class, but had no beliefs about the actions typical of the class, again, they would all be listed.
This could, hypothetically, go beyond any reasonable limits. There comes a point at which, if no
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generalization can be drawn about some aspect of meaning, we should probably cease to report on
that aspect, rather than continue to add to a list of slot-fillers based on individuals.

8.10 Automating the Determination of Entrenchment. The assignment of kn_cats to proposi-
tions is currently performed by a human. Such assignments are based on intuition about how deeply
entrenched a belief should be. Dressing is a daily activity, and the word ‘dress’ is quite familiar to
English speakers, whereas the word ‘smite’ is not commonly encountered in modern English and
our certainty that we understand it may be correspondingly less. We, therefore, marked the rule
about what it means to smite as less entrenched than the rule about what it means to dress, and
used slightly different algorithms for the revision of these rules. How to formalize this intuitive
notion of entrenchment remains a very open question.

Part of the difficulty is that, in attempting to model Cassie on adult humans, we must build
in the relevant knowledge such an adult would bring to the text. An adult human’s sense of how
entrenched his or her understanding of a particular word is depends on experiences with that word:
how it was acquired, how often it is encountered it or used. It is this type of judgment based on
a summary of experience that we attempt to encapsulate in our kn_cats, but without giving the
system the actual experiences that would allow it to form such judgments itself.

This problem is related to the problem of generating rules from individual cases in that
both require the ability to summarize and (perhaps more importantly) the knowledge, even if not
conscious, of when to summarize. Such ability has not been of great importance in our work to date,
since we have been concerned only with acquiring or revising the meaning of a given word from the
context of a given story. The knowledge of how entrenched a belief is, like all other knowledge the
system has before beginning to read a story, is knowledge we have given it.

Summarizing from many experiences, generating rules from individual cases, and deter-
mining entrenchment (and eventually forgetting details) are problems of language acquisition, and
of AT in general. Although they will probably remain beyond the scope of our research for the
forseeable future (except, possibly, for certain types of rule generation), our system should give us
a rich environment for developing and testing such theories.
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