
Implementation is semantic interpretation: further thoughts

WILLIAM J. RAPAPORT*

Department of Computer Science and Engineering, Department of Philosophy,
and Center for Cognitive Science, 201 Bell Hall,

State University of New York at Buffalo, Buffalo, NY 14260-2000, USA

(Received June 2005; in final form August 2005)

This essay explores the implications of the thesis that implementation
is semantic interpretation. Implementation is (at least) a ternary rela-
tion: I is an implementation of an ‘Abstraction’ A in some medium M.
Examples are presented from the arts, from language, from
computer science and from cognitive science, where both brains and
computers can be understood as implementing a ‘mind Abstraction’.
Implementations have side effects due to the implementing medium;
these can account for several puzzles surrounding qualia. Finally, an
argument for benign panpsychism is developed.

Keywords: Implementation; Panpsychism; Qualia; Semantic
interpretation; Simulation; Syntactic semantics

1. Implementation, semantics and syntactic semantics

In an earlier essay (Rapaport 1999), I argued that implementation is semantic

interpretation. The present essay continues this line of investigation.
What is an implementation? Let us begin by considering some examples. Table 1

shows pairs of syntactic and semantic domainsy that are clear examples in which
the semantic domain (or model) implements the syntactic domain (or formal
system) (cf. Rapaport 1995 for a more elaborate survey). The first three are
paradigmatic cases: we implement an algorithm when we express it in a computer
programming language; we implement a program when we compile and execute
it; and we implement an abstract data type such as a stack when we write code
(in some programming language) that specifies how the various stack operations

*Email: rapaport@cse.buffalo.edu
yI explain my use of these terms in section 1.3.

Journal of Experimental & Theoretical Artificial Intelligence,

Vol. 17, No. 4, December 2005, 385–417

Journal of Experimental & Theoretical Artificial Intelligence
ISSN 0952–813X print/ISSN 1362–3079 online # 2005 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/09528130500283998

(such as push and pop) will work. Cases 4 and 5 are clearly of the same type as these
paradigms, even though we do not, normally, use the term ‘implementation’ in
discussing them. Case 6, another example that arguably can be thought of in the
same way, suggests, in addition, that all semantic interpretations can be seen
as implementations. In general, a ‘real’, ‘concrete’ (but see below), ‘fully detailed’
entity is an implementation of a ‘theoretical’, ‘abstract’ one.

We can see that implementation is a relative notion.y An implementation is always
an implementation of something, which I call an ‘Abstraction’. But it should be
noted right away that Abstractions are not necessarily ‘abstract’ in any pre-theoretic
sense, nor are implementations necessarily ‘concrete’.

But implementation is not a binary relation. It has one more term: I is an
implementation of an Abstraction A in some medium M. For the examples in
table 1, the media might be, respectively, a computer programming language, a
computer, a computer programming language, an orchestra or acting troupe,
bricks and mortar, and set theory. Arguably, there are one or two more terms: A
cognitive agent C uses M to implement A as I, possibly for some purpose P (cf. Giere
2004). However, further exploration of this point is beyond the scope of this essay
(but see z on page 29).

1.1. Implementation in computer science

Consider the abstract data type Stack, i.e. a ‘last-in, first-out’ structure specified by

axioms allowing new items to be added to it only by ‘pushing’ them on ‘top’, and

allowing items to be removed from it only by ‘popping’ them from the top. Here is

one way to implement this abstract data type in a programming language:

1. A Stack, s, can be implemented as a 1-element array, A½0�, . . . ,A½n�, for some n;
2. top(s) is defined to be a 1-argument function that takes as input the stack s and

returns as output A½0� (i.e. A½0� is the implementation of the ‘top’);
3. pushðs, iÞ is defined to be a 2-parameter procedure that takes as input the stack

s and an item i (of the type allowed to be in the array), and yields as output
the stack modified so that A½0� :¼ i, and A½ j � :¼ A½ j� 1� (i.e. each item on the
stack is ‘pushed down’);

yAlternatively, it is a relational category; cf. Gentner (2005).

Table 1. Semantic domains that are implementations of syntactic domains.

Semantic domain Syntactic domain

1. a computer program is an implementation of an algorithm
2. a computational process is an implementation of a computer program
3. a data structure is an implementation of an abstract data type
4. a performance is an implementation of a musical score or play-script
5. a house is an implementation of a blueprint
6. a set-theoretic model is an implementation of a formal theory

W. J. Rapaport386

4. And, almost finally, pop(s) is defined to be a 1-argument function that takes as
input a stack s and returns as output the item on the top of s (i.e. top(s)) while
moving all the rest of the items ‘up’ (i.e. A½ j � :¼ A½ jþ 1�).

I said ‘almost finally’ because—as should be obvious—some bookkeeping must be

taken care of:

5. We have to specify what happens if the stack ‘overflows’ (as when we try to
push an ðnþ 2Þnd item onto a stack implemented as an ðnþ 1Þ-element array).

6. We have to specify what happens to the ‘last’ item when the top is popped
(does the array cell that contained that item still contain it, or does it become
empty?), etc.

These (as well as the limitations due to the type of object allowed to be in the array)

can be called ‘implementation details’, since the abstract data type Stack ‘doesn’t

care’ about them (i.e. does not—or does not have to—specify what to do in these

cases).
Another way to implement a stack is as a ‘linked list’. First, a linked list (‘list’, for

short) is itself an abstract data type. It is a sequence of items whose three basic
operations are (1) first(l), which returns the first element on the list l, (2) rest(l),
which returns a list consisting of all the original items except the first, and (3) make-
list(i, l) (or cons(i, l)), which recursively increments (or constructs) a list by putting
item i at the beginning of list l.y Lists can be implemented in a programming
language that does not have them ‘built in’ by, for example, 2-element arrays (here,
the first item in each two-cell unit of the array is the list item itself, and the second
item in the two-cell unit is an index to the location of the next item) or by means of
‘pointers’ (each item on the list is implemented as a two-element ‘record’, the first
element of which is the list-item itself and the second element of which is a pointer
to the next item). Finally, a stack s can be implemented as a list l, where
top(s):¼ first(l), pushðs, i Þ :¼ make-list(l, i), and pop(s) returns top(s) and redefines
the list to be rest(l).

Thus, a Stack can be implemented in the medium of another abstract data type,
List. That is, abstract data types can implement each other. So, an implementation
need not be ‘concrete’. Guttag et al. (1978: 74) give an ‘example of the implementa-
tion of one data type, Queue . . . , in terms of another, CircularLists’. This is done as
follows: ‘We first give, in a notation very similar to that for the specification, an
implementation of the Queue type consisting of a representation declaration and
a program for each of the Queue operations in terms of the representation’. In the
example, the representation ‘medium’ is CircularList, and the ‘programming
language’ consists of the operations of CircularLists.

So, an implementation of an abstract data type consists of a representation and
programs, where the programs implement the abstract data type’s operations, as
follows: each operation of the abstract data type is . . . defined? explicated?
implemented? . . . in terms of an operation of the implementing medium (the
implementing abstract data type) after first representing each abstract-data-type

ySome arbitrary object, e.g. ‘nil’ in Lisp, is used as the base-case list. This is an implementation detail;

cf. section 2.

Implementation is semantic interpretation 387

entity (term) by a term of the implementing abstract data type. So, terms get
interpreted by, or mapped into, elements of the interpreting domain, and predicates
(operations) are mapped into predicates of the interpreting domain.

Moreover, a list implementing a stack can be further implemented in the medium
of a particular programming language, say, Lisp (in fact, a particular implementa-
tion of that programming language, say, Allegro Common Lisp); that program
will itself be implemented in the medium of some machine language, and, eventually,
in the medium of some particular computer, say, the Sun sitting on the desk in
my office. Each link in this chain is slightly more concrete than its predecessor.
(For another example, consider items 1 and 2 in table 1.) The whole sequence of
Abstractions and implementations constitutes what Smith has called a ‘correspon-
dence continuum’ (Smith 1987, cf. Rapaport 1995).

To implement is to construct something, out of the materials at hand, that has the
properties of the Abstraction; it could also be to find a counterpart that has
those properties. Both tasks are semantic. Thus, each (relatively abstract) link in
this chain semantically interprets its (relatively more concrete) implementation
(Rapaport 1999). Is it better to view the implementation relation as (an instance
of) semantic interpretation, or is it better to view the semantic-interpretation
relation as (an instance of) implementation? Or are they simply two names for the
same thing? Although I am sympathetic to this third option, semantic interpretation
seems to be more general than implementation, because there are correspondence
relations that are semantic interpretations but that are not implementations, at
least, not in any obvious way, such as the relation between an optic-nerve signal
and a retinal intensity pattern (see Rapaport 1995 for discussion). Note that
Smith would disagree that this correspondence is a semantic one. However, any
correspondence between two domains in which one is used to understand or
interpret the other is a semantic correspondence (Rapaport 1995). This generality
of semantic interpretation over implementation argues in favour of taking semantic
interpretation as basic.y

Hayes, indeed, speaks of semantics in this context (1988: 209, bold face added):

Because of the complexity of the operations, data types, and syntax of high-level languages, few
successful attempts have been made to construct computers whose machine language directly
corresponds to a high-level language. . .. There is thus a semantic gap between the high-level
problem specification and the machine instruction set that implements it, a gap that a compiler
must bridge.

What is this gap? Presumably, that (say) the specific operations, data types, etc., of

the high-level language do not correspond directly to anything in the machine

language: Pascal, for example, has the ‘record’ data type, but my Sun’s machine

yAlbert Goldfain (personal communication) asks, ‘What corresponds with semantic misinterpretation?

In what ways might X incorrectly implement Y ? If S is a musical score and P is a note-for-note

performance of S, and P 0 is exactly like P except for one missed note, then is P0 an implementation of S

with a side effect, or a misimplementation of S ? What about P00, which is like P except for the fact that it

is played on different instruments? Also, if I print out a musical score on my printer, is the

printer ‘‘performing’’ the score? Why not?’ These are all good questions that I hope to explore in future

work. For now, note that the relation of P to P0 is similar to the relation between an algorithm

for solving a problem and a heuristic for solving that same problem, as characterized in Rapaport (1998;

section 2).

W. J. Rapaport388

language probably does not. So, a compiler is needed to show how to construct or

implement records in the machine language.
Why does Hayes call this a semantic gap? It is a bit like the fact that one natural

language might not have a single word corresponding to some single word in another
natural language. Consider Russian, which has a term, ‘ruka’, referring to what in
English has to be referred to as the handþ forearm.y Of course, one can translate
between the languages by defining the word in terms of others (perhaps with a
cultural gloss; cf. Jennings 1985, Rapaport 1988a: 102). But why is this semantic
rather than syntactic?

A possible interpretationz of the ‘semantic gap’ specifies four relations:

A. A program in a high-level programming language is semantically inter-
preted by real-world objects. Presumably, the semantic interpretation of the
program is the relation between, on the one hand, data structures (say) in a
Pascal program (e.g. a record representing a student viewed as consisting of
a name, a class, a major, a student-number and a grade-point average) and,
on the other hand, an actual student in the real world.

B. The program is also compiled into a machine-language implementation. The
compilation relation is, or includes, the relation between that student-record
data structure and a construct of data types in the machine language.
Both A and B are semantic relations.

C. The machine-language implementation, in turn, is semantically interpreted
by bits in a computer. It may seem odd to semantically interpret the
machine-language program by bits, rather than by the real-world objects.
But recall that all semantic relations are correspondences (and vice versa).
Thus, this relation between the machine-language program and bits is
just another correspondence. After all, we could also have mapped the
Pascal program into computer bits—in fact, via B and C, we have! So, a
machine-language program can be interpreted in terms of bits in the
computer. Arguably, in fact, having these two distinct interpretations
of two distinct (albeit input-output-equivalent) programs is appropriate.
Where the machine-language program talks of registers, the Pascal
program talks of ‘students’ (or student-records). So it is appropriate to
understand the Pascal program as a ‘mathematical model’ of such real-
world objects as students, and to understand the machine-language
program as a ‘mathematical model’ of such (also real-world) objects as
bits in a computer.

D. The semantic gap concerns the relation between A’s real-world objects
(such as students) and C’s computer bits, since both are semantic inter-
pretations of the Pascal program.

What, then, is this relation D? It could be simulation: the computer bits simulate the

student. But simulation is, after all, a kind of implementation. The computer bits are

a computer implementation of the student, i.e. an implementation of the student in

the medium of the computer.

yJohn Sowa, personal communication, 29 November 1993.
zDue to my computer-science colleague Bharadwaj Jayaraman (personal communication).

Implementation is semantic interpretation 389

1.2. Implementation outside of computer science

Although the prototypical examples of implementation come from computer science,
there are examples in other areas, too.

1.2.1. The arts. Some of the clearest examples outside of computer science of what
could be called ‘implementation’ come from music. This ought not to be surprising:
after all, a music score is very much like a computer program or algorithm, and the
musician-plus-instrument (or conductor-plus-orchestra) plays a role very much
like that of the computer. A musical score is not, of course, mathematically an
algorithm, since much is left open to ‘interpretation’ by the musician (e.g, tempo,
dynamics, optional repeats, phrasing, etc.). Nonetheless, it is a set of ‘instructions’
that, when followed or executed, produce a certain output. The ‘process’ consisting
of the musician playing that music on an instrument can plausibly be said to
implement the score. The score is a piece of syntax; the playing of the score is a
‘semantic interpretation’ of it.

An implementation requires an implementing medium. And, as should be evident,
there can be many different media, hence many different implementations (the
common core of which can be captured by the mathematical techniques of
Goguen et al. 1978). We find the same thing in music: a given score can normally
be played on a variety of instruments, modulo a few changes necessitated by the
nature of the instrument. Such changes, as well as the particular features of the
instrument, constitute ‘implementation details’. Often, these change the nature of
the work, for good or bad: ‘a [piano] transcription [of a symphony] can hold a prism
up to a familiar work, showing it in a new light’ (Pincus 1990). That is, a piano
transcription of a symphony is an interpretation of it—or, rather, another interpret-
ation of ‘the work’, i.e. of an abstract data type (the score) of which both the
symphony and the piano transcription are (semantic) interpretations or implementa-
tions. The implementation is also, of course, an ‘interpretation’ in the ordinary sense:
Rosen speaks of ‘the essential gap between the composer’s conception of a work
of music and the multiple possibilities of realizing it in sound’ (1991: 50, emphasis
added). The ‘conception’ is the abstract data type; the ‘multiple possibilities’ are
different implementations.

Much the same can be said, mutatis mutandis, for scripts and productions of
plays (or scripts and movies). Where English talks of a director, French talks
of a réalisateur (a realizer): At least for francophones, plays and movies are
implementations (of scripts).

1.2.2. Language. Language provides a variety of non-computer-science examples
of implementation. For one thing, words can be considered as representations—
hence, implementations—of ideas (cf. Harris 1987: xi, ch. 6). For another, if
language can be thought of as an Abstraction (as, perhaps, Chomsky’s theory of
universal grammar would have it), then it can be implemented in a variety of ways:
first, by spoken languages (implemented in the medium of speech) as well as by
signed languages (implemented in the medium of space; cf. Coughlin 1991), and,
second, in many ways in both spoken and signed languages (e.g., French, English,
etc., and American Sign Language, British Sign Language, etc.): Bickerton (2004:
504) considers ‘language’ to be what I am calling an Abstraction, i.e. ‘a system of

W. J. Rapaport390

expression . . . that may function by means of [such ‘modalities’—or
implementations—as] speech, sign, Morse code, talking drums, smoke signals,
naval flags . . .; or it may keep its productions within the individual’s brain, not
employing any modality at all’.

1.3. Syntactic semantics

This view that implementation and semantic interpretation are intimately related
is part of a more general theory of the nature of the relation between syntax
and semantics that I have dubbed ‘Syntactic Semantics’ (and which I have
explored in a series of previous essays).y This theory, very briefly, holds that the
semantic enterprise is recursive and, fundamentally, a syntactic—i.e. a symbol-
manipulation—enterprise. Syntax is the study of the relationships among symbols
of a formal system; it includes grammar (the specification of which sequences of
symbols are well-formed formulas) and proof-theory (the specification of which
sequences of well-formed formulas are proofs—i.e. which well-formed formulas
are theorems), and is essentially a computable theory of symbol manipulation.
Semantics is the study of the relationship between a formal system that is itself
syntactically specified (i.e. a syntactic domain) and a semantic domain that can be
specified by an ‘ontology’ (in the knowledge-representation, as opposed to the
philosophical, sense of this overloaded term). The semantic domain is typically
taken to provide meanings or interpretations of the symbols in the syntactic domain;
the syntactic domain is typically taken to provide a language for talking about the
semantic domain. These two domains can be combined. This happens, e.g. in a brain
that perceives the external world: Some neuron firings correspond to external
objects—i.e. they are caused by perceiving these objects and thereby represent
them—and other neuron firings are (or represent) concepts. These latter can serve
as meanings of the former. But, crucially, both sets of neurons are part of the same
brain (and are, presumably, distinguishable only by their function, not their physical
structure). In such cases, the semantic interpretation function becomes an internal
relation among a set of symbols (some of which come from the syntactic domain and
the others of which come from the semantic domain) and is itself a computable
syntactic relation. Moreover, there is nothing privileged about one of these domains
with respect to the other: A given syntactic domain for some semantic domain could
itself be considered a semantic domain for some further syntactic domain, as in the
correspondence continuum mentioned earlier.z In the base case of this recursion,
a domain must be understood in terms of itself, i.e. syntactically. In this way, the
semantic enterprise is seen to be, ultimately, a syntactic endeavor, which I have
called ‘syntactic semantics’.

yRapaport (1985, 1986, 1988a,b, 1995, 1996, 1999, 2000, 2002, 2003).
z‘It is worth noting that each metalanguage has itself all properties of a sign system. Thus, the syntactic

metalanguage not only has a syntactic dimension insofar as it contains signs of various classes with

various serial relations holding among them, it also has a semantic dimension since its signs are

interpreted to represent meaning and refer to something, namely, to the signs of the object-code’ (Posner

1992: 41).

Implementation is semantic interpretation 391

Syntactic semantics applies these ideas to provide a computable understanding of
cognition that is both syntactic and methodologically solipsistic (or, perhaps less
controversially, ‘internal’). The interested (or sceptical) reader can consult my essays
cited in a previous footnote for details and argumentation. In the present essay,
I wish to explore the implications of viewing implementation as semantic
interpretation: the role of ‘implementation details’, the question of whether an
implementation is ‘the real thing’, and the problem of whether any old thing can
be an implementation of any other thing.

2. Implementation-dependent details

2.1. In the details lie the differences

Suppose we have two different implementations of an Abstraction. They may be
implementations in different media, as, for example, implementations of the Stack
abstract data type in Pascal using records and in Lisp using lists, or implementa-
tions of a computational cognitive agent (such as the SNePS Research Group’s
‘Cassie’)y on a Vax running Franz Lisp (as Cassie was in the 1980s) and on a Sun
running Allegro Common Lisp (as Cassie is in the 2000s). Or they may be
implementations in the same medium: for example, two implementations of a
fully-equipped Toyota Sienna XLE; here what I have in mind is that the vehicles
would be identical except, of course, that the metal, plastic, fabric, etc., of one of
them would perforce be distinct physical objects from the metal, plastic, fabric,
etc., of the other. For another example, consider two implementations of the
Stack abstract data type using Pascal arrays; here, one implementation might use
an n-element array A with top¼A½n�, while the other uses an ðnþ 1Þ-element array
A with top¼A½0�.

Clearly, the members of each pair of implementations will differ. The operations of
the Pascal stack will be defined in terms, say, of record operations, while the
operations of the Lisp stack will be defined in terms of list operations. The two
computational cognitive agents’ input–output behaviours ought to be the same, but
the code will differ, so debugging will be a different process on each. One Sienna
might dent more easily than the other, or get better gas mileage. Even identical twins
differ. (For a novelistic treatment of this, see Duhamel 1931.) And clearly there will
be implementation-dependent differences between the array-implemented stacks,
some of which are behaviourally irrelevant and some of which have behavioural
consequences. For example, ‘where’ top is, i.e. how top is implemented, is
behaviourally irrelevant (i.e. irrelevant in terms of input–output behaviour). But
the size of the array has behavioural consequences: An abstract stack needs no size,
but every actual implementation of it will have a size, and this size constraint will
affect the behaviour of the implemented stack (because finite stacks can overflow,
whereas abstract ones cannot).

yShapiro and Rapaport (1987, 1991, 1992, 1995); Shapiro (1989, 1998); Rapaport (1991, 1998, 2000,

2002, 2003); Rapaport et al. (1997); Ismail and Shapiro (2000); Shapiro et al. (2000); Shapiro and Ismail

(2003); Santore and Shapiro (2004).

W. J. Rapaport392

My philosophy colleague Jorge Gracia has discussed the relation of an artist’s
‘general idea of what he [sic] wants to do’ and the final product, e.g. a sculpture:

. . . the sculptor’s description is too general and does not identify those features of the sculpture
that set it apart from others [that satisfy the description]. . . . [t]he particular sculpture that the
sculptor produces is not the result of his idea alone, but involves also the materials with which
he works as well as the creative process itself that produces it. (Gracia 1990: 511–512.)

In general, then, when a given Abstraction is implemented, whether in different
media or in different ways in the same medium, there will be implementation-
dependent differences. Nevertheless, there will be some core, some essence, common
to all of them in virtue of which they can be said to be the ‘same’. (This, I take it, is
the point of Goguen et al.’s (1978) isomorphism construction, as discussed in
Rapaport (1999: section 3.2).)

Implementations are always more specific or detailed than their Abstractions, due
to the implementing medium. This gives rise to implementation-dependent side effects.
For instance, ideas can be implemented in different languages (or differently
implemented even in the same language). Clarity of exposition, literary art and
even cultural variety thrive on the implementation-dependent side effects due to the
implementation-dependent differences. Vivent les différences!

Consider the implementation of a mind. That is, suppose that (at some future
time) we have a collection of algorithms that ‘account for’ cognition—the Mind
abstract data type, as it were. Suppose that we have neurological evidence that these
algorithms are implemented in the human brain, and suppose that ‘intelligence
artificers’ (Dennett’s term) have implemented them on a supercomputer. We should
expect that there will be implementation-dependent differences between human
minds and such computer minds. Does this mean that the computer mind is not a
‘mind’? I understand this question in the following way: is the computer mind an
implementation of the Mind abstract data type? The answer, by hypothesis, would
clearly be ‘Yes’. Are the differences ‘important’? That, of course, depends on what
counts as being ‘important’. Perhaps there will be a need to talk of degrees of
‘mindhood’ (cf. Rapaport 1993). Perhaps, for example, the Mind abstract data
type will not be able to be fully implemented in dogs, or in chimps. Or perhaps
we will be able to distinguish between a Human Mind abstract data type and a
Dog Mind or Chimp Mind abstract data type, or, for that matter, a Robot Mind
abstract data type.

Perhaps, in the long run, the only differences that will be of any significance will be
the implementation-dependent ones—the physical differences—and even these will
be of no more (or perhaps no less) significance than the implementation-dependent
differences that currently exist due to the fact that your mind is implemented in your
body and mine in mine. Suppose, for example, that androids like Lt. Commander
Data of Star Trek: The Next Generation become commonplace. Would we—should
we—behave differently towards them only because of their physical (i.e. implementa-
tion-dependent) differences? Suppose that some cognitive agents are ‘aware’ or have
‘subjective experiences’ (measured by, for example, whether they have faces or are
human, or by some primitive ‘feeling’ or ‘intuition’ that they are aware), while others
are not thus ‘aware’ (e.g. some computers). Suppose further that these two kinds of
cognitive agents are not behaviourally distinguishable (perhaps only physically
distinguishable—i.e. distinguishable on the basis of certain perceptual aspects of
their implementation). Given this behavioural indistinguishability, I would say that

Implementation is semantic interpretation 393

we would not behave differently towards them. (Better: We should not behave
differently towards them; consider, after all, the ugly varieties of racism.) We
would (or should) not behave differently even towards the non-‘aware’ ones (cf. the
Turing Test): for even they, because they were behaviourally indistinguishable,
would claim to feel pain, say; so it would be morally wrong to inflict (what they
call) pain on them. What, then, would be the difference between them? Only a
linguistic convention.

2.2. Implementation-dependent side effects

Consider an object that is a model of something. Which parts, aspects, or features of
it contribute to its role as a model, and which pertain to its own nature—to its
implementing medium?y From the fact that a globe is plastic, we do not infer that the
world is plastic (nor do we require that a model of the world be made of the same
stuff—rocks, water, soil, etc.—that the world is). Nor—as in a Family Circus cartoon
showing a little boy next to a globe, asking ‘Does the real world have writing all over
it?’—do we infer that the world has writing on it from the presence of place names
and lines of latitude and longitude on globes, even though these are part of its role
as a model. Where do implementation-dependent side effects come from, and what,
if anything, do they do?

Implementation-dependent side effects are due to implementation-dependent
details. If we think of an Abstraction as a syntactic domain and of an implementa-
tion as a semantic model of the Abstraction, then it appears that the details come
from situations in which the semantic domain is ‘larger’ than the syntactic domain.
These are situations in which everything in the syntactic domain is interpreted in the
semantic domain, yet in which not everything in the semantic domain is an
interpretation of something in the syntactic domain. To adapt some terminology
from logic, the syntactic domain is ‘sound’ but ‘incomplete’ (i.e. it is abstract). In this
way, individuals can have properties that their universal lacks:

. . . written, spoken, and mental texts are all individual insofar as they are not instantiable
themselves. . . . As individual instances, moreover, they presuppose corresponding universals,
but the universal is not the same for the three types of texts. For the written text, it would be a
written type of universal even though the universal would not be something written anywhere.
(Gracia 1990: 505–506, emphasis added.)

Such implementation-dependent properties, we see, can be essential properties of the
individual; we will come back to this in section 2.3.

Another source of implementation-dependent details is non-isomorphic models
(cf. Rapaport 1995: section 2.2.2). For example, consider non-isomorphic models of
the group axioms (i.e. of the Group abstract data type): (1) two groups of different
cardinalities (e.g. the cyclic groups of orders 2 and 3) or (2) an infinite cyclic
group such as (a) the integers under addition and (b) the Cartesian product of
that group with itself (which, unlike the former, has two disjoint subgroups except

yPerhaps this question is related to the medieval question of haecceity—the ‘thisness’ that makes Plato

this man and Socrates that man, even while both are instances of (or implementations of?) the universal

Man (cf. Rapaport 1999: section 4.1).

W. J. Rapaport394

for the identity).y In each case, the implementation—the model—has features that
are left unspecified by the Abstraction (in this case, the group axioms); they are
implementation-dependent details. Indeed, even isomorphic models give rise to
implementation-dependent differences: ‘In any isomorphic class there are models
which differ on all non-empty extensions. For example, in any isomorphism class
there is one model at least whose domain consists of odd integers and one whose
domain consists of even integers’ (Jardine 1973: 231; Jardine points out that this
gives rise to Quinean indeterminacy of reference).

Sometimes, the implementation-dependent details are not important and
can—or even must—be ignored. This is because the purpose of an implementation
or model is often to aid in understanding the Abstraction. There are two sides to
this coin: if the Abstraction—better, the syntactic domain; i.e. the domain to be
modelled; i.e. the domain to be understood in terms of the model—is itself
complex, we will want the model to be simpler.z Nonetheless, it will still have
features that do not represent any part of the Abstraction: ‘It may be richer in
properties, but these would then not be ones relevant to its object [i.e. the
Abstraction]; it [i.e. its object] wouldn’t possess them, and so the model couldn’t
be taken to represent them in any way’ (Wartofsky 1966: 6–7). The extra
properties are implementation-dependent details, to be ignored. (Goguen et al.
1978 employs a construction to ‘divide out’ such irrelevancies; cf. Rapaport 1999:
section 3.2.)

Often, however, the details do contribute something: This is the realm of the
implementation-dependent side effects—phenomena contributed by the implement-
ing medium, not by the Abstraction. Some are behaviourally relevant, others not.
That a stack’s top is implemented as A½0� rather than A½n� is not behaviourally
relevant. A high-level program that cares only about stacks and not about their
implementation can—and does—ignore this. Any modern programming language
with built-in data-abstraction mechanisms literally ignores—does not know—about
the implementation details (cf. Parnas 1972).x

But as side effects become more and more behaviourally relevant, they become
more than mere side effects and can be of central importance. Let us consider

yI am grateful to my mathematics colleague Nicolas Goodman for this example.
z‘It is rather paradoxical to realise that when a picture, a drawing, a diagram is called a model for a

physical system, it is for the same reason that a formal set of postulates is called a model for a physical

system. This reason can be indicated in one word: simplification. The mind needs in one act to have an

overview of the essential characteristics of a domain; therefore the domain is represented either by a set

of equations, or by a picture or by a diagram. The mind needs to see the system in opposition and

distinction to all others; therefore the separation of the system from others is made more complete than

it is in reality. The system is viewed from a certain scale; details that are too microscopical or too global

are of no interest to us. Therefore they are left out. The system is known or controlled within certain

limits of approximation. Therefore effects that do not reach this level of approximation are neglected.

The system is studied with a certain purpose in mind; everything that does not affect this purpose is

eliminated’ (Apostel 1961: 15).
xAlbert Goldfain (personal communication) ‘imagine[s] a poorly designed operating system (with a bad

memory-management scheme) where A[n]-top stacks might overwrite some piece of reserved memory

while A[0]-top stacks do not. There is usually a ‘larger’ context in which behaviourally irrelevant

‘‘implementation details’’ become relevant’. On the importance of suitably large contexts, see Rapaport

(2005).

Implementation is semantic interpretation 395

some examples. For instance, consider the following case of a chess game played
with non-standard pieces:

In today’s chess, only the familiarly shaped Staunton pieces are used. . . . [One] reason is the
unfamiliarity, to chess players, of other than Staunton pieces. . . . [In Reykjavik, in 1973, two
grandmasters] started to play [with a non-Staunton set], and the conversation ran something
like:

‘What are you doing? That’s a pawn.’
‘Oh. I thought it was a bishop.’
‘Wait! Maybe it is a bishop.’
‘No, maybe it really is a pawn.’

Whereupon the two grandmasters decided to play without the board. They looked at each
other and this time the conversation ran:

‘D5’
‘C4’
‘E6’
‘Oh, you’re trying that on me, are you? Knight C3.’

And they went along that way until they finished their game. (Schonberg 1990: 38–39.)y

In this anecdotez, the implementation of the Abstract chess pieces had confusing
implementation side effects.

Wilfrid Sellars (1955 [1963]) discussed another chess-related example of
implementation:

[A]ttention must be called to the differences between ‘bishop’ and ‘piece of wood of such and
such shape’. . . . [The former] belongs to the rule language of chess. And clearly the ability to
respond to an object of a certain size and shape as a bishop presupposes the ability to respond to
it as an object of that size and shape. But it should not be inferred that ‘bishop’ is ‘shorthand’
for ‘wood of such and such size and shape’ ‘Bishop’ is a counter in the rule language game
and participates in linguistic moves in which . . . the . . . longer expression does not (Sellars
1955: section 56 [1963: 343].)

‘Being a bishop’ is a nice example of what I call an Abstraction. Here, a bishop
is implemented as a certain piece of wood. It could also, as Sellars observes, be
implemented by a Pontiac if the chess game is played in Texas, where everything is
supposed to be bigger:

[T]he term ‘bishop’ as it occurs in the language of both Texas [where it is ‘syntactically related
. . . to expressions mentioning different kinds of cars’ (section 59, p. 344)] and ordinary chess can
be correctly said to have a common meaning—indeed to mean the bishop role, embodied in the
one case by pieces of wood, and in the other by, say, Pontiacs (Sellars 1955: section 62 [1963:
348].)

Here, we have an Abstraction (Chess) and two implementations (the ordinary
Staunton pieces and the Texas pieces). We assume that the pieces that play the
role of the bishop are both called ‘bishops’; ‘bishop’ means the same thing in both
implementations, namely, the Bishop Abstraction. That role is ‘embodied as’—i.e. is
implemented by—a Pontiac in Texas and a certain shaped piece of wood in the
Staunton set. The words ‘bishop’ as they occur in the two different languages refer

yCf. a similar conversation, in a language of ‘nerve states’, in Eco (1988).
zWhich, I should add, is highly doubted by at least one chess-playing philosopher I’ve mentioned it to!

W. J. Rapaport396

to different entities (the language-entry and -departure rules in Sellars’s language
games differ). Sellars’s Texas chess, played with Pontiacs implementing bishops, will
have, if not confusing side effects, certainly significant ones—the chess board will
have to be pretty large, and perhaps a speed limit will have to be imposed on the
bishops.

Less frivolously, perhaps, problems with an implemented computer system may be
due to details of the implementation that are not part of the original specifications.
That is, the system might mathematically ‘satisfy’ the specifications, yet still fail due
to hardware faults:

. . . hardware does from time to time fail, causing the machine to come to a halt, or yielding
errant behaviour (as for example when a faulty chip in another American early warning system
sputtered random digits into a signal of how many Soviet missiles had been sighted, again
causing a false alert . . .). (Smith 1985: 635)

This, I take it, is at the heart of James H. Fetzer’s arguments against program
verification (Fetzer 1988, 1991, cf. Nelson 1992, 1994).

To some extent, the notion of an implementation-dependent detail and its
attendant ‘side’ effects is a relative one. Recall Gracia’s example of the individual
written text and its non-written ‘written type of universal’. There would, however, be
a further universal, of which the ‘written-type’ and ‘spoken-type’ of universals are
instances. For example, a high-level universal might be Lincoln’s Gettysburg
Address, of which the written-universal and the spoken-universal are species; one
written individual falling under the former would be the one Lincoln allegedly wrote
on the back of an envelope, and one spoken individual falling under the latter would
be the one Lincoln uttered on 19 November 1863. Or compare Euclid’s algorithm for
computing greatest common divisors with that algorithm implemented in Pascal, and
with that algorithm implemented in Lisp; each of these can be (further) physically
implemented as processes on a variety of machines.

Each level of Abstraction or implementation ignores or introduces certain details.
One level’s implementation detail is another’s Abstraction. That is, we can (via
a kind of reverse engineering) ‘abstractify’ an implementation’s details, after which
they are no longer ‘details’ relative to the new (more detailed) Abstraction. Consider,
for example, the Stack abstract data type and the N-Element Stack abstract
data type. A Pascal n-element array-implementation of a stack (simpliciter) will
have as an implementation detail (yielding behaviourally observable side effects)
that it can only store n elements. Yet the very same code will also be an
implementation of an N-Element Stack and, as such, will neither have that feature
as an implementation-dependent detail nor as a side-effect—indeed, it will be an
essential feature.

Note that we have two senses of ‘abstract’ here: the sense in which abstract data
types, specifications, and blueprints are ‘abstract’ (relative to implementations) and
the sense in which to abstract is to eliminate (or ignore) ‘inessential’ ‘details’: ‘every
model deals with its subject matter at some particular level of abstraction, paying
attention to certain details, throwing away others, grouping together similar aspects
into common categories, and so forth’ (Smith 1985: 637). Note, too, that the model
need only be ‘assumed simpler’ (Rosenblueth and Wiener 1945: 317, emphasis
added): The implementation-dependent details are ignored, not eliminated. They
are parts of the model that are not (intended to be) representations of the system
being modelled.

Implementation is semantic interpretation 397

2.3. Qualia: that certain feeling

The view of implementation as semantic interpretation, with its implementation-
dependent details giving rise to implementation side-effects, offers an interesting
angle on the puzzles of qualia. Qualia, roughly, are the subjective, qualitative
‘feelings’ or ‘sensations’ or ‘experiences’ that accompany various mental states and
processes. Examples are the ‘look’ of blue (as opposed to yellow, and of yellow as
opposed to blue) and the ‘feel’ of pain (or, for that matter, tactile sensation
simpliciter). The puzzle is that these are ‘private’ or subjective phenomena: only I
can know what my sensation of blue looks like or what my pain feels like (or that
I am in pain). You cannot know what my sensation of blue is like or what my pain
feels like, or know that I have any blue-sensation or that I am in pain. You can,
perhaps, feel a pain that ‘is like’ my pain—though how would you (or anyone, for
that matter, including me) really know that it ‘is like’ mine, since you can only feel
your own? (Cf. Smith’s (1985) ‘gap’ in our knowledge about whether our models
match the world; for discussion, cf. Rapaport 1995: section 2.5.1.) In any case,
your pain is not my pain. You can, perhaps, determine that I am in pain—but
only on the basis of my publically observable physical behaviour, and that, of
course, could be mere show or—more radically—be ‘real’ pain behaviour
unaccompanied by any qualitative painful sensation (so-called ‘absent’ qualia; see
section 2.3.1). So, qualia are private, hence ‘mental’ (according to a long-established
tradition). Hence, they ought to be explainable functionally or as part of the Mind
Abstraction. Yet, functionalism seems incapable of explaining them, because
mental phenomena with different qualia are functionally indistinguishable, or so
the puzzle goes.

A possible way out, I propose, is to view qualia as dependent on implementation
side-effects. This does not resolve the puzzle completely, however, for we still have to
account for the privacy of qualia.

2.3.1. Absent qualia. Let us begin with the problem of ‘absent qualia’: the
possibility that, for example, I feel no pain in circumstances in which others do,
yet I am not oblivious to the pain stimulus—I behave appropriately. Thus, an
experimenter sticks pins in my right hand and in yours. We both wince, withdraw
our hands, perhaps cry out; we both say that the pin-pricking hurts, perhaps we
both bleed, and we complain of residual soreness over the next several hours. Yet
you feel pain and I do not (or so we suppose for the sake of argument). The
questions are: (1) Is this possible? (2) Am I any ‘less’ of a cognitive agent because
of my lack of feeling? The issue is sharpened when I am replaced by a computer or,
better, an android: does the android feel pain? Many suppose not. But why? The
central issue here is one of subjectivity, the same issue that is at the heart of
the Chinese Room Argument (cf. Rapaport 2000): does an entity that passes a
Turing-like test—in this case, one for pain or pain-behaviour—‘really’ have the
phenomenon being tested for? And, if not, does that mean, despite its behavioural
indistinguishability from a human that does have the phenomenon, that it is only
‘going through the motions’ and not ‘really’ feeling, using natural language, or
thinking?

I have mixed feelings about this (if you will excuse the pun). On the one hand, I
want to say that insofar as having—or lacking—the private sensation has no

W. J. Rapaport398

behavioural consequences (not even to my being able to describe my pain-sensation
in exquisite and poetic detail—whether I have it or not), then it is not part of the
Mind Abstraction. If I do feel pain, then my sensation must be due to the medium in
which it is implemented, namely, my body—it is an implementation side-effect. I can,
of course, perceive the pain sensation. Moreover, it is possible that the Mind
Abstraction can deal with this despite the fact (if fact it be) that, despite the privacy,
it is not a mental phenomenon: for the Mind Abstraction will have, let’s say, a
variable or data structure of some sort whose value would be the sensation if I had a
sensation and whose value is unassigned otherwise. The assignment of a value to this
variable or data structure is input from my body. That is how it is implementation
dependent.y

On the other hand, I think it is plausible that there are never any absent qualia.
Take pain, and consider the following computational implementation of it suggested
by my computer-science colleague Stuart C. Shapiro (in conversation, c. late 1980s;
all of this ought, by the way, to be able to be done with current technology): imagine
a computer terminal with a pressure-sensitive device hooked up to the central
processing unit in a certain way that I will specify in a moment. Program the
computer with a very user-friendly operating system that allows the following sort of
interaction (comments in parentheses):

(User logs in, as, say ‘rapaport’)

System: Hi there, Bill! How are you? What can I do for you today?
(Assume that this only occurs at the first login and that the operating system is capable
of some limited, but reasonable, natural-language conversation.)

User: I’d like to finish typing the paper I was working on yesterday—file ‘book.30sep92’.
System: No problem; here it is!

(The file is opened. The user edits the file, closes it, and then hits the terminal sharply
on the pressure-sensitive device.z Assume that this device is wired to the computer in
such a way that any sharp blow sends a signal to the central processing unit that
causes the operating system to switch from very-user-friendly mode to ‘normal’
mode.)

System: File ‘book.30sep92’ modified and closed. Next command:
User: I’d like to read my mail, please.

(System runs mail program without comment. User exits mail program.)
System: Next command:

(User logs off; logging off in the context of having struck the pressure-sensitive device
causes the operating system to switch to yet another mode. The next day, User logs
in . . .)

System: Rapaport. Oh yeah; I remember you. You hit me yesterday. That hurt!

Now, what might be going on here? We have a computer with an artificial-

intelligence operating system that is exhibiting pain behaviour. Modulo the

differences between the computer and a human, and the limitations of the

natural-language interface, behaviourally (or, from the intentional stance) it is

reasonable to infer (or assume) that the computer was in pain when I hit it. But

did it feel pain?

yFor a recent version of this theory, see McDermott (2001).
zA cartoon by Nick Hobart that appeared in The Chronicle of Higher Education a few years ago showed

two people discussing a computer monitor displaying the message, ‘NOW SLAP MONITOR ON SIDE

AND SWEAR’, while one person says, ‘Now this one’s really user-friendly’.

Implementation is semantic interpretation 399

Well, how do humans feel pain? We feel pain when certain neurons are stimulated
and certain signals are sent to the brain. Now, in our computer, certain wires
connecting the pressure-sensitive device with the central processing unit are
‘stimulated’ and certain signals are sent to the central processing unit. Where’s the
difference between human and computer? Perhaps the difference is that, for humans,
there is a ‘pain-sensing’ neuron in the brain that is stimulated when a human is hurt.
It gets its input from the pain neurons (C-fibres, or whatever), which also send their
input to certain motor neurons that results in typical pain behaviour (or perhaps
the pain-sensing neuron sends its output to the motor neurons). Fine; build a similar
such device into the central processing unit and operating system. The cases are
parallel: either there is a quale in both cases, or there isn’t one in either case. Since, by
hypothesis, I feel pain, there should be a quale in both cases.

What is that quale? It is tempting to say that it is what I feel when the ‘pain-
sensing neuron’ fires, but this raises the specter of a homunculus doing the feeling.
It is, perhaps, better to say that the quale (the feeling) just is the firing of that neuron
(perhaps as experienced from the first-person point of view). It is one thing to say that
there is a feeling, another to describe it: what does the computer’s pain feel like? I do
not know. Do you know what my pain feels like? We will come back to this in the
next section. My point, for now, is that pain qualia can and will arise whenever there
is pain-behaviour, and the same holds, mutatis mutandis, for any qualia.

2.3.2. Inverted qualia. Consider, next, the problem of ‘inverted’ or ‘shifted’ qualia:
the general problem of accounting for the particular ‘feel’ of a qualitative experience,
assuming the presence of qualia: does your pain feel like mine? Does your sensation
of blue look like mine? In the most perverse case—the inverted spectrum case—your
sensation of blue is just like my sensation of yellow, and vice versa, all across the
spectrum.y In an inverted-pain case, your feeling of pain might be just like my feeling
of pleasure, and vice versa. In what I am calling ‘shifted’ qualia, red might be shifted
down to orange, orange to yellow, etc. Or in a ‘shifted’ pain case, a pain of intensity
10 might be shifted down to a pain of intensity 9, and so on. (And this might even
account for why some people have different tolerances for pain.)

Can this be? How? Well, first, it seems plausible that something like this, if not
quite so extreme, can be. There are the experiments with inverting lenses (Stratton
1897) in which the subject becomes acclimated to seeing the world upside down—
behavioural indistinguishability with distinct qualia. There appears to be no reason
in principle not to be able to adapt this to inverted spectra (Cole 1990). And many of
us can experience ‘shifted’ qualia by closing one eye: in my own case, at least, colours
appear distinctly different to each of my eyes (colours seem ‘shifted’ to a darker
shade in one eye); by crossing my eyes so as to produce a double image, I can even
compare the differences in colour.

Again, I suggest, this is merely an implementation-dependent side effect. Rather
than speculating on how the brain might be wired, let us again consider a computer
example. Consider two computer programs with the same input–output behaviour,
written in Pascal using stacks. Suppose that one of them implements the Stack

yPossibly excepting a fixed point? For various options along these lines—various implementations of the

inverted-spectrum Abstraction, if you will—see Byrne (2005).

W. J. Rapaport400

abstract data type as an n-element array A½0�, . . . ,A½n� 1� with top¼A½0�, while the
other implements it as an n-element array A½0�, . . . ,A½n� 1� with top¼A½n� 1�. The
internal mechanisms—the implementations of the stacks—are ‘inverted’ with respect
to each other, yet this is behaviourally undetectable and irrelevant. Granted, here
there is no issue of ‘qualitative feel’, perhaps. Yet the point is that the differences—
and there clearly are differences, although not input–output ones—are implementa-
tion dependent. The analogue of qualia are implementation-dependent side effects.
Similarly for pain: the sensation or feeling of pain, in humans, might be something
that your body has (or does, or undergoes) when, for instance, you step on a tack.
But that it feels the way it does is an epiphenomenon (so to speak) of the body. Were
the same mind implemented in a different body (as in Justin Leiber’s 1980 novel,
Beyond Rejection), perhaps the feeling would be different (or absent).

2.3.3. The syntactic semantics of qualia. Are qualia ‘mental’ phenomena? They are
private, yet (I hold) they are implementation dependent. Does that mean that
functionalism (or strong artificial intelligence) fails to ‘model’ some mental
phenomena? That is certainly one interpretation, one move that can be made in
the philosophical game. Or does it mean that what it fails to model (pain, spectra
inversion) is not mental? That is, of course, another equally plausible interpretation,
another move that’s open, unless one defines the mental in terms of what is ‘private’
(i.e. not publicly accessible). Yet another option is that some of what we call
‘mental’ is body (or implementation) dependent, though this is not available for
those who define bodily phenomena in ‘public’ terms. (On the relation of a
(philosophical) problem to other assumptions that need to be made in order to
solve it, see Rapaport 1982.)

The position I find congenial is to make the ‘syntax’ ‘complete’. Recall my
suggestion that implementation side-effects were due to situations where the
semantic domain exceeded the syntactic domain. In such cases, we can extend the
syntactic domain to make it match the semantic domain, in a way reminiscent of
Hilbert’s (1925) notion of ‘ideal’ elements in mathematics (see section 3; cf. Rapaport
1981, where I show how to do this in a Meinongian fashion to handle non-referring
terms). Although any Mind Abstraction may be incomplete in this sense of having
implementation side-effects, the fact of having such implementation side-effects can
be made part of the Abstraction, as indicated earlier with my discussion of variables
whose values are assigned externally. In this way, to paraphrase Tolstoy, every
cognitive agent will ‘feel pain’, but everyone’s pain will ‘feel’ different.

The random digits ‘sputtered’ by a faulty chip that were interpreted as enemy
missiles (Smith 1985) were also implementation side-effects—(physical) implementa-
tion details that yielded or gave rise to ‘mental’ behaviour: the computer interpreted
certain physical configurations as meaning somethingy—it ‘felt’ them in a certain
way, so to speak. A feeling of pain is the mind’s perception of a physical event.

y‘[I]nformation itself has no meaning. Any meaning can be assigned to a particular bit pattern as long

as it is done consistently. It is the interpretation of a bit pattern that gives it meaning. . . . A method

of interpreting a bit pattern is often called a data type. . . . [A] type is a method for interpreting a portion

of memory’ (Tenenbaum and Augenstein 1981: 6, 45).

Implementation is semantic interpretation 401

Thus, qualia can be thought of as the locus of ‘interaction’ of mind and body, of
Abstraction and Implementation.

It is not, therefore, unreasonable that qualia would be physical, yet ‘private’. The
actual ‘feeling’ belongs, and only belongs, to the implementation. Consider Hamlet’s
sadness (at, say, his killing of Polonius) as opposed to Olivier’s sadness (at, say,
learning of the death of a good friend) and as opposed to Olivier-qua-Hamlet’s
sadness, i.e. the sadness manifested by Olivier playing Hamlet (or by Hamlet as
played by Olivier). In the Method School of acting, Olivier-qua-Hamlet’s sadness
would be an implementation of the Abstraction Hamlet’s Sadness in the medium of
Olivier’s sadness. This is to be distinguished from Olivier merely ‘acting’ sad
(perhaps a case of absent qualia?). (For more discussion of this, see Rapaport
1985, 1988b.)

The privacy of qualia just is its subjectivity. Compare the following three
experiences:

1. Suppose that you and I are both looking in a mirror at my reflection and that
we both see, in the mirror, something on my eyelash: this is an ‘objective’,
public, and external perception—a perception from the third-person point of
view: We are both perceiving the same thing in the same way, only from
different angles (literally from different perspectives).

2. Now suppose that you are looking directly at me, seeing the object on my
eyelash, and that I see it out of the corner of my eye directly on my eyelash: this
is also objective, public and external, since both you and I are looking at the
same thing, but from different perspectives. But my first-person perspective is
somewhat closer to the source, so to speak. Here, it is not only the angle that I
see it from that differs from yours, but, also, only I can perceive it from that
angle. In theory, however—were you small enough—you could also perceive
it from that angle.

3. Finally, suppose that I feel it on my eyelash: This is no different from the other
perceptions, except that it is not perceivable by anyone other than me. It is
subjective, private and from the first-person point of view. Here, it is impossible
for you to perceive what I am perceiving (perhaps not logically impossible, but
physically impossible).

By a continuous sequence of perspective shifts (not unlike those cited in some
versions of the Argument from Illusion; cf. Ayer 1956: 87–95, Rapaport 2000,
section 6.2), we move from a public to a private phenomenon.

Is there any more or other difference between these? I think not. Pain, etc., are just
the way things are perceived in certain circumstances, some of which cannot be
experienced by anyone other than the subject. ‘That certain feeling’ ought to be
private, because it’s due to the experiencer’s implementing medium, not anyone
else’s. Privacy is not a mental phenomenon, but merely a perspective accessible only to
the perceiver or cognizer.

3. The real thing

One aspect of the question whether machines can think is this: is a computer
‘simulation’ of a mind ‘really’ a mind? Compare this, for the moment, to another

W. J. Rapaport402

question: is a computer simulation of a hurricane ‘really’ a hurricane? (Cf. Dennett
1978, Hofstadter 1981, Rapaport 1988a.) What is the relation of a simulation to
‘the real thing’?

3.1. Understanding abstraction and implementation

The first observation I would like to make in this regard is that experience with an
implementation of some Abstraction can change our understanding of the nature of
the Abstraction. Can ‘straight lines’ be implemented in a non-Euclidean geometry?
The answer is ‘Yes’, but they are not ‘straight’ anymore; they can only be
implemented as geodesics: shortest distances between two points. So, on a sphere,
the implementation of the Abstraction Straight Line is a great circle. Similarly,
consider the implementation by airplanes of flying (cf. Rapaport 2000): Airplanes fly,
but not the exact way birds do (e.g. although their wings might have more or less the
same shape, planes do not flap them). Planes fly only (or at least?) in the sense of
moving through the air without touching the ground. No doubt that needs to be
refined, so as to rule out long jumps (but might not a very long jump be flying?).
Yet another refinement might replace the reference to air with a general term
for a fluid medium: It has been suggested that the knowledge-representation
community’s favourite flightless bird—the penguin—does indeed fly . . . in water!
(Ackerman 1989: 45–46; cf. Rapaport 2000.) The point is, as we saw earlier (section
2.1), that when an Abstraction is implemented in different media, there will be
implementation-dependent differences, yet there will be some common essence to
both, in virtue of which they can be said to be the same. Thus, what is ‘really
important’ about straight lines is that they are geodesics; that geodesics are ‘straight’
in Euclidean space is an implementation-dependent side effect—an ‘accidental’
property, if you wish.

Dijkstra (1984: 2) said that Turing’s ‘question of whether Machines Can Think . . .
is about as relevant as the question of whether Submarines Can Swim’. Assertions of
equivalence such as this are notoriously ambiguous. Does Dijkstra think that it is
obvious that submarines cannot swim (and therefore that computers cannot think)?
Or that it is obvious that they can? Or that it is merely a question of whether we will
extend the meaning of ‘swim’ to cover whatever it is that submarines do? Suppose
the latter. What is it that submarines do? They move in the water. But that is what
swimming is,y though perhaps before the advent of submarines we thought that
swimming had to be done by animals. Do fish swim? Surely. Do people? Perhaps
only by extending the term. Extending the meaning of a term occurs when we realize
or decide that a property that we thought was essential is not. This goes a long way
toward explaining the unease people feel when they’re told that computers can think.

So, is this extension of terms such as ‘fly’ to planes, ‘swim’ to submarines and
‘think’ to computers ‘merely’ a metaphorical extension? It may be metaphorical, but
it is not ‘mere’:

Eus[ebius]: . . . I do wish you would stop using terms borrowed from human behavior [to describe
monkey behaviour]! You’re being anthropocentric!

yUnless, of course, swimming is flying in water!

Implementation is semantic interpretation 403

Soc[rates]: Well, monkeys are anthropoids. Besides, do you want me to make up a new word for
a phenomenon for every species that shows it? Should geneticists stop talking about inheritance
because that term was borrowed from economics? (Altmann 1989: 260)

There are two points: First, refraining from such extensions, metaphorical or
otherwise, would force us to miss important generalizations. Second, as Lakoff
and Johnson (1980) have shown us, metaphor is an unavoidable and central feature
of our language and thought.

3.2. Segregation of implementation

What we do have to be careful about is mixing our metaphors. That is, an
implementation must be complete unto itself; we must not import or apply
(implementation-dependent) features from one implementation of an Abstraction
to another implementation of the same Abstraction. Thus, to take the classic case, it
is of course not true that computer-simulated hurricanes get real people wet. But
they do get simulated people simulatedly wet (Hofstadter 1981; cf. Rapaport 1988a,
Shapiro and Rapaport 1991). ‘Obviously, a computer simulation of a stomach would
only digest simulated food’ (Johnson 1990: 46). And a ‘simulated engine wouldn’t
generate any ‘‘here in the world outside the computer’’ power—but if you put it in a
suitably simulated car, and engage the suitably simulated clutch, it will just fine drive
down the simulated road’ (Minsky 1991). In each of these cases, we do seem to have
‘the real thing’: A simulation of digestion is a kind of digestion, a simulated
hurricane is a kind of hurricane. More accurately, I propose, a computer simulation
of human digestion is an implementation of the Digestion Abstraction, as is human
digestion itself (in fact, the scientific study of digestion has recently been aided by
a ‘virtual stomach’; cf. Eisenberg 2002). The latter may be more familiar, more
prototypical (cf. Rosch 1978), but both, just as Dijkstra may have observed of
swimming, are really digestion.

The difference between a ‘simulation’ of flying or of a hurricane and what we
normally think of as ‘real’ flying or a ‘real’ hurricane is that the former ‘are one step
removed from reality . . . [because they use] symbolic parameter values that represent
physical behavior’ (Johan Lammens, personal communication, 17 August 1990).
I am not sure about the cause, but I agree with the effect: Computer simulations are
not part of the ‘real’ world (except, of course, in the sense in which everything is part
of the real world). They exist in their own simulated world, and we must be careful
about ‘transworld’ attributions. Although a simulated hurricane will not get us wet—
because that would require a ‘transworld’ causal relation of a kind that does not
exist—the simulated hurricane must have some of the ‘same’ (or analogous) cause-
effect relationships with denizens of its computer universe (e.g. getting simulated
people simulatedly wet) in order for it to count as a simulation—in order for both
it and 2004’s Hurricanes Charley, Frances, Ivan and Jeanne to be implementations
of the Hurricane Abstraction.

3.3. Non-segregated implementations

There is, however, an important family of exceptions to this principle of segregation.
Computer simulations of semantic or information-processing systems are not only

W. J. Rapaport404

implementations of them, but also can interact with other such implementations.

In other words, if they were simulated hurricanes, they could get us wet.
A clear example of this is the computer simulation of computation itself. In one

of my introductory computer science courses, I once used a piece of software called
the ‘P88 Assembly-Language Simulator’. ‘P88’ was (a fragment of) an assembly
language for a hypothetical machine (Biermann 1990). (We can ignore for now
whether it really was an (incomplete) assembly language even if ‘just’ a toy one, since
that is irrelevant to the point I want to make.) The P88 Assembly-Language
Simulator was a Pascal program (actually, a ThinkPascal program). As such, it
had to be compiled into the machine language for the Macintosh computer on which
it ran. My students and I could write P88 programs and ‘assemble’ them into
(a simulation of) a P88 machine-language program, which, in turn, was interpreted
by Pascal as a certain Pascal program, which, in its own turn, was compiled into a
Macintosh machine-language program, and executed. The levels are shown in the
middle column of figure 1.

Suppose, now, that I write a program in P88 assembly language that takes two
integers as input and returns their sum as output. When I cause this P88 program to
be executed, a prompt appears on the screen, I input an integer, another prompt
appears, another integer is input, and their sum is printed on the screen as output.
Question: was this a P88 computation? Yes and no.

Yes: It was, because the algorithm that computationally caused the sum of the two
inputs to be output was a P88 algorithm that used data structures and instructions
from the P88 language. In other words, the two integers that were the input to the
P88 program were input to that program, and their sum was output by that program
(this is the top row of figure 1).

No: It was not a P88 computation, because the P88 algorithm was executed by
having a Pascal program perform Pascal computations that used data structures and
instructions from the Pascal language. So, was it, then, a Pascal computation? (This
is the third row of figure 1.) Well, in some sense not really, because the Pascal
algorithm was executed by having a Macintosh machine-language program perform
Macintosh machine-language computations that used data structures and instructions
from the Macintosh machine language. (Curiously, these are more like the data
structures and instructions from P88 than from Pascal, but they were not executing
or simulating P88 instructions or using P88 data directly.) At bottom, then, only
a Macintosh machine-language program was really being executed and really
computing the sum of two integers. (This is the bottom row of figure 1.) In other

(apparent?) input) P88 program ? (apparent?) output
(e.g. 2 integers a , b) # (e.g. a þ b)

P88 machine-language program
#

(apparent?) input) Pascal program ? (apparent?) output
(a , b) #

(actual?) input) Macintosh machine-language program ? (actual?) output
(a , b) (a þ b)

Figure 1. Hierarchy of virtual-machine levels. (A! B means: A is implemented in B; A) B
means: A is input to B; A?B means: A outputs B.)

Implementation is semantic interpretation 405

words, the two integers that apparently were the input to the P88 program were
actually input to the Macintosh machine-language program, and their sum was
actually output by that program.

Yet I can, and do, use the P88 Assembly-Language Simulator to compute the sum
of two integers. In other words, a computation by the P88 program was simulated
by a Macintosh machine-language computation, but there was a computation
nonetheless. The simulated computation was a computation. Moreover, it was
a computation in two senses (one could say that there were two (simultaneous)
computations (with the same input and output)): ignoring how the P88 program was
implemented, a P88 computation did yield the sum of the two inputs. And, ignoring
the fact that it was simulating a Pascal simulation of a P88 program, the Macintosh
machine-language computation also yielded the sum of the two inputs. It is
important, I think, to note that the Macintosh machine-language program did so
in a roundabout way: it was not the simplest possible Macintosh program to output
the sum of two inputs, because it did that not simply by performing an addition, but
by doing a number of other (‘bookkeeping’) operations that simulated a Pascal
program simulating a P88 program.

In an early ‘For Better or For Worse’ cartoon, Elizabeth (a child of about 5 or 6) is
sitting at her school desk, looking at her fingers, and thinking ‘Umm . . . two an’
seven arrrre . . .’. Her teacher yells, ‘Fingers!! I see fingers! No, Elizabeth. When we
do our arithmetic, we don’t use our fingers, we do our work in our heads’. In the last
panel, Elizabeth is imagining her fingers, and thinking, ‘Two an’ seven arre . . .’. Her
mental ‘fingers’ are an implementation (a semantic correlate) of actual fingers, and
can serve (some of) the same purposes. Elizabeth is not using her actual fingers, and
she is doing the work in her head—by using ‘head-fingers’. Imagination and mental
imagery can serve as a substitute for actual experience—one can solve problems
by manipulating either the actual objects or models of them.y

Let us consider some other examples of the breakdown of segregation, all in
informational contexts: a photograph of a map (as, for example, one that appeared
in an ad for New York University, in The New York Times (20 August 1991: D5))
can be used to find out where some city is, even though that wasn’t the purpose or
intent of the map in the ad (cf. Rapaport 1995: section 2.5.4). Copying information
(sic) from a book (by Xerox or by hand) and then using that copied information
(those copied sentences) rather than the original source is done all the time. We do
not think twice about it or say that it is not ‘really’ information.

Why is it information? Because of its syntax and the reader’s interpretation of it.
But it carries the information whether or not a reader interprets it. There is a possible
problem: the information carried could be differently interpreted by another reader.
But what is invariant is the syntactic structure. In any case, multiple interpretations
are all equally good interpretations. Ah, but is the syntactic structure invariant?
Examples such as the string ‘NOWHERE’ (which could be analysed as ‘NOW
HERE’ or as ‘NOWHERE’) or weakly equivalent grammars (i.e. ones that parse the

yIn a ‘Hi & Lois’ cartoon, Trixie (a baby) sits in a chair and thinks, ‘I never knew I could do this! I just

imagined that I was skiing like crazy and came to a cliff and sailed over and parachuted down to a

jungle full of elephants! Wow! What fun! As life goes on my imagination is going to save me a lot of

wear and tear’.

W. J. Rapaport406

same sentences but assign them different structures) suggest that, the larger the
context, the more aid there is in determining the syntactic structure.

What about computer simulations of minds? ‘The difference between a symbolic
airplane simulator and a symbolic intelligence simulator is that the former models
a physical system through the intermediary representation of parameter values,
while the latter models behavior by behaving’ (Johan Lammens, personal
communication, 17 August 1990). Here’s the insight: we do not interact with
simulated hurricanesy, so they don’t get us wet. (As we have seen, they do get
simulated people simulatedly wet—that is where the ‘internal representations’
come in.) But we do interact with simulated minds. Now, how is that possible?
Is it possible?

3.4. Interacting with implementations

Do we thus interact, or do we only seem to? Having a conversation on some topic

with a Turing-Tested simulated mind is having a conversation on that topic and not

merely simulating having the conversation. For the latter is what you would do in a

play.z ‘When you get out of a TT session, something has changed: you have talked to

a system about something, and most likely that has affected some of your own

thoughts and beliefs’ (Johan Lammens, personal communication, 17 August 1990).

Of course, being in a play can do that, too, just as reading the play could. But in the

Turing Test case, it is a dynamic, changing conversation.
So, how is the interaction possible? Because both systems deal with information,

albeit implemented differently. But the implementations are ‘transparent’ (as in the
game of chess played with Staunton pieces; cf. section 2.2). Jahren (1990: 315) claims
‘that ‘‘mentality’’ equals human mentality’. He asserts that I ‘objected that . . . [this]
would be like saying that flying is only real when it is implemented on [sic] birds’
(Jahren 1990: 326n1). Jahren replied that I ‘rel[y] on a metaphysical equivalence
between natural phenomena and computational simulations that . . . [is] rather
bizarre’ (Jahren 1990: 326n1). By ‘metaphysical equivalence’, Jahren apparently
means the ability of a ‘computational simulation . . .[to] produce the physical effects
that natural phenomena do’, but he is ‘unwilling to grant that elevated metaphysical
status to what is . . .only a numerical computation in a machine’ (Jahren 1990: 326n1).
I concede that computer simulations (i.e. implementations) of hurricanes are not
thus ‘metaphysically equivalent’ to real ones (I would prefer to say that they are
‘causally independent’). But I am claiming that there is an exception in cases of
information (or intentional phenomena, more generally): information can flow
across implementations. A mere ‘numerical computation’ cannot get me wet, but
it can give me information (and so can a ‘mere’ neural computation—you can give
me information, too).

yAs Debra Burhans (personal communication) noted, sometimes, however, we do, as when we learn

information about the behaviour of a hurricane from a computer simulation of it. But this is consistent

with my point about being able to interact with informational simulations.
zExcept, perhaps, if the play is a quasi-improvisational ‘virtual drama’; see Anstey et al. (2003) and

Shapiro et al. (2005).

Implementation is semantic interpretation 407

One must, of course, be careful to distinguish—if possible—between information
that only concerns one world (either the simulated world or else the real world)
and information that can transcend the boundary. Smith (1985) cites an example of
a training tape that was interpreted to be a real Soviet attack. Another example
would be a historical novel that is thought to be a historical text. The very fact
that this can happen shows that some ‘simulations’ are indistinguishable from the
‘real thing’. Note that novelistic language can be distinguished from reportorial
language (Galbraith 1995: 33–35).y The point, however, is that it does not have to be.
They need to be indistinguishable by whatever system needs to deal with
both of them. And they need to be indistinguishable at the representational level,
or at the level of Fregean Sinne or Meinongian objects, not at the level of
Fregean Bedeutungen or of actual objects: in the one case, there is a real-world
referent (or ‘Sein-correlate’, Rapaport 1978), but not in the other. At the level of
Sinn or Meinongian object or mental representation, all things are on a par. If we
cannot determine that they differ referentially, the default assumption should be
that they do not. And even if we can determine it, it might not matter; i.e. ‘ideal’
elements (in Hilbert’s sense; see section 2.3.3 above) are treated no differently from
‘normal’ elements. (For more discussion of this, see Rapaport 1991, Rapaport and
Shapiro 1995.)

So there is a difference between the digestion and hurricane cases on the one hand
and the natural-language and mind-brain cases on the other: ‘brains, unlike
stomachs, are information-processors. And if one information processor were
made to simulate another information processor, it is hard to see how one and
not the other could be said to think’ (Johnson 1990: 46). That is, the difference is that
it is the same stuff involved in the brain and computer cases: ‘Simulated thoughts and
real thoughts are made of the same stuff: information’ (Johnson 1990: 46). Well—not
quite: Information is abstract; ‘simulated’ and ‘real’ thoughts are different imple-
mentations of the same Abstraction. (One might, however, want to say that they deal
with the Abstraction directly, via ‘transparent’ media.)

My claim, then, is that simulated cognition (or mentality, or intelligence) is
cognition (or mentality, or intelligence). Recall the mental imagery debate, in
which Kosslyn (1981, Kosslyn et al. 1981) argues that one really scans a mental
(i.e. simulated) image, whereas Pylyshyn (1981) argues that one pretends to scan
(simulates scanning) a real image. Or compare Searle’s claim (1979) that in fictional
language, one pretends to assert (one simulates asserting) rather than really asserting
a pretended (or simulated) utterance—an utterance in a pretend-world.z In both of
these cases, I side with the ‘really’ people: Rather than saying that a computer
simulates understanding something real, I would say that it really understands
something simulated—and that in many cases, the simulated thing that it really
understands is itself the real thing (internally represented).x

yAt least sometimes. Debra Burhans (personal communication) notes that recent unfortunate

developments in journalism have tried to blur the distinction!
zNote the deictic shift; cf. Segal (1995), Galbraith (1995).
xWebb (1991: 247) argues ‘that it is possible for a simulation to be a replication if the device used

can not only represent but also instantiate the same capacities as the system’. This seems congenial to

my claims.

W. J. Rapaport408

4. From multiple realizability to panpsychism

Given the Principle of Multiple Realizability—the apparently obvious claim that
there can be more than one implementation of an Abstraction, more than one model
of a theory—an argument can be constructed for a variety of panpsychism (the view
that everything is a mind). The argument, in its bare outlines, is this:

1. There is multiple realizability (of computational processes).
2. ; There is universal realizability (of computational processes) (either by an

argument of Searle’s or by an argument of Smith’s).
3. ; Anything can be a model of anything (else) (from (2)).
4. ; Anything can be a model of a mind (from (3) by universal instantiation, or

by an argument of Randall R. Dipert’s).
5. ; Anything can be a mind (by the argument of x 3 that models of minds are

minds).

Let us begin with Searle’s argument from (1) to (2).

4.1. Multiple realizability implies universal realizability

In ‘Is the Brain a Digital Computer?’ (1990), Searle is concerned with the multiple
realizability of computational processes. Hence, on the assumption that mental
processes are computational, he is concerned with the multiple realizability of mental
processes. According to Searle, a ‘disastrous’ consequence of multiple realizability
is that it

would seem to imply universal realizability. If computation is defined in terms of the assignment
of syntax, then everything would be a digital computer, because any object whatever could have
syntactical ascriptions made to it. You could describe anything in terms of 0’s and 1’s. (Searle
1990: 26.)

What evidence does Searle have for this claim that any (physical) object can be
described computationally? And why is it disastrous? The latter question is easier to
answer: According to Searle, universal realizability doesn’t tell us what is special
about the brain as opposed to other, less interesting, computational systems, such as
the ‘stomach, liver, heart, solar system, and the state of Kansas’ (1990: 26). But if the
ultimate panpsychic conclusion holds, then this merely begs the question; we will
come back to this (section 4.3).

Searle claims that ‘For any object there is some description of that object such that
under that description the object is a digital computer’ (1990: 26). This seems too
strong. For one thing, there are certainly things that are non-computational in the
strong sense of the Church-Turing Thesis. For another, merely assigning 0s and 1s to
give an encoding (of, say, the atomic structure) of a physical object does not make
it computational. To be computational, analogues are needed of Turing-machine
instructions, control structures, states, the input–output tape, etc. At the very
least, to be computational, an item must compute some function. So, if my pen,
say, is a digital computer, what function does it compute? Well, I suppose it could be
argued that it computes the constant function (or perhaps the identity function, or
perhaps it loops forever—i.e. is undefined on all input). But that is trivial. On the
other hand, consider the string of 0s and 1s that, according to Searle, encodes
my pen. That’s the Gödel number of some program (no doubt a trivial one, but

Implementation is semantic interpretation 409

who knows?). Does that make my pen an implementation (a model) of that program?
No; it is an interesting correspondence, but not an implementation, because
the interpretations of the 0s and 1s for the description of the pen are not those
required for the program. So, Searle’s argument does not support universal
realization.

Smith, however, has made similar observations. He describes a ‘computer [that]
. . . calculates oriental [sic] trajectories’, which is, in fact, a car that drives westy,
and he asks why this isn’t a computer (1982: 2). He notes that it does share
at least one important feature with computers, which is close to Searle’s claim:
The ‘oriental’-trajectory calculator is equivalent to a Turing machine, but that is
not sufficient to make it a computer. But why is it equivalent to a Turing machine?
Perhaps because it is input–output equivalent to a Turing machine that calculates
‘oriental’ trajectories? But mere input–output equivalence is not sufficient: as I once
argued in this journal (Rapaport 1998), to say that a function is computable is
merely to say that there is a Turing machine that computes it (i.e. that has the
same input–output behaviour), but this does not require that a device with that
input–output behaviour is itself a computer (i.e. that it computes its output from its
input)—it could be a mysterious oracle. Now, the case of the car is not quite the
case of such an oracle. The car, after all, has parts whose function and behaviour
contribute to the car’s overall behaviour (its output, if you will).

So why does Smith say it is not a computer? Because there are no symbols that ‘act
as causal ingredients in producing an overall behavior’ (1982: 2)—symbols in the
sense of markers of a formal syntactic system:

In describing how a car works. . . the story is not computational, because the salient
explanations are given in terms of mechanics—forces and torques . . . and so forth. These are
not interpreted notions; we don’t posit a semantical interpretation function in order to make
sense of the car’s suspension. (Smith 1982: 3)

I dispute that. First, there is a mapping between the physical parts and actions of the

car and terms from physics (i.e. physical theory). Second, there is a mapping between

(at least) terms from physics and my concepts. So we do interpret the car’s parts and

actions.
Here is Smith’s response to the claim

. . .that we ‘interpret’ steering wheels as mechanisms for getting cars to go around corners—. . .
this is a broader notion of ‘interpret’ than I intend. I mean to refer to something like the
relationship that holds between pieces of language, and situations in the world that those pieces
of language are about. (Smith 1982: 4)

But that distinction is one that can not be drawn—both are interpretations

(Rapaport 1995).
The threat of universal (or near-universal) realizability is expressed by Smith thus:

. . . the ‘received’ theory of computation—the theory of effective computability that traffics in
recursive functions, Turing machines, Church’s Thesis, and the rest . . . does not intrinsically
identify the class of artefacts that computer science studies. . . . [I]t is too broad, in that it
includes far more devices within its scope (like chairs and Rubik cubes) than present experts

yShouldn’t that be east? Perhaps ‘oriental’ is a typographical error for ‘orbital’ or ‘orientational’

(‘oriental’ as in ‘pertaining to orienting oneself ’?).

W. J. Rapaport410

would call computers. The problem stems from the fact that Turing equivalence (i.e. computing
the same function) is a weak, behavioralmetric, and we are interested in a theory that enables us
to define strong, constitutional concepts. (Smith 1982: 5)

I am willing to accept Rubik’s cube, however. The difficulty is that ‘the class of
artefacts that computer science studies’ is an intended interpretation that the theory
of computation just won’t let us get our hands on, any more (but, equally, no less)
than Peano’s axioms let us get our hands on the natural numbers. If chairs are
included (as Dipert argues; see below), so be it. Even if we strengthen the theory to
talk about algorithmic equivalence, and not mere input–output equivalence, we will
still get multiple, hence unwanted—or, better, unexpected—realizations.

4.2. Everything models anything

If there is universal realizability, then everything can be an implementation (or
realization) of an arbitrary Abstraction. It follows by universal generalization that
everything can be an implementation (or realization, or model) of anything (else).y

4.3. Everything models mentality

Clearly, if anything can be a model of anything (else), then anything can be a model
of a mind. An argument explicitly for this consequent was offered by Dipert (1990).z

Dipert begins by reminding us that David Hilbert’s philosophy of formalism took
numbers in ‘purely structural, formal terms . . . [C]hairs, beer mugs, or whatever
could just as well represent/exemplify numbers (under the right interpretation) as do
numerals or our thoughts of numbers’ (1990: 6).x Similarly, ‘programs, together with
their hardware implementation . . . may not look much like more usual [i.e. biological]
embodiments of minds’ (1990: 6), but they could be, in the same way that chairs can
be embodiments of numbers. However—or so Dipert observes—not even adherents
of so-called ‘strong AI’ would take chairs as embodying minds, because ‘brains
are much more complex than chairs, and so chairs and tables lack some of the
structural features of mental properties’ (1990: 6). However, I am an adherent of
‘strong AI’ and am as willing to accept the claim about chairs as I am about the
standard water-pipes-and-valves model, which I am quite willing to do. Dipert
(along with Searle and Smith, evidently) thinks this is problematic. Here’s the
argument that shows why:

(P1) Ordinary, middle-sized objects at room temperature (let us call them
OMSORTs, for short)—e.g. chairs, coffee mugs, baseballs (and, presum-
ably, brains)—are highly complex, dynamic entities (1990: 7–8).

yAlternatively, step (3) of the argument for panpsychism follows from the assumption that everything

shares at least one property (and perhaps infinitely many) with everything (else). Cf. the discussion of

Wartofsky (1979) in Rapaport (1995: section 2.5.3).
zDipert himself is sympathetic to the conclusion, even though he is playing devil’s advocate in criticizing

it; cf. Dipert (1990: 20n16).
xcf. Hilbert’s Gesammelte Abhandlungen (vol. 3: 403) as cited in Coffa (1991: 135).

Implementation is semantic interpretation 411

(P2) Suppose there is a good cognitive science theory T of the sufficient
conditions for ‘cognition and other mental processes’ (1990: 8).

(P3) Suppose there is an AI system C that implements T (1990: 9).
(C1) ; Since T spells out the sufficient conditions for cognition, C has

cognition (1990: 9).
(P4) For every OMSORT O, there is an interpretation such that O exemplifies

T (although we might not be able to exhibit the interpretation that does
the job) (1990: 9, 11).

(C2) ; Since T spells out the sufficient conditions for cognition, O has
cognition (1990: 9–10).

These reflections should also make us resist our initial temptation to say that exemplifying some
humanly-graspable . . . set of properties [is] sufficient for having mental properties—unless we
are willing to say, with Leibniz, that everything is a mind (1990: 11).

Thus,

(P5) Conclusion (C2) is absurd or uninteresting.
(C3) ; Conclusion (C1) is absurd or uninteresting.

Now, one difference between the arbitrary OMSORT O and the AI system C is
that for C we do know what the interpretation function is: We can understand
how and why C behaves as it does; we can interpret C’s behaviour as a mind.
We accept it as such (this is what we do in our everyday solution of the problem of
other minds).

Note, too, that some OMSORTs that we might very well be willing to accept
as implementations of minds—e.g. connectionist implementations that have not
been ‘properly treated’ (Smolensky 1988)—are such that we might very well not
understand them (what, for example, do the connection weights ‘mean’?).

What’s wrong with Leibniz’s position? Mainly that if everything is a mind,
then we cannot explain the difference between a human mind and a coffee mug.
In this regard, we might be no more worse off than a topologist who, as the joke
has it, cannot distinguish a doughnut from a coffee mug, since both are toruses.
But to say that there is a way to view doughnuts and coffee mugs such that
they are alike is not to say that there is no way in which they differ. Similarly, if
computational cognitive science tells us that, from a certain perspective, brains
and mugs are alike, that’s not to say that, from some other perspective, they
are not. We can explain the difference between a mind and a mug: The mug
mind cannot communicate with us and therefore is irrelevant. That is, the mug qua
mind cannot communicate; the mug qua coffee-holder is a perfectly functional
device. Brains can communicate, but they cannot hold coffee—so we do not use
them for that purpose. Not to be too macabre, we could use a brain as a
paperweight, I suppose; a Martian (or a Black Cloud; Hoyle 1957, cf. Rapaport
2003) might do so, and might never realize that its paperweight implemented
a mind, any more than we realize that a coffee mug might. As a further analogy,
compare a high-level program (e.g. a program to compute greatest common
divisors, or even an AI program) with a machine-language version in the
same way we have been comparing brains with mugs. The latter might not look
like the former, but under the right circumstances it might very well behave like
the former.

W. J. Rapaport412

What, then, is the import of Dipert’s argument? Is it merely that, for any theory,
there are infinitely many models, many of which are non-isomorphicy and many of
which are not the intended model(s) and are such that we did not antecedently take
them to be models? If so, so what? Sure, there have to be unintended models, and
there is no way to pick out or mark or identify the intended ones; that’s one of the
main lessons of the theory-model relationship. What we learn from the existence of
unintended models (assuming that we are completely satisfied with the theory of
which they are models) is that some things have properties and features that we did
not expect them to have.

Of course, Dipert’s transcendental argument merely shows that it is highly likely
that OMSORTs can be taken as (models of) minds, not that they are. Two highly
complex things, just because of their high complexity, need not be models of each
other. (Two highly complex patterns need not be matchable.)

On the other hand, Dipert’s claim might be the weaker one that (it is highly likely
that) there are some OMSORTs that model the cognitive theory T but that we would
not antecedently have taken as an intended model. I think we can only bite the bullet
on this. But perhaps it can be made palatable: suppose the OMSORT is a
(particular) baseball. Imagine complex dynamic processes ‘within’ the baseball,
presumably at the subatomic level, that model the mental processes. What, for
instance, might correspond to perception? (Does the baseball ‘see’?) Perhaps nothing
so corresponds in the sense of external causes of internal processes, but there might
be internal processes that, in a methodologically solipsistic fashion, correspond to
(or model) perception. Or perhaps there are such external causes, but they need not
be actual events as we characterize (or see) them. The world that the baseball-mind
‘perceives’ might (indeed, probably would) have different categories than the human
mind or the AI mind (as Kant told us long ago; for a discussion of Kant from an AI
perspective, see Kirsh 1991: 12; cf. Rapaport 2003, section 10).z

5. Summary

In Rapaport (1999), I proposed that implementation is best understood as semantic
interpretation (rather than as individuation, instantiation, reduction, or super-
venience). It is a relationship between an Abstraction (a generalization of the
notion of an abstract data type) and an implementing medium. This relationship
can be found in the arts and language, as well as in the theory of abstract data types.
In general, something is an implementation of an Abstraction in an implementing
medium (perhaps as created by some cognitive agent for some purpose). In the
present essay, I have investigated the mind–brain relationship as a case of
implementation. Mind is an Abstraction that can be implemented in brains as well

y‘[M]athematics involves a considerable variety of models. the same experience can be modeled

mathematically in more than one way. . . . [M]athematical models are determined ‘up to a canonical

isomorphism.’ Indeed, that is all that matters. . . . For many mathematical purposes though,

mathematicians use axiomatic systems which have many nonisomorphic models’ (Mac Lane 1981: 467).
zIf implementation is a 5-place relation as suggested on page 2, then perhaps an OMSORT such as a

baseball does not implement a computer or a mind unless someone uses or interacts with it in that way.

Cf. Giere (2004: section 4.1, 747–748).

Implementation is semantic interpretation 413

as in computers. Implementations, however, have implementation-dependent details
that give rise to qualia—implementation side-effects. Finally, an argument for
a benign form of panpsychism can be developed from this viewpoint.

If Mind can be implemented in a computer, could a computer that implemented
a natural-language-understanding program really understand language? I would say
‘Yes’; Searle, famously, says ‘No’. In a forthcoming essay, I re-examine his Chinese
Room in light of the present conclusions.

Acknowledgments

This essay is adapted from an unpublished manuscript, Rapaport 1996. I am grateful
especially to Debra Burhans and Albert Goldfain and to Carl Alphonse, Josephine
Anstey, Frances L. Johnson, Erwin Segal, and other members of the SNePS
Research Group for comments on earlier drafts.

References

D. Ackerman, ‘‘Penguins’’, The New Yorker, pp. 38–67, 10 July 1989.
S.A. Altmann, ‘‘The monkey and the fig: a Socratic dialogue on evolutionary themes’’, American

Scientist, 77, pp. 256–263, 1989.
J. Anstey, D. Pape, S.C. Shapiro and V. Rao, ‘‘Virtual drama with intelligent agents’’, in Hybrid reality:

Art, technology and the human factor, proceedings of the 9th International Conference on Virtual
Systems and MultiMedia (VSMM), (International Society on Virtual Systems and MultiMedia),
H. Thwaites, Ed., 2003, pp. 521–528.

L. Apostel, ‘‘Towards the formal study of models in the non-formal sciences’’, in The concept and the
role of the model in mathematics and natural and social sciences, H. Freudenthal, Ed., Dordrecht:
D. Reidel, 1961, pp. 1–37.

A.J. Ayer, The problem of knowledge, Baltimore: Penguin, 1956.
D. Bickerton, ‘‘Mothering plus vocalization doesn’t equal language’’, Behavioral and Brain Sciences, 27,

pp. 504–505, 2004.
A. Biermann, Great ideas in computer science: a gentle introduction, Cambridge, MA: MIT Press, 1990.
A. Byrne, ‘‘Inverted qualia’’, in The Stanford Encyclopedia of Philosophy (Summer 2005 Edition),

E.N. Zalta, Ed., 2005. Available online: http://plato.stanford.edu/archives/sum2005/entries/
qualia-inverted/.

J.A. Coffa, The Semantic tradition from Kant to Carnap: To the Vienna station, Cambridge, UK:
Cambridge University Press, 1991.

D. Cole, ‘‘Functionalism and inverted spectra’’, Synthese, 82, pp. 207–222, 1990.
E.K. Coughlin, ‘‘A professor champions distinct culture of deaf people’’, Chronicle of Higher Education,

2 October 1991: A5.
D.C. Dennett, ‘‘Why you can’t make a computer that feels pain’’, reprinted in D.C. Dennett,

Brainstorms, Montgomery, VT: Bradford Books, 1978, pp. 190–229.
E.W. Dijkstra, ‘‘The threats to computer science’’, ACM 1984 South Central Regional Conference

(Austin, TX, 16–18 November 1984), EWD898. Available online: http://www.cs.utexas.edu/users/
EWD/ewd08xx/EWD898.PDF

R.R. Dipert, ‘‘Complexity and models of minds: a simple, Hilbertian argument that strong AI is
doomed’’, paper presented at the 5th Annual Computers and Philosophy Conference, Stanford
University, 9 August 1990); page references are to an unpublished preprint.

G. Duhamel, Les jumeaux de Vallangoujard, [The twins of Vallangoujard], M.E. Storer, Ed., Boston:
DC Heath, 1940, 1931.

U. Eco, ‘‘On truth. A fiction’’, in Meaning and mental representations, U. Eco, M. Santambrogio and
P. Violi, Eds., Bloomington: Indiana University Press, 1988, pp. 41–59.

A. Eisenberg, ‘‘The virtual stomach (no, it’s not a diet aid)’’, The New York Times, 31 October 2002, G4.
J.H. Fetzer, ‘‘Program verification: the very idea’’, Communications of the ACM, 31, pp. 1048–1063,

1988.
J.H. Fetzer, ‘‘Philosophical aspects of program verification’’, Minds and Machines, 1, pp. 197–216, 1991.

W. J. Rapaport414

M. Galbraith, ‘‘Deictic shift theory and the poetics of involvement in narrative’’, in Deixis in narrative: a
cognitive science perspective, J.F. Duchan, G.A. Bruder and L.E. Hewitt Eds., Hillsdale, NJ:
Lawrence Erlbaum Associates, 1995, pp. 19–59.

D. Gentner, ‘‘The development of relational category knowledge’’, in Building object categories in
developmental time, L. Gershkoff-Stowe and D.H. Rakison Eds., Mahwah, NJ: Lawrence
Erlbaum Associates, 2005.

R.N. Giere, ‘‘How models are used to represent reality’’, Philosophy of Science, 71, pp. 742–752, 2004.
J.A. Goguen, J.W. Thatcher and E.G. Wagner, ‘‘An initial algebra approach to the specification,

correctness, and implementation of abstract data types’’, in Current trends in programming
methodology, Vol. IV: Data structuring, R.T. Yeh, Ed., Englewood Cliffs, NJ: Prentice-Hall, 1978,
pp. 80–149.

J.J.E. Gracia, ‘‘Texts and their interpretation’’, Review of Metaphysics, 43, pp. 495–542, 1990.
J.V. Guttag, E. Horowitz and D.R. Musser, ‘‘The design of data type specifications’’, in Current trends

in programming methodology, Vol. IV: Data structuring, R.T. Yeh, Ed., Englewood Cliffs, NJ:
Prentice-Hall, 1978, pp. 60–79.

R. Harris, Reading Saussure: A Critical Commentary on the Cours de Linguistique Générale, La Salle, IL:
Open Court, 1987.

J.P. Hayes, Computer architecture and organization, 2nd edn, New York: McGraw-Hill, 1988.
D. Hilbert, ‘‘On the infinite’’, 1925, trans. E. Putnam and G.J. Massey, reprinted in Philosophy of

mathematics: selected readings, P. Benacerraf and H. Putnam Eds., Englewood Cliffs, NJ:
Prentice-Hall, 1964, pp. 134–151.

D.R. Hofstadter, ‘‘A coffeehouse conversation on the Turing test’’, Scientific American, 15–36, May
1981; reprinted with Reflections (by D.C. Dennett) in The mind’s I: Fantasies and reflections on
self and soul, D.R. Hofstadter and D.C. Dennett, Eds., New York: Basic Books, 1981, pp. 68–95.

F. Hoyle, The black cloud, New York: Harper and Row, 1957.
H.O. Ismail and S.C. Shapiro, ‘‘Two problems with reasoning and acting in time’’, in Principles of

Knowledge Representation and Reasoning: Proceedings of the 7th International Conference
(KR 2000), A.G. Cohn, F. Giunchiglia and B. Selman, Eds., San Francisco: Morgan Kaufmann,
2000, pp. 355–365.

N. Jahren, ‘‘Can semantics be syntactic?’’, Synthese, 82, pp. 309–328, 1990.
N. Jardine, ‘‘Model-theoretic semantics and natural language’’, in Formal semantics of natural language,

E.L. Keenan, Ed., Cambridge: Cambridge University Press, 1975, pp. 219–240.
R.C. Jennings, ‘‘Translation, interpretation and understanding’’, paper read at the American

Philosophical Association Eastern Division, Washington, DC; abstract, in Proceedings and
Addresses of the American Philosophical Association, 59, pp. 345–346, 1985.

G. Johnson, ‘‘New mind, no clothes’’, The Sciences, pp. 45–49, July/August 1990.
D. Kirsh, ‘‘Foundations of AI: The big issues’’, Artificial Intelligence, 47, pp. 3–30, 1991.
S.M. Kosslyn, ‘‘The medium and the message in mental imagery: A theory’’, in Imagery, N. Block, Ed.,

Cambridge, MA: MIT Press, 1981, pp. 207–244.
S.M. Kosslyn, S. Pinker, G.E. Smith and S.P. Schwartz, ‘‘On the demystification of mental imagery’’,

in Imagery, N. Block, Ed., Cambridge, MA: MIT Press, 1981, pp. 121–150.
G. Lakoff and M. Johnson, Metaphors we live by, Chicago: University of Chicago Press, 1980.
J. Leiber, Beyond rejection, New York: Ballantine Books, 1980.
S. Mac Lane, ‘‘Mathematical models: A sketch for the philosophy of mathematics’’, American

Mathematical Monthly, 88, pp. 462–472, 1981.
D. McDermott, Mind and mechanism, Cambridge, MA: MIT Press, 2001.
M. Minsky, Posting to comp.ai.philosophy bulletin board, 21 December 1991. Available online http://

groups-beta.google.com/group/comp.ai.philosophy/msg/bf1b1554b22e1a48
D.A. Nelson, ‘‘Deductive program verification (a practitioner’s commentary)’’, Minds and Machines, 2,

pp. 283–307, 1992.
D.A. Nelson, Review of R.S. Boyer and J S. Moore, A computational logic handbook, and J S. Moore,

‘‘Special issue on system verification’’, Minds and Machines, 4, pp. 93–101, 1994.
D. Parnas, ‘‘A technique for software module specification with examples’’, Communications of the

ACM, 15, pp. 330–336, 1972.
A.L. Pincus, ‘‘The art of transcription sheds new light on old work’’, The New York Times, Arts and

Leisure (Sect. 2), 23 September 1990.
R. Posner, ‘‘Origins and development of contemporary syntactics’’, Languages of Design, 1, pp. 37–50,

1992.
Z. Pylyshyn, ‘‘The imagery debate: Analog media versus tacit knowledge’’, in Imagery, N. Block, Ed.,

Cambridge, MA: MIT Press, 1981, pp. 151–206.
W.J. Rapaport, ‘‘Meinongian theories and a Russellian paradox’’, Noas, 12, pp. 153–180, 1979; errata,

Noas, 13, 1979, 125, 1979.
W.J. Rapaport, ‘‘How to make the world fit our language: An essay in Meinongian semantics’’, Grazer

Philosophische Studien, 14, pp. 1–21, 1981.

Implementation is semantic interpretation 415

W.J. Rapaport, ‘‘Unsolvable problems and philosophical progress’’, American Philosophical Quarterly,
19, pp. 289–298, 1982.

W.J. Rapaport, ‘‘Machine understanding and data abstraction in Searle’s Chinese room’’, in Proceedings
of the 7th Annual Conference of the Cognitive Science Society (University of California at Irvine),
Hillsdale, NJ: Lawrence Erlbaum Associates, 1985, pp. 341–345.

W.J. Rapaport, ‘‘Searle’s experiments with thought’’, Philosophy of Science, 53, pp. 271–279, 1986.
W.J. Rapaport, ‘‘Syntactic semantics: Foundations of computational natural-language understanding’’,

in Aspects of artificial intelligence, J.H. Fetzer, Ed., Dordrecht: Kluwer Academic Publishers,
1988a, pp. 81–131.

W.J. Rapaport, ‘‘To think or not to think’’, Noas, 22, pp. 585–609, 1988b.
W.J. Rapaport, ‘‘Predication, fiction, and artificial intelligence’’, Topoi, 10, pp. 79–111, 1991.
W.J. Rapaport, ‘‘Because mere calculating isn’t thinking: Comments on Hauser’s ‘Why isn’t my pocket

calculator a thinking thing?’ ’’, Minds and Machines, 3, pp. 11–20, 1993.
W.J. Rapaport, ‘‘Understanding understanding: Syntactic semantics and computational cognition’’, in

Philosophical perspectives, Vol. 9: AI, connectionism, and philosophical psychology, J.E. Tomberlin
Ed., Atascadero, CA: Ridgeview, pp. 49–88, 1995.

W.J. Rapaport, Understanding Understanding: Semantics, Computation and Cognition, Technical Report
96–26, Buffalo: SUNY Buffalo Department of Computer Science.

W.J. Rapaport, ‘‘How minds can be computational systems’’, Journal of Experimental and Theoretical
Artificial Intelligence, 10, pp. 403–419, 1998.

W.J. Rapaport, ‘‘Implementation is semantic interpretation’’, The Monist, 82, pp. 109–130, 1999.
W.J. Rapaport, ‘‘How to pass a Turing test: Syntactic semantics, natural-language understanding, and

first-person cognition’’, Journal of Logic, Language, and Information, 9(4), pp. 467–490, 2000;
reprinted in The Turing test: The elusive standard of artificial intelligence, J.H. Moor, Ed.,
Dordrecht: Kluwer, 2003, pp. 161–184.

W.J. Rapaport, ‘‘Holism, conceptual-role semantics, and syntactic semantics’’, Minds and Machines,
12(1), 3–59, 2002.

W.J. Rapaport, ‘‘What did you mean by that? Misunderstanding, negotiation, and syntactic semantics’’,
Minds and Machines, 13(3), pp. 397–427, 2003.

W.J. Rapaport, ‘‘In defense of contextual vocabulary acquisition: How to do things with words in
context’’, in Proceedings of the 5th International and Interdisciplinary Conference on Modeling and
Using Context (Context-05), A. Dey, B. Kokinov, D. Leake and R. Turner, Eds., Berlin:
Springer-Verlag Lecture Notes in Artificial Intelligence 3554, 2005, pp. 396–409.

W.J. Rapaport and S.C. Shapiro, ‘‘Cognition and fiction’’, in Deixis in narrative: A cognitive science
perspective, J.F. Duchan, G.A. Bruder and L.E. Hewitt, Eds., Hillsdale, NJ: Lawrence Erlbaum
Associates, 1995, pp. 107–128.

W.J. Rapaport, S.C. Shapiro and J.M. Wiebe, ‘‘Quasi-indexicals and knowledge reports’’, Cognitive
Science, 21, pp. 63–107, 1997.

E. Rosch, ‘‘Principles of categorization’’, in Cognition and categorization, E. Rosch and B.B. Lloyd,
Eds., Hillsdale, NJ: Lawrence Erlbaum, 1978, pp. 27–48.

C. Rosen, Reply to letter, New York Review of Books, 14 February 1991, p. 50.
A. Rosenblueth and N. Wiener, ‘‘The role of models in science’’, Philosophy of Science, 12, pp. 316–321,

1945.
J.F. Santore and S.C. Shapiro, ‘‘Identifying perceptually indistinguishable objects’’, in Anchoring

symbols to sensor data, Papers from the AAAI Workshop, Technical Report WS-04-03,
S. Coradeschi and A. Saffiotti, Eds., Menlo Park, CA: AAAI Press, 2004, 1–9.

H.C. Schonberg, ‘‘Some chessmen don’t make a move’’, New York Times, 15 April 1990, Sect. 2,
pp. 38–39.

J.R. Searle, ‘‘The logical status of fictional discourse’’, in J.R. Searle, Expression and meaning,
Cambridge: Cambridge University Press, 1979, pp. 58–75.

J.R. Searle, ‘‘Is the brain a digital computer?’’, Proceedings and Addresses of the American Philosophical
Association, 64(3), pp. 21–37, 1990.

E.M. Segal, ‘‘Narrative comprehension and the role of deictic shift theory’’, in Deixis in narrative: A
cognitive science perspective, J.F. Duchan, G.A. Bruder and L.E. Hewitt, Eds., Hillsdale, NJ:
Lawrence Erlbaum Associates, 1995, pp. 3–17.

W. Sellars, ‘‘Some reflections on language games’’, in Science, perception and reality, London: Routledge
and Kegan Paul, 1963, pp. 321–358.

S.C. Shapiro, ‘‘The CASSIE projects: An approach to natural language competence’’, in EPIA 89: 4th
Portuguese Conference on Artificial Intelligence, Proceedings (Lisbon), J.P. Martins and E.M.
Morgado, Eds., Berlin: Springer-Verlag Lecture Notes in Artificial Intelligence 390, 1989,
pp. 362–380.

S.C. Shapiro, ‘‘Embodied Cassie’’, Cognitive robotics: Papers from the 1998 AAAI Fall Symposium,
Technical Report FS-98-02, Menlo Park, CA: AAAI Press, 1998, pp. 136–143.

W. J. Rapaport416

S.C. Shapiro, J. Anstey, D.E. Pape, Devdas T. Nayak, M. Kandefer and O. Telhan, ‘‘The trial the trail,
Act 3: A virtual reality drama using intelligent agents’’, in Proceedings of the 1st Annual Artificial
Intelligence for Interactive Digital Entertainment Conference (AIIDE-05), Menlo Park, CA:
AAAI Press, 2005.

S.C. Shapiro and H.O. Ismail, ‘‘Anchoring in a grounded layered architecture with integrated
reasoning’’, Robotics and Autonomous Systems, 43, pp. 97–108, 2003.

S.C. Shapiro and W.J. Rapaport, ‘‘SNePS considered as a fully intensional propositional semantic
network’’, in The knowledge frontier: Essays in the representation of knowledge, N. Cercone and
G. McCalla, Eds., New York: Springer-Verlag, 1987, 262–315.

S.C. Shapiro and W.J. Rapaport, ‘‘Models and minds: Knowledge representation for natural-language
competence’’, in Philosophy and AI: Essays at the interface, R. Cummins and J. Pollock, Eds.,
Cambridge, MA: MIT Press, 1991, pp. 215–259.

S.C. Shapiro and W.J. Rapaport, ‘‘The SNePS family’’, Computers and Mathematics with Applications,
23, pp. 243–275, 1992.

S.C. Shapiro and W.J. Rapaport, ‘‘An introduction to a computational reader of narratives’’, in Deixis
in narrative: A cognitive science perspective, J.F. Duchan, G.A. Bruder and L.E. Hewitt, Eds.,
Hillsdale, NJ: Lawrence Erlbaum Associates, 1995, pp. 79–105.

S.C. Shapiro, H.O. Ismail and J.F. Santore, ‘‘Our dinner with Cassie’’, Working Notes for the AAAI
2000 Spring Symposium on Natural Dialogues with Practical Robotic Devices, Menlo Park, CA:
AAAI Press, 2000, pp. 57–61.

B.C. Smith, ‘‘Semantic attribution and the formality condition’’, paper presented at the 8th
Annual Meeting of the Society for Philosophy and Psychology, University of Western Ontario,
15 May 1982, page references are to the ‘‘Second Draft’’ preprint.

B.C. Smith, ‘‘Limits of correctness in computers’’, Technical Report CSLI-85-36, Stanford, CA: Center
for the Study of Language and Information, 1985, published in C. Dunlop and R. Kling, Eds.,
Computerization and Controversy, San Diego: Academic Press, 1991, pp. 632–646.

B.C. Smith, ‘‘The correspondence continuum’’, Report CSLI-87-71, Stanford, CA: Centre for the Study
of Language and Information.

P. Smolensky, ‘‘The proper treatment of connectionism’’, Behavioral and Brain Sciences, 11, pp. 1–74,
1988.

G.M. Stratton, ‘‘Vision without the inversion of the retinal image’’, Psychological Review, 4, pp. 341–360,
463–481, 1897.

A.M. Tenenbaum and M.J. Augenstein, Data structures using Pascal, Englewood Cliffs, NJ:
Prentice-Hall, 1981.

M.W. Wartofsky, ‘‘The model muddle: Proposals for an immodest realism’’, in Models: Representation
and the scientific understanding, Dordrecht, Holland: D. Reidel, pp. 1–11, 1966.

M.W. Wartofsky, ‘‘Introduction’’, in Models: Representation and the scientific understanding, Dordrecht,
Holland: D. Reidel, pp. xiii–xxvi, 1979.

B.H. Webb, ‘‘Do computer simulations really cognize?’’, Journal of Experimental and Theoretical
Artificial Intelligence, 3, pp. 247–254, 1991.

Implementation is semantic interpretation 417

