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Abstract

As part of an interdisciplinary project to develop a computational cognitive model of a reader of narrative text, we are
developing a computational theory of how natural-language-understanding systems can automatically acquire new
vocabulary by determining from context the meaning of words that are unknown, misunderstood, or used in a new
sense. ‘Context’ includes surrounding text, grammatical information, and background knowledge, but no external
sources. Our thesis is that the meaning of such a wantbe determined from context, can @visedupon further
encounters with the wordcbnvergesto a dictionary-like definition if enough context has been provided and there
have been enough exposures to the word, and eventisatylés dowhto a “steady state” that is always subject

to revision upon further encounters with the word. The system is being implemented in the SNePS knowledge-
representation and reasoning system.

This essay has been published as a chapter indka tucja, & Shapiro, Stuart C. (2000atural Language
Processing and Knowledge Representation: Language for Knowledge and Knowledge for LafMenlpePark,
CA/Cambridge, MA: AAAI Press/MIT Press): 347-378ll citations should be to the published version. The
present version i$echnical Repor®8-05 (Buffalo: SUNY Buffalo Department of Computer Science) &achnical
Report98-1 (Buffalo: SUNY Buffalo Center for Cognitive Sciencd)nlike the published version, this one has
only minimal typographical errors, whereas the published version is maximal in that regard; errata for the
published version are available at [http://www.cse.buffalo.edutrapaport/papers.html#krnip].

1 Introduction

As part of an interdisciplinary project to develop a computational cognitive model of a reader of narrative text (Duchan
et al. 1995), we are developing a computational theory of how a natural-language-understanding system (either
human or artificial) can automatically acquire new vocabulary by determining from context the meaning of words
that are unknown, misunderstood, or used in a new sense (Ehrlich 198&¥e ‘context’ includes surrounding text,
grammatical information, and background knowledge, but no access to external sources of information (such as a
dictionary or a human).

In principle, there are only a handful of ways such a system could learn the meaning of a new word (or revise
its understanding of a word): (1) It could look the word up (in, e.g., in a dictionary; cf. Zadrozny & Jensen 1991), (2) it
could ask another system what the word means (cf., e.g., Haas & Hendrix 1983, Zernik & Dyer 1987), (3) it could
(either by itself or with the help of another system) figure out the meaning by finding a synonym for the unknown
word or by locating the meaning of the word in some taxonony or other schema (cf., e.g., Hastings 1994), or (4) it
could figure out the meaning entirely from the context in which the word was encountered, with no outside help and
no pre-established schema within which to fit it. The last of these is what our system does.

As part of our goal of modeling a reader, it is important to model the abilitleéon from reading, in
particular, to expand one’s vocabulary in a natural way while reading, without having to stop to ask someone or to

1An earlier version of the present chapter appeared as Ehrlich & Rapaport 1997.



consult a dictionary. A complete lexicon cannot be manually encoded, nor could it contain new words or new meanings
(Zernik & Dyer 1987). Text-understanding, message-processing, and information-extraction systems need to be robust
in the presence of unknown expressions, especially systems using unconstrained input text and operating independently
of human intervention, such as “intelligent agents”. For example, a system designed to locate “interesting” news items
from an online information server should not be limited to keyword searches—if the user is interested in news items
about a certain kind of entity, and the filter detects items about “brachets” (a term not in its lexicon), it should deliver
those items as soon as it figures out that a brachet is an entity of that kind. (After ré2dyog will know what kind
of entity this is.)

The definition that our system constructs is treated as a current hypothesis about the word’s meaning, which
can be revised upon successive encounters with the word. Using a formal notion of what a “good” definition is (see
§6), our system finds fillers for slots in a definitional frame.

2 An Example

Before describing our system in more detail, it will be useful to see an example of how it works. If you do not know
what ‘brachet’ means, read on; otherwise, try the following experiment with someone who doesn't know what it
means.

Suppose that you are reading the 15th-ceniMoyte Darthur (Malory 1470) and come upon the following
passage (our boldface):

(1) ... there came a white hart running into the hall with a whitachet next to him, and thirty couples of black
hounds came running after them.... (p. 66.)

Suppose that you have no access to a dictionary containing ‘brachet’ and no one is around whom you can ask what
‘brachet’ means. Can you figure it out from the context plus your current background knowledge? One subject whom
we tried this with guessed

It's an animal, “them” is plural pronoun, 30 couple hounds ran after them—hart and [bradHathan
is possible, but | don’t get that sense.

Another subject said:

No strong hypothesis. Maybe something like a buckle (from the sound? brachet sounds like latchet?)
Something on a harness worn by the hart?

So far, so little. If you never see the word again, it probably doesn’'t matter whether you can figure out its meaning, or
whether the meaning you figure out is correct.
But suppose that you continue reading, and come across this passage:

(2) ... as he [the hart] went by the sideboard, the whitechet bit him . ... (p. 66.)
Can you now say a bit more about what ‘brachet’ means? Subject 1 now said:
Biting in the buttock and pulling out piece implies a sharp toothed animal, not human.
Subject 2 said:
Maybe ... [an] animal. It bites the hart, but that might be figurative—a pin or a buckle might “bite”.
Continuing orf our subjects hypothesized as follows:
(3) ... the knight arose, took up theachet, ... and rode away with therachet. (p. 66.)
(4) ... alady camein ... and cried aloud to King Arthur, ‘Sire, ... bhachetis mine .... (p. 66.)

2The nonsense word ‘arigosin’ replaced the word ‘brachet’ for this subject, since he already knew the term ‘brachet’.
3The full protocols for ‘brachet’ and other words are in Ehrlich 1995.
4Here, we omit passages that do not contain the word ‘brachet’.



(10) ... there was the whiterachet which bayed at him fast. (p. 72.)

At this point, if you already believed that an animal that bayed was probably a dog, you could be pretty sure that a
brachet was a dog. Subject 1, in fact, said:

Only dogs and wolves bay, and a lady would not keep a wolf. This is definitely a dog.
Subject 2, a bit more cautious perhaps, said:

Confirmation that a brachet is an animal: it “bayed at him fast”. Maybe a kind of dog? (Dogs bay).
Discard buckle hypothesis.

If you next read this:
(18) ... the hart lay dead ... ;larachet was biting on his throat, and other hounds came behind. (p. 86.)

you can be sure that a brachet is a dog—indeed, a hound (or hunting dog)—because of the phrase ‘other hounds’. You
have now got a pretty good hypothesis about what ‘brachet’ means. Subject 1’s final definition was that a brachet is “a
breed of hunting dog”; subject 2’s final definition was that a brachet is “a hound, a hunting dog”.

Let's see how our system, named ‘Cassie’, fares. Passage (1), above, is too hard for her to understand, in part
because the archaic English is beyond her grammatical capacities (and, in any case, we are not interested in writing
a grammar for this dialect of English), and in part because, in fact, Cassie uses as input a formal-language version of
a simplified English version of this passage. (The formal-language version is the intended output (i.e., the semantic
interpretation, in SNePS) of a natural-language-understanding algorithm whose input will be the simplified English
version.) The simplified English version of passage (1) is:

(1S) 1A hart runs into King Arthur’s hall?A white brachet is next to the hart.

The formal-language versions of @%nd (1%) consist of the following 7 propositions (the expressions of the form
Bn are node labels in the SNePS semantic-network representations of these sentences, which can be thought of as
Skolem constants; for more details, see, e.g., Rapaport, Shapiro, & Wiebes3997,

(1Sta) In the storyB17 is a hart.

(1S'b) In the storyB17 runs intoB18.

(1S'c) Inthe storyB18 is a hall.

(1Std) In the story, the hallB18) is a hall of its possessor, King ArthuB3).
(1%a) In the storyB19 is a brachet.

(1°b) In the story, the brachet has the property “white”.

(1%c) Brachets are a subclass of physical object.

Proposition (1%c) is not part of the input, but ideducedby Cassie, since Cassie believes that only physical objects
have color. (The hedge, “in the story”, will be explained later—it is the “knowledge categtogy(55); see Rapaport
1991 and Rapaport & Shapiro 1995 for some relevant discussion.)

At this point, we ask Cassie to define ‘brachet’:

--> (defn_noun ’brachet)

((CLASS INCLUSION = (phys obj))
STRUCTURE = NIL
FUNCTION = NIL
ACTIONS = (NIL)
OWNERSHIP = NIL
POSSIBLE PROPERTIES = ((white))
SYNONYMS = NIL)



This definition can be paraphrased as: “A brachet is a physical object that may be white”.
Omitting the formal-language versions, our demo of Cassie trying to figure out what ‘brachet’ means
continues as follows:

... Thebrachet bites the hart’s buttock.
--> (defn_noun ’brachet)

((CLASS INCLUSION = (animal))
STRUCTURE = NIL
FUNCTION = NIL

ACTIONS =

((POSSIBLE ACTIONS = (bite)))
OWNERSHIP = NIL
POSSIBLE PROPERTIES = ((small white))
SYNONYMS = NIL)

This can be paraphrased as “A brachet is an animal that may bite and can be small and white”.

... The lady says that she wants thrachet.
--> (defn_noun ’brachet)

((CLASS INCLUSION = (animal))
STRUCTURE = NIL
FUNCTION = NIL
ACTIONS =
((POSSIBLE ACTIONS = (hite)))
OWNERSHIP = NIL
POSSIBLE PROPERTIES = ((small valuable white))
SYNONYMS = NIL)

This can be paraphrased as “A brachet is an animal that may bite and can be small, valuable, and white”.

... Thebrachet bays in the direction of Sir Tor.
--> (defn_noun ’brachet)

(A BRACHET IS A KIND OF (dog)

ACTIONS =

((POSSIBLE ACTIONS = (bay bite)))
FUNCTION = ((hunt))
STRUCTURE = NIL
OWNERSHIP = NIL
SYNONYMS = NIL)

This final definition can be paraphrased as “A brachet is a hunting dog that can bay and bite”.

There are two important things to note about this demo. First, Cassie’s behavior is very similar to those of the
two human subjects whose protocols we described above. Second, all three natural-language-understanding systems
(human and artificial) converged on roughly the same definition, which is not all that far from that Okfbel
English Dictionary according to which a brachet (or ‘brach’) is “a kind of hound which hunts by scé&dmpact
Edition of the OEDVoL. 1, p. 261 (= Vol. 1, p. 1043 of the original edition)). Granted, neither Cassie nor the humans
included “scent” in their definitions; however, scent was not mentioned in the Malory text, so there was no reason they
should have included it, nor is it necessary for understanding the text.



3 Fundamental Theses

We hold that linguistic contexts (and their mental counterparts) can provide meanings for expressions (Rapaport 1981).
This includes non-referential expressions: If ‘unicorn’ is an unknown term, and we read that a unicorn looks like a
horse with one horn, then we can hypothesize a meaning for ‘unicorn'—e.g., a one-horned, horselike animal—even
though the term ‘unicorn’ does not refer (cf. Meinong 1910: 25f, Rapaport 1981). A reader understands a narrative
(or other) text by interpreting the sentences of the text. The reader’s interpretation is a mapping from the sentences
(considered as a syntactic domain) to the reader's mental concepts (considered as the semantic domain). (In this way,
semantics arises out of syntax, and Searle’s Chinese-Room Argument (Searle 1980) can be refuted; see Rapaport 1988,
1995.) We can then take the meaning of a word (as understood by the reader—i.e., a cognitive agent) to be its position
in a network of words, propositions, and other concepts (Quillian 1968, 1969). This gives rise to a conceptual-role
semantics (see, e.g., Sellars 1955 [1963]; and Harman 1974, 1982 inter alia; see Fodor & Lepore 1992 for objections).

Most importantly, we claim that a meaning for a warah be determined from any context, canfiegised
and refined upon further encounters with it, adrivergesto a dictionary-like definition given enough context and
exposures to it. The context can be minimal, or even empty. Consider the sentence “Tommy imetke with
unknown word ‘weti’. With some reasonable, but minimal, background knowledge, we might theorize that a weti
is a breakable physical object. But even with no background knowledge or other contextual information (other than
grammatical structure), we could theorize that a weti is something that Tommy broke, by “solving” the sentence for
its unknown term, as in algebra (cf. Higginbotham 1989).

Each encounter with the unknown word yields a definition—a hypothesis about its meaning. Of great
importance, subsequent encounters provide opportunitiesfupervisedevision of this hypothesis, with no (human)
“trainers” or “error-correction” techniques. The hypothesized definitionmarguaranteed to converge to a “correct”
meaning (if such exists) but to one stable with respect to further encounters. Finalgmmain-specifibackground
information is required for developing the definition: The system need not be an expert in what it's reading.

Clearly, however, the more background knowledge it has (and the larger the textual context), the better the
hypothesized definition will be. This suggests that there are two kinds of meaning that we need to consider. In
an idiolectic sense, the meaning of a word for a cognitive agent is determined by idiosyncratic experience with it.
The contextual meaning described above includes a word’s relation to every concept in the agent’s mind. Thus, the
extreme interpretation of “meaning as context” defines every word in terms of every other word an agent knows. This
holistic kind of meaning is circular and too unwieldy for use. In another sense, the meaning of a word is its dictionary
definition, usually containing less information. Thus, we limit the connections used for the definition by selecting
particularkinds of information. Not all concepts within a given subnetwork are equally salient to a dictionary-style
definition of a word. People abstract certain conventional information about words to use as a definition.

Two features of our system mesh nicely with these desiderata, summarized as the advantages of learning over
being told: (1) Being told requires human interventiddur system operates independently of a human teacher or
trainer (with one eliminable exception). (2) Learning is necessary, since one can’t predict all information needed to
understand unconstrained, domain-independent @xit.system does not constrain the subject matter (“domain”) of
the text. Although we are primarily concerned with narrative text, our techniques are general. Given an appropriate
grammar, our algorithms produce domain-independent definitions, albeit ones dependent on the system’s background
knowledge: The more background knowledge it has, the better its definitions will be, and the more quickly they will
“converge”. The system doemt develop “correct” definitions, budictionary-likedefinitions enabling it to continue
understanding the text.

4 Psychological Evidence

Our theory is informed and supported by psychological research on how humans store and access word meanings and
expand their vocabularies once the basics of language have been acquired.

4.1 Johnson-Laird

Philip N. Johnson-Laird’s (1987) theory about the mental representation of words asserts that understanding a word
(and a sentence containing a word) does not imply that one has a readily accessible definition of that word stored in
one’s mind. Various aspects of a word’s meaning may be called to mind by sentences for which those aspects are



relevant, without calling the entire definition to mind. He describes experiments showing that responses to questions
about specific aspects of a word’s meaning come faster following a priming sentence that calls that aspect to mind than
to questions where the preceding sentence uses the word, but does not call that aspect to mind. The same speed-up
occurs when the priming is a result of factual inference about a word’s referent as when it results from selectional
restriction on the word’s sense.

Linguistic context has at least three effects on the interpretation of words. It can enable selection of an
appropriate sense of a truly ambiguous word. It can lead to inference of a more specific referent than is strictly
warranted by the meaning of an unambiguous word. It can call to mind particular aspects of a word’s meaning at the
expense of other aspects. In each case, the mental representation of real or imaginary referents is important to the
understanding of the word as used.

Some aspects of a word’s meaning are more salient to understanding its use than others. Since the evidence
indicates that we do not retrieve definitions in their entirety when understanding sentences, we may not notice gaps
in our lexical knowledge, so long as we can retrieve the aspects of meaning necessary to understanding the sentence.
Such gaps point to the importance of the acquisition process. One can learn a word’s meaning by being told that
meaning, or one can infer its meaning from encountering it in use.

Even fairly early in childhood, learning word meanings may be as much a matter of making inferences from
linguistic context as of simple association. Johnson-Laird (1987) reports on experiments in which 3- and 4-year-old
children listened to stories involving a novel verb. From hearing the verb used in sentences that contained other words
they already understood, the children were able to perform selectional restriction on the arguments to the new verb.
Children have also been shown to be able to learn aspects of the meanings of nonsense nouns from hearing them used
in the context of familiar verbs.

Johnson-Laird suggests that lexical learning involves a sort of “bootstrapping” in which, once a fragment
of language has been mapped onto a child’s internal representation of states of affairs in the world, other words are
acquired either indirectly from context or directly from explicit definition. Words may also be of mixed acquisition;
different individuals will acquire a given word differently. Some words can be completely lexically specified; others
(e.g., natural-kind terms) cannot, but instead rely in part on a schema of default information based on a prototypical
exemplar.

Johnson-Laird (1987: 579) summarizes parts of his theory of lexical meanings as follows: (1) Comprehension
requires the listener to construct a model of the state of affairs described by the discourse. (2) There is a mental
dictionary that contains entries in which the senses of words are represented. (But cf. Johnson-Laird 1987: 563.) (3) A
lexical entry may be incomplete as a result of ignorance or because the word is a theoretical term with an intrinsically
incomplete sense. (4) The senses of words can be acquired from definitions or from encountering instances of the
word in use. (5) Corresponding to the method of acquisition, elements of a lexical representation can consist of (a)
relations to other words, which could be represented by a mechanism akin to a semantic network, and (b) ineffable
primitives that are used in constructing and manipulating mental models of the world.

Cassie understands narrative input by building mental representations of the information contained in the
narrative; forming concepts of individuals, propositions, and events described; and connecting them with her prior
knowledge. Her understanding of a concept in narrative is precisely that concept’s connections to the rest of the
narrative, together with its connections (if any) to previously acquired knowledge.

We adopt the idea that lexical entries have aspects of meaning connected to them in a semantic network,
but do not have compiled, dictionary-style definitions permanently attached. Cassie selects salient features from her
knowledge of a word when asked to define it, but does not permanently store those features as a definition. Our
semantic network, however, includes meaning postulates (represented as rules) that Cassie can use as part (but not
all) of her knowledge for producing definitions. Some information (e.g., about natural kinds) is expressed as default
information. Thus, our approach is compatible with Johnson-Laird’s theory and experiments.

4.2 Elshout-Mohr and van Daalen-Kapteijns

Marianne Elshout-Mohr and Maartje M. van Daalen-Kapteijns (1987) treat verbal comprehension as a mental skill
involving procedural and propositional knowledge. They hold that it is useful to have a “meaning unit” that is stable
across contexts, so that new contexts may provide new information at the same time that an established understanding
of a word allows interpretation in a new context.

In one experiment, they chose students with high and low verbal skills as measured by standard tests. Subjects



were asked to think aloud as they tried to determine from context the meanings of invented words. The neologisms
filled lexical gaps, so that they would refer to things with which the subjects were familiar, but would not have direct
synonyms that could be substituted for them. (For example, ‘kolper’: a window that transmits little light because of
something outside it.) A series of sentences were presented, one per page, in which the new word was used: The first
roughly indicated its superordinate:

When you are used to a broad view it is quite depressing when you come to live in a room with one or
two kolpers fronting on a courtyard.

The second and third distinguished it from other concepts in the same superordinate class:

He virtually always studied in the library, as at home he had to work by artificial light all day because of
thosekolpers.

During a heat wave a lot of people all of a sudden want to lkalgers, so the sales of sunblinds then
reach a peak.

The fourth and fifth provided counterexamples:

| was afraid the room might had@lpers, but when | went and saw it, it turned out that plenty of sunlight
came into it.

In those houses, you're stuck witblpers all summer, but fortunately once the leaves have fallen off that
isn’t so any more.”

Subjects were aware of the need to construct a definition rather than search for a synonym. They were asked
to report on new information gained from each sentence without reviewing previous pages. It was thought that this
would tax their working memory, which was considered important, because most words learned from context are not
learned in situations where word acquisition is the primary focus of cognition. Rather, one usually reads for the content
of a text and acquires new vocabulary incidentally (if at all).

Most subjects tried to compare the unknown word with at least one familiar word. Those with high verbal
skills used the model analytically, as a group of separable components that could be individually compared with further
information. New information compatible with all facets of the model could be added; conflicting facets of the model
could be replaced with new information. Those with lower verbal skills tended to use the model holistically, with new
compatible information broadening or restricting the domain (Kiersey 1982) and incompatible information causing
the rejection of the model (and perhaps the adoption of a different model).

According to the authors, in the task of word learning, a model (1) provides a plan for knowledge retrieval;
all aspects of the semantic unit of the model are accessible; (2) provides a frame-like structure for the meaning to be
acquired, with certain slots to fill; (3) allows conventional aspects of definitions to steer abstraction toward similar
conventions in the new definition; and (4) provides default information to fill slots in the anticipated structure. The
meaning of the new word is presumed to inherit aspects of meaning connected with the model unless otherwise
specified.

Cassie uses her prior knowledge and the network that represents her understanding of the story (up to and
including the sentence containing that word) to establish a definitional framework for the target word. This framework
is not an analogical model in Elshout-Mohr and van Daalen-Kapteijns’s sense, but does provide a plan for knowledge
retrieval and a structure with certain slots to fill. The framework for nouns includes slots for synonyms and for
hypernyms from which the target word can inherit aspects of meaning.

Because we wish our system to model an individual of high verbal ability (for general usefulness and
specifically for use as a lexicographer's assistant), it does use its selected framework analytically, although new
information may cause the system to select a different framework than that chosen after the first encounter with
the target word.

Elshout-Mohr and van Daalen-Kapteijns suggest that children’s verbal skills be developed by instruction in
distinguishing between idiosyncratic experiences with a word and the more general experiences associated therewith,
and in constraining the richness of individual experience by selecting a limited number of aspects of meaning.
Especially important is the ability to select structural and functional aspects of a concept that are “in common with”
and “in distinction of” other known concepts. Developing theory and technique for such movement from idiosyncratic
understanding to conventional dictionary definitions is a central portion of our research.



4.3 Sternberg
Robert Sternberg (1987: 91) gives the following example:

Although for the others the party was a splendid success, the couple there on the blind date was not
enjoying the festivities in the least. Aatapnotic he disliked her smoking; and when he removed his hat,
she, who preferred “ageless” men, eyed his incregsiragacrosisand grimaced.

It is easy to guess what ‘acapnotic’ and ‘phalacrosis’ might mean (although the latter is ambiguous; does it mean
“baldness” or “grey hair"?). Sternberg holds that three processes are applied in acquiring words from context: (a)
distinguishing irrelevant from relevant information, (b) selectively combining relevant clues, and (c) comparing what
has been selected and combined with previous knowledge. These processes operate on a basis of several types of
cues: (1) temporal cues regarding the duration or frequeny of whenX can occur; (2) spatial cues regarding the
location ofX or possible locations whebdé can sometimes be found; (3) value cues regarding the worth or desirability

of X, or the kinds of affectX arouses; (4) stative descriptive cues regarding the properti¥s(sie, color, etc.);

(5) functional descriptive cues regarding possible purposeé§ efctionsX can perform, or potential uses Xt (6)

cues regarding the possible causes of, or enabling conditions;f(f) cues regarding one or more classes to wiich
belongs, or other members of one or more classes of whista member; (8) equivalence cues regarding the meaning

of X, or contrast (e.g., antonymy) to the meaningof

Sternberg’s experiments show that readers who are trained in his three processes of recognizing relevant cues,
combining cues, and comparing with known terms do better at defining new words than those who receive training only
in the eight types of cues available, although any training in cue types produces better results than word memaorization
or no training.

Our system is designed to select certain information as most relevant, if it is present. For example, we
follow Johnson-Laird as well as Elshout-Mohr and van Daalen-Kapteijns in emphasizing the structural and functional
information about physical objects. If, however, such information is lacking, our system uses such other cue types
as may be available. We also combine relevant information, and compare new words with known words in certain
specific ways, such as possible synonymy or hyponymy.

5 Implementation

Our system, “Cassie”, consists of the SNePS-2.1 knowledge-representation and reasoning system (Shapiro 1979;
Shapiro & Rapaport 1987, 1992, 1995), and a knowledge base representing Cassie’s background knowledge.
Currently, the knowledge base is hand-coded, simm& she acquired this knowledge is irrelevant. Although we

begin with a “toy” knowledge base, each of our tests includes all previous information, so the knowledge base grows
as we test more words. Cassie’s input consists of (1) information from the text being read and (2) questions that trigger
a deductive search of the knowledge base (e.g., “What @eesl) mean?”). Output consists of a report of Cassie’s
current definition of the word, or answers to other queries.

SNePS has an English lexicon, morphological analyzer/synthesizer, and a generalized augmented-transition-
network parser-generator that translates English input directly into a propositional semantic network without building
an intermediate parse tree (Shapiro 1982, 1989; Rapaport 1988, 1991; Shapiro & Rapaport 1995). All information,
including propositions, is represented by SNePS nodes; propositions about propositions can also be represented.
Labeled arcs form the underlying syntactic structure of SNePS, embodied in the restriction that one cannot add an
arc between two existing nodes, which would be tantamount to a proposition not represented by a node. Arc-paths
can be defined for path-based inference, including property inheritance. Nodes and represented concepts are in 1-1
correspondence; this uniqueness principle guarantees that nodes are shared whenever possible and that nodes represent
intensional objects (e.g., concepts, propositions, properties, and objects of thought including fictional entities, non-
existents, and impossible objects; Shapiro & Rapaport 1987, 1991).

SNePS's inference package accepts rules for deductive and default reasoning, allowing Cassie to infer
“probable” conclusions in the absence of contrary information. When combinations of asserted propositions lead
to a contradiction, SNeBR, the SNePS belief-revision package, allows Cassie to remove from the inconsistent context
one or more of those propositions (Martins & Shapiro 1988). Once a premise is no longer asserted, the conclusions
that depended on it are no longer asserted in that context. Cassie uses SNeBR and SNePSwD, a default belief-revision



system that enables automatic revision (Cravo & Martins 1993; Martins & Cravo 1991), to revise beliefs about the
meanings of words.

Because we wish our system to be able to revise its beliefs with a minimum of human interference, we
have partially automated the selection and revision of the culprit node (i.e., the erroneous assertion that led to
the contradiction); we are exploring techniques for full automation. To facilitate this process, we tag each of the
asserted propositions in the knowledge base with a knowledge category. Maria Cravdaarf Jtartins (1993)
have developed a utility for creating orderings of propositions within the network. We use this ordering utility to
build a hierarchy of certainty in which all propositions with a particular knowledge category are given higher priority
than those whose knowledge category indicates less certainty of belief. Then, when SNeBR is invoked by a derived
contradiction, the belief(s) with least priority (i.e., held with least certainty) in the conflict set will be selected for
revision. As originally designed, once the culprit belief had been deleted, SNeBR would ask the user if she wished to
add any new propositions to the network. We have modified SNeBR so that it now automatically creates a revision of
the culprit belief (see Ehrlich 1995 for the algorithms).

The current version of SNePS allows ordinary deductive reasoning. SNePSwD also allows “default
reasoning” (Cravo & Martins 1993). Default rules allow the system to infer “probable” conclusions in the absence of
specific information to the contrary. For example, if the system knows that, by default, birds fly, but also knows that
penguins do not fly and that Opus is a penguin, then, despite inferring that Opus is a bird, the system will not conclude
that Opus flies, because the default rule is not applicable to Opus. This works well when all relevant information is
known before the attempt to deduce whether Opus flies. However, if the system must make a decision before learning
that penguins are flightless, it will need to revise that decision once more information is gained.

Using SNeBR for revising erroneous beliefs is not appropriate in all situations. Rather than use default
rules that rely on being told in advance whether they are applicable in certain cases, we employ a method, based
on theoretical work by J. Terry Nutter (1983), in which some rules have consequents marked as presumably true.
Frequently, this avoids the need for non-monotonicity. In our example above, we would have the rule that, if something
is a bird, then presumably it flies. Opus the penguin, being a kind of bird, would fit the antecedent, and we would
conclude that presumably Opus flies. Learning that penguins do not fly does not, then, produce a contradiction, but
rather the concatenation that Opus could be presumed to fly though in fact he does not.

When a human reader encounters a discrepancy between the way a word is used in text and his previous
understanding of that word, he must either assume that the word is used incorrectly or decide that his previous
understanding requires revision. When our system encounters a contradiction derived from combining story
information with background knowledge, it must decide which of the premises leading to the contradiction should
be revised (cf. Rapaport 1991, Rapaport & Shapiro 1995). To facilitate such decisions, each of the assertions that we
build into the system’s knowledge base and each of the assertions in the story is tagged with a knowledge category
(kn_cat ). Assertions having n&in _cat attached are beliefs that the system has derived. (SNeBR assigns each
proposition an “origin tag” as either a hypothesis (a proposition received as input) or a derivation. If the proposition is
derived, information about the hypotheses used in the derivation is also stored (Martins & Shapiro 1988).caur
tags may be considered complementary to SNeBR'’s origin tags, though implemented differently.) These categories
are ordered in a hierarchy of certainty of belief, so that the system can restrict the field from which it chooses a belief
for revision to those premises believed with the least certainty. Ideally, there would be only one such premise, but if
there are more, then other means must be used to select among them (see below). Following is a description of the
hierarchy ofkn _cat s ranged from greatest certainty of belief to least:

1. kn_cat intrinsic: Essentially, facts about language, including simple assertions, as well as some rules;
background, or “world”, knowledge of a very basic or fundamental sort. Intrinsic facts are found in the
knowledge base, not in stories (at least, usually not). For example: The temporal relation “before” is transitive;
containment of an item in a class implies containment of that item in superclasses of that class; encountering the
usage(verb)(agent, object, indobj) implies thaterb) can be bitransitive.

2. kn_cat story. Information present in the story being read, including stated propositions and propositions
implicit in the sentence (necessary for parsing the sentence); the SNePS representation that would be built
on parsing a sentence in the story. For example, in the sentence “Sir Gryflette left his house and rode to town”,
we have the following story facts: Someone is named Sir Gryflette. That someone left his house. That someone
rode to town. (Other examples are {a3-(1Sb), above.)

3. kn_cat life: Background knowledge expressed as simple assertions without variables or inference. Examples



of life facts include taxonomies (e.g., dogs are a subclass of animals) and assertions about individuals (e.g.,
Merlin is a wizard. Bill Clinton is a Democrat.).

4. kn _cat story-comp Information not directly present in the story, but inferred by the reader to make sense of
the story. This is based on Erwin M. Segal’'s concept of “story completion” (Rapaport et al. 1989a,b; Segal
1995). Story completion uses background knowledge, but isn’'t the background knowledge itself. Few (if any)
assertions should be tagged with tkis_cat , since any necessary story completion should (ideally) be derived
by the system. We include it here to cover cases where a gap in the system’s knowledge base might leave it
unable to infer some fact necessary to understanding the story. Using the example from the category of story
facts, story completion facts might include: Sir Gryflette is a knight; Sir Gryflette mounted his horse between
leaving his house and riding to town.

5. kn_cat life-rule.l: Background knowledge represented as rules for inference, using variables; rules reflecting
common, everyday knowledge. For examplex Hears young, theris a mammal; ifx is a weapon, then the
function ofx is to do damage; ik dressey, theny wears clothing.

6. kn_cat life-rule.2 Background knowledge represented as rules for inference, using variables, that rely on
specialized, non-everyday information. For examplecsfitesy, thenx Kills y by hitting y.

7. kn_cat questionable A rule that has already been subjected to revision because its original form led to a
contradiction. For example: ¥ smitesy, thenx hitsy and possibly killsy. This is the only kncat that is never
a part of input. The system attaches this tag when it revises a rule that was tagdéd-ada2. It is intended
as a temporary classification for use while the system looks for confirmation of its revision. Once the system
settles on a particular revision, the revised rule is taggeditesaile.2

In case of contradiction, our system selects, from among the conflicting propositions, a proposition of greatest
uncertainty as a candidate for revision. If the highest level of uncertainty present in the conflict set occurs in only one
belief, that belief will be revised. If several alternatives exist with the same (highest priesecd} , then the system
selects for the presence of a verb in the antecedent, since it seems that humans more readily revise beliefs about verbs
than about nouns (Gentner 1981). If this is still insufficient to yield a single culprit, then, in the current implementation,

a human user must decide among any remaining alternatives. ldeally, the system would use discourse information to
make the decision between possible culprits at the same level of certainty. For example, in the case of combatants
dressing shields and spears before fighting §3e2 below), the rule about what it means to dress something might be
selected for revision because it is unrelated to the topic of fighting, whereas shields and spears are closely associated
with the topic.

We have described a belief hierarchy of seven levels. In practice, it seems that four would probably suffice.
We could have handled all our example revisions without separating the non-rule informationtiimsic, story,
life, andstory-competion information (though some intrinsic facts expressed as rules would have had to be expressed
differently). A hierarchy consisting of non-rules, entrenched rulési(ule.1), non-entrenched rule§ifé-rule.2), and
rules under revisiomuestionablgwould be enough to cover the cases with which we have dealt, since we have never
had to revise a non-rule belief. However, it is at least possible that a contradiction might arise between two or more
beliefs, none of which are rules.

As mentioned above, story-completion information is something of a special case, and will usually be derived;
that is, it will be a conclusion based on background information and story information. When SNeBR detects a
contradiction, it assembles a conflict set consisting of tiposmiseghat led to the contradiction. Derived conclusions
are not part of the conflict set. Therefore, except where story-completion information is directly input, we need not be
concerned about selecting it as the culprit whose error led to a contradiction.

So, if we were to encounter a contradiction whose conflict set contained no rules, we would need some
method for selecting a culprit from among various non-rule facts. Our approach assumes that words in the story are
used correctly and that information presented in the story is true, at least within the context of the story. Therefore,
it makes sense to distinguish between story facts and background facts. But not all background facts are equally
entrenched. Some, such as the exampldehatat intrinsic given above, seem so basic to our understanding that
they should be immune from revision (even if they happen to be expressed as rules). Others seem less basic, and may
be revised if they conflict with story facts. The distinction between assertions taggedic and those taggéeife is
not exactly analogous to distinctions between necessary and contingent properties, or between analytic and synthetic
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definitions, but a loose analogy to such distinctions may capture some sense of the distinction being drawn here (cf.
Rapaport 1991, Rapaport & Shapiro 1995).

At present, all thekn _cat s (except forquestionableare assigned by a human at the time the proposition
is input. The assignment of then cat story could be handled automatically: The system would simply include it
as a part of each proposition built from the parse of a sentence in a story (as in Rapaport 1991, Rapaport & Shapiro
1995). Sincestory-comps only a stop-gap measure, we need not worry about how the system might assign it: Either
it wouldn’'t make any such assignment, or it would tag all derived propositions as being derived. (The latter is already
done by SNeBR, but invisibly; cf. Martins & Shapiro 1988.) This leaves us with the question of how the system
might categorize the non-derived assertions in its knowledge base. Rules can be readily distinguished from non-rules,
so the question breaks down into two parts: How do we tell an entrenchedifedrule.1) from a less-entrenched
rule (ife-rule.2), and how do we tell an entrenched faictt(insic) from a less-entrenched fadif¢)? We make the
distinction based on an intuitive feeling for how basic a concept is, or how familiar we are with a concept. How such
intuitions can be formalized and automated is an open question. We may have to continue for a while to tell Cassie
how strongly she holds her beliefs.

Once a contradiction is detected and a culprit proposition selected, if it is a rule (as it usually is), then it
may be necessary to select which of several consequents actually produced the contradiction. The system checks
each consequent against the justification support (the premises from which a proposition is derived) of the deduced
propositions that are in direct conflict with each other to find the culprit consequent within the culprit rule (i.e., the
rule that has been determined to be in error).

6 Algorithms

Our algorithms hypothesize and revise meanings for nouns and verbs that are unknown, misunderstood, or being used
in a new way. Applying the principle that the meaning of a term is its location in the network of background and story
information, our algorithms deductively search the network for information appropriate to a dictionary-like definition,
assuming our grammar has identified the unknown word as a noun or a verb. The algorithms (Ehrlich 1995) are shown
in Appendices 1 and 2, and are illustrated by example here.

Cassie was provided with background information for understanding King Arthur stories (Malory 1470). As
we saw above, when presented with a sequence of passages containing the unknown noun ‘brachet’, Cassie developed
a theory that a brachet was a dog whose function is to hunt and that can bay and bite. However, based on the first
context in which the term appeared (“... there came a white hart running into the hall with a white brachet next to
him, ..."), her initial hypothesis was that a brachet was a physical object that may be white. Each time ‘brachet’
appeared, Cassie was asked to define it. To do so, she deductively searched her background knowledge base, together
with the information she had read in the narrative to that point, for information concerning (1) direct class inclusions
(especially in a basic-level category), (2) general functions of brachets (in preference to those of individuals), (3) the
general structure of brachets (if appropriate, and in preference to those of individuals), (4) acts that brachets perform
(partially ordered in terms of universality: probable actions in preference to possible actions, actions attributed to
brachets in general in preference to actions of individuals, etc.), (5) possible ownership of brachets, (6) part-whole
relationships to other objects, (7) other properties of brachets (when structural and functional description is possible,
less salient “other properties” of particular brachets are not reported, although we do report properties that apply to
brachets in general), and (8) possible synonyms for ‘brachet’ (based on similarity of the above attributes). Some of
these are based on the psycholinguistic studies of the sort of vocabulary expansion we are modeling (discussed above).
In the absence of any of this information, or in the presence of potentially inconsistent information (e.g., if the text says
that one brachet hunts and another doesn't), Cassie either leaves certain “slots” in her definitional framework empty,
or includes information about particular brachets. Such information is filled in or replaced upon further encounters
with the term.

Each query for a definition begins the search from scratch; different information is reported depending on
the kind of background information available at the time the query is made. Thus, by querying Cassie after each
occurrence of ‘brachet’, we can see the definition frame “develop” dynamically. However, if we only queried Cassie
at the last occurrence of ‘brachet’, then we would only see the “final” definition frame.

Although the current implementation outputs different definition frames depending on which branch of the
algorithm has been taken (see Appendices 1 and 2), a “unified” definition frame could be used, as shown in Table 1.
Each row is a slot. Each column represents a kind of term; e.g., (1) a term that is a basic-level category, such as
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Subclass

Basic- of Basic- Subclass of Subclass of No

Level Level Subclass Physical Abstract Class
Slot Category Category of Animal Object Object Inclusions
actions Vv V4 Vv v Vv Vv
ownership Vv V4 Vv Vv Vv Vv
function 4 v 4 Vv Vv Vv
structure v Vv vV Vv ® Vv
immediate superclass  / vV Vv Vv Vv ®
general stative properties./ v Vv Vv Vv ®
synonyms v v v v v ®
possible properties O O O v/ vV v/
object of act O O O vV vV Vv
named individuals O O O O O Vv

Table 1: Unified Definition Framey/ = reported if known
(O =not reported (even if known)
® = can't be reported

‘dog’, (2) a term that is a subclass of a basic-level category, such as ‘brachet’, etc. (See Rosch 1978 for the notion of
“basic-level categories”.) A check-mark/j means that a slot-filler is reported if it is known. A circ®)f means that

it is not reported, even if it is known, because it is superseded by other slot-fillers. A créleimeans that that slot

cannot be filled (hence, will not be reported) for that kind of term.

7 Other Examples of Vocabulary Acquisition

We have been investigating three types of vocabulary acquisition:
1. Constructinga new definition of amnknownword (e.g., ‘brachet’)
2. Correctinga definition of amisunderstoodvord (e.g., see the discussion of ‘smitg7,1)
3. Expandingthe definition of a word beingsed in a new senge.g., see the discussion of ‘dres§,2).

All three can be thought of as revision: (1) “revision” from an empty definition, (2) revision of an incorrect definition,
and (3) revision of an incomplete definition. Alternatively, (3) can be thought of as adding (disjoining) a new definition
to an already-established one ($&€2, below).

7.1 ‘Smite’

Cassie was told that ‘to smite’ meant “to kill by hitting hard” (a mistaken belief actually held by one of us (Rapaport)
before reading Malory 1470). Passages in which various characters were smitten but then continued to act triggered
SNeBR, which asks Cassie which of several possible “culprit” propositions in the knowledge base to remove in order
to block inconsistencies. Ideally, Cassie then decides which belief to revise. A set of rules for replacing discarded
definitions with revised definitions is being developed. E.g., suppose the culprit were:

If x smitesy, then:x hitsy & y is dead &x hitting y causeg to be dead.
On first encountering a smitee who survives, substitute these rules:
1. If x smitesy, then:x hitsy & possiblyy is dead;
2. If xsmitesy & y is dead, thex hitting y causey to be dead.
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If asked for a definition of ‘smite’ now, Cassie will report that the result of smiting is xhlaits y and possibly
y is dead. The only human intervention is to tell Cassie to order her beliefs (she does the ordering, based on the
knowledge categories, but has to be nudged to “do it now”) and to tell Cassigsttthe revised belief she has
already automaticallgenerated from the lowest-ranked belief in the conflict set.

Here, we sketch Cassie’s handling of ‘smite’, with this background information in the knowledge base:

There is a king named King Arthur.

There is a king named King Lot.

There is a sword named Excalibur.

Excalibur is King Arthur’s sword.

Horses are animals.

Kings are persons.

Knights are persons.

Dukes are persons.

“Person” is a basic-level category.

“Horse” is a basic-level category.

“Before” and “after” are transitive relations.

If xis dead at tim¢, x can perform no actions abr at any subsequent time.

If x belongs to a subclass of persaris a person.

If a person acts, the act performed is an action.

If an agent acts on an object, and there is an indirect object of the action, then the action is bitransitive.
If an agent acts on an object, then the action is transitive.

If an agent acts on itself, then the action is reflexive.

If xis hurt at timet, thenx is not dead at.

If xis not dead at timg, thenx was not dead at any prior time.

If x smitesy at timet, thenx hitsy att, andy is dead at, and the hitting caused the death.

Note that the last is the only information about ‘smite’ in the knowledge base.
Cassie is then given a sequence of passages containing ‘smite’ (adapted from Malory 1470: 13ff), interspersed
with questions and requests for definitions:

Passage S1King Arthur turned himself and his horse. He smote before and behind. His horse was slain. King Lot
smote down King Arthur.

Definition S1: A person can smite a personxiEmitesy at timet, thenx hitsy att, andy is dead at.
Question S1: What properties does King Arthur have?

Reply S1: King Arthur is dead.

Passage S2King Arthur’s knights rescued him. They sat him on a horse. He drew Excalibur.
Question S2: When did King Arthur draw [Excalibur]?

The inference required to reply @uestion S2triggers SNeBR, which reports that King Arthur’s drawing (i.e., acting)

is inconsistent with his being dead. Cassie automatically removes the proposition reporting her belief that smiting
entails killing, which is replaced with two beliefs: that although smiting entails hitting, it only possibly entails killing,
and that if smiting results in a death, then the hitting is the cause of death. These ruletbaii# in; they areinferred

by revision rules. This results in:

Definition S2: A person can smite a person.xiEmitesy at timet, thenx hitsy att and possibly is dead at.

Passage S3Two of King Claudas’s knights rode toward a passage. Sir Ulfyas and Sir Brastias rode ahead. Sir Ulfyas
smote down one of King Claudas’s two knights. Sir Brastias smote down the other knight. Sir Ulfyas and Sir
Brastias rode ahead. Sir Ulfyas fought and unhorsed another of Claudas’s knights. Sir Brastias fought and
unhorsed the last of Claudas’s knights. Sir Ulfyas and Sir Brastias laid King Claudas’s last two knights on the
ground. All of King Claudas’s knights were hurt and bruised.
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The information that the knights were hurt was added in forward-chaining mode to allow Cassie to notice that that
they were still alive at the time they were hurt and therefore could not have died earlier at the time they were smitten.
Cassie has now heard of two cases in a row (King Arthur, and the two knights) where a smitee has survived being
smitten, with no intervening cases of death by smiting, yielding:

Definition S3: A person can smite a personxigmitesy at timet, thenx hitsy att.

Further encounters with ‘smite’ cause no further revisions. The definition has stabilized (“converged”) in a manner
similar to the human protocols on the same passages.

7.2 ‘Dress’

A third case is exemplified by ‘dress’, which Cassie antecedently understood to mean “put clothes on (something)”, a
well-entrenched meaning that shouldt be rejected. Thus, her background knowledge for this example included the
following two beliefs whosdn _cat = life-rule.l

1. dresses(y) = 3Z|clothing@@) & wearsf, 2)].
2. Spears don't wear clothing.

Again, Cassie was given a sequence of passages containing ‘dress’ (adapted from Malory 1470) interspersed
with questions and requests for definitions:

Passage D1King Arthur dressed himself.

Definition D1 A person can dress itself; result: it wears clothing.
Passage D2King Claudas dressed his spear .. ..

At this point, Cassie infers that King Claudas’s spear wears clothing.
Question D2 What wears clothing?

This question invokes SNeBR, which detects a contradiction and automatically replaces background bal¢f (1),
background belief (2)because of the occurrence of a verb in the antecedent, following Gentner 198%,(abeve).
There follow several passages in the text in which dressing spears precedes fighting. Ratfegedtingthe prior
definition, weaddto it. Cassie decides that to dresitherto put clothes oror to prepare for battle:

Definition D3 A person can dress a spear or a person; result: the person wears clothing or the person is enabled to
fight.

Admittedly, this is not perfectly satisfactory. Among the improvements we are planning are a better way of expressing
such disjunctive definitions and a method to induce a more general definition. In the present case, further experience
with such phrases as ‘salad dressing’, ‘turkey dressing’, and so on, might lead one to decide that ‘dress’ more generally
means something like “prepare” (for the day, by putting on clothes; for battle, by preparing one’s spear; for eating, by
preparing one’s salad; for cooking, by preparing one’s turkey; and so on).

8 Related Work

We begin with a review of some classic work along these lines, and then turn to more recent work.

8.1 Some classic work
8.1.1 Granger

Richard H. Granger's Foul-Up (1977) was designed specifically to work in conjunction with a Script Applier
Mechanism (Schank & Abelson 1977) to allow stories of events to be understood in terms of stereotypical event
sequences despite the presence of unknown words. Granger used the syntactic expectations generated by a parser and

14



script-based expectations generated by the currently active script to create a partial definition of an unknown word.
For example, if the currently active scriptighicular accidentif there is input to the effect that the car struck an elm,

and if the word ‘elm’ is unknown, Foul-Up would deduce that ‘elm’ is a noun that represents something that can fill
the “obstruction” slot in a script for a single-car accident (and therefore must be a physical object).

Once our grammar is in place, we also will use syntactic expectations and morphology to allow the
determination of an unknown word’s role in a given sentence (e.g., subject, direct object, verb, etc.) as well as its
part of speech. We can make deductions similar to Granger’s, but in terms of sentences instead of scripts. We also
use such background knowledge as is available, even though that knowledge isn’t organized into scripts. We would
deduce that ‘elm’ is a noun and that an elm is a thing that can be struck by a car. For us, as for Granger, the single
occurrence of the word is not enough to allow any useful inference beyond what is immediately present in the text
(although background knowledge might be available about the probable size, location, etc., of objects that a car might
be said to strike).

We adopt Granger’s use of parsing expectations to begin hypothesizing word definitions. However, the rest
of his approach, which involved the use of standard scripts, is less general than our approach. Unknown words do not
always occur in the context of a story that fits a standardized script. Furthermore, even if a standardized script may
apply to the text overall, the unknown term may not occur as the filler of a standard slot. This does not mean, however,
that the context in which the word occurs may not yield useful information in attempting to hypothesize a definition.

Our research also differs from Granger’s in that we store the knowledge acquired from reading various texts
in a single, general knowledge base, and use this stored knowledge as source of information for definitions. Thus, a
definition may be synthesized from several encounters.

8.1.2 Haas and Hendrix

Norman Haas and Gary Hendrix (1983) developed a system in which a tutor specifically gives the system a new
concept, and refines it by adding further facts in response to queries from the system as it seeks to relate the new
concept to previously acquired knowledge. Although asking questions is a good way to learn, the major focus of our
research is to allow the system to learn from context without specific queries or direct instruction. We explore what the
system learns when left to read “on its own”, and allow it to include only information it can deduce in its definitions.

In future work, as already noted in connection with ‘dress’, we may explore ways in which the system can generate
inductivehypotheses, which might be used to generate questions to put to a human user, or might simply be kept as
guestions in the “mind” of our system until more evidence can be found.

8.1.3 Berwick

Another approach to learning verbs (and perhaps other words) was developed by Robert C. Berwick (1983), who
attempted to extend the process of analogical learning (as in Patrick Henry Winston’s (1975) arch-learning algorithm)
to the domain of natural language. Causal networks are created to represent the events in different stories. Itis assumed
that a word’s meaning is known by its position in such a net. A new word, then, is held to be most similar to those
known words which play the most similar roles. For example, if murder and assassination both cause their objects to
be dead, but love does not cause such an outcome, then ‘murder’ and ‘assassinate’ are closer in their meaning than
either is to ‘love’. Berwick's work, as implemented, required the input of story outlines in specific form, with all
relevant causal information explicitly present in the outlines, rather than straight narrative as it occurs in published
stories.

While the notion of synonymy (or near synonymy) and similar causes producing similar effects is a useful
one, our desire to test our theories on natural text would require that our system infer causal relationships in order
to make the sort of comparisons that Berwick's system made. For example, were the system to read that Macbeth
assassinated Duncan and then to read that Duncan was dead, it would have to infer that the one fact was the cause
of the other. This done, it might use a system similar to Berwick’s to infer that ‘assassinate’ is close to ‘murder’ in
meaning (assuming, of course that it already knew tAantirderingB” causesB to be dead). Unfortunately, giving
our system the ability to make such causal inferences is beyond the scope of this project, although given the presence
of certain specific causal information in the knowledge base, comparisons between verbs can be made.

We do make use of the notion that words with similar meanings have similar connections in an agent’s
network of knowledge. The framework we use for defining nouns includes a slot for potential synonyms. The
synonym-finding algorithm compares the other definitional information (e.g., class inclusion, structure, and function)
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that has been discovered about the new word with the same information about a candidate synonym. If they have more
in common than in contrast, the system lists them as possible synonyms.

8.2 Some more recent work
8.2.1 Zernik and Dyer

Uri Zernik and Michael G. Dyer (1987) compile definitions of words and figurative phrases from conversation into

a hierarchical lexicon, using a pattern constructor that analyzes parsing failures to modify its patterns and a concept
constructor that selects a strategy according to background information about the goals and plans a person is likely
to have in various situations. If the first interpretation of a phrase is inconsistent with that information, the system
gueries the user, suggesting various interpretations more consistent with the goals of persons in the story until the user
confirms that a correct interpretation has been reached.

However, since we focus on literary, not conversational, discourse, Cassie is not informed by a human user
when she misunderstands. As long as the misunderstanding is compatible with further encounters with the word and
with her general knowledge, there is no reason for Cassie to revise her understanding. If further reading leads to the
conclusion that a previous definition was wrong, Cassie revises her understanding without explicit instruction.

8.2.2 Hastings

Peter M. Hastings (1994; Hastings & Lytinen 1994ab) presents several versions of a system, Camille, that uses
knowledge of a given domain to infer a word’s meaning. Hastings’s approach is like ours: The goal is to allow the
system to read and acquire word meanings without the intervention of a human tutor. His approach differs, however, in
the types of information sought as the meaning of a word, and in the nature of the knowledge base. For each domain,
the initial knowledge base consisted of a taxonomy of relevant objects and actions. Camille attempts to place the
unknown word appropriately in the domain hierarchy. To this basic system, Hastings has added: a mutual exclusivity
constraint; a script applier allowing Camille to match the unknown word with a known word that has filled the same
slot in a particular script, or, for a verb, with a known word whose arguments match those of the target word; and an
ability to recognize the existence of multiple senses for a word. In most instances, the meaning sought appears to be
synonymy with a known word, unlike Cassie, which can create new concepts (defined in terms of preexisting ones).
In one version, however, Camille is given the capacity to create a new node, and insert it into the domain hierarchy.
This, however, is only available for unknown nouns. Verbs can be “defined” only by mapping them to their closest
synonyms. Hastings's evaluation of Camille’s performance is given in terms of “correctness” of word meaning. His
focus is on the comparative precision and accuracy of the various versions of Camille as they attempt to map unknown
terms onto known nodes. For us, such a notion of “correctness” does not apply.

8.2.3 Siskind

Jeffrey Mark Siskind’s (1996) focus is on first-language acquisition during childhood, whereas ours is on mature
cognitive agents who already know a large part of their language and are (merely) expanding their vocabulary. Siskind
takes as given (1) an utterance, (2) a simultaneous visual perception, (3) a mental representation of the situation
perceived, which is caused by it, and (4) an assumption that the utterance means that mental representation. His
algorithms assign parts of the mental-representation meaning to parts (words) of the utterance. Given “multiple
situations”, these algorithms “converge” to “correct word-to-meaning mappings”.

Although we also assume an utterance and a mental representation that the utterance means, Cassie does
not use visual perception to produce the mental representation. In most cases of reading, any mental representation
(including imagery) would be produced by the text, so visual perception of a real-world situation does not arise,
except for illustrated texts. Although Cassie does not use illustrations, she could in principle (Srihari & Rapaport
1989, Srihari 1991). Siskind’s system begins with a mapping between a whole meaning and a whole utterance, and
infers mappings between their parts. Cassie already has both of those mappings and seeks to infer definition-style
relations between the unknown word and the rest of the knowledge base. Moreover, it does not make sense in our
theory to speak of “correct word-to-meaning mappings”. Finally, Siskind claims that his theory provides evidence for
“semantic bootstrapping”—using semantics to aid in learning syntax. In contrast, Casssgntsesichootstrapping
(using syntax to aid in learning semantics; Gleitman 1990, 1994), which seems more reasonable for our situation.

16



8.2.4 Campbell and Shapiro

A related project is Ontological Mediation, being conducted by Alistair E. Campbell and Stuart C. Shapiro in
the SNePS Research Group at SUNY Buffalo. Suppose a speaker uses a word unknown to the listener. An
“ontological mediator” agent determines the word’'s meaning by querying the speaker and listener concerning
ontological relations, such as subclass, parts, ownership, or skills, and then defines the word for the listener
in terms of the listener's already-known words. (See Campbell & Shapiro 1995, Campbell 1996, and
(http://www.cs.buffalo.edutaec/OM/index.htrl)

9 Future Work

Much remains to be done: We are now developing and using a grammar for natural-language input and output (Hunt
& Koplas 1997), as well as for potential use in determining meanings via morphological (and perhaps etymological)
information. We plan to expand our algorithms for verb acquisition, and to investigate adjective acquisition. We need
to decide under what conditions to represent the definition in the knowledge base; despite Johnson-Laird’s findings,
discussed abové4.1), it is nevertheless true that eventually we do memorize definitions of words after encountering
them often enough. We plan to apply our algorithms to proper names: Can we decide who someone is by using our
techniques? Finally, to what extent are we developing a formal model of category-definition by exemplars, where we
take as input information about a (single) individual, and output a description of a category that that individual falls
under?
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Appendix 1: Algorithm for Noun Definition
Input unknown noun ‘N’.

procedure Make-Listl ::=
list (1) structure of Ns,
(2) functions of Ns,
(3) stative properties of Ns only if there are general rules about them.
end; {procedure Make-Lisf

procedure Make-List2 ::=
list (1) direct class inclusions of N,
(2) actions of Ns that can’'t be deduced from class inclusions,
(3) ownership of Ns,
(4) synonyms of ‘N’.
end; {procedure Make-ListR

procedure Make-List3 ::=
begin
Make-List2;
if there is structural or functional info about Nken Make-List1l
end
end; {procedure Make-List3

begin {defn _noun }
if N represents a basic-level categahgn Make-List3
elsif N represents a subclass of a basic-level categioey
begin
report that N is a variety of the basic-level category that includes it;
if Ns are animalghen list non-redundant acts that Ns perform;
list if known:
functions of Ns,
structural information about Ns,
ownership of Ns,
synonyms of ‘N’;
list stative properties only if there are general rules about them
end
elsif N represents a subclass of aninthEn Make-List3
elsif N represents a subclass of physical objtdwtn
begin
Make-List2;
if system finds structural or functional information about then Make-List1
elsif system finds actions of N or synonyms of ‘Khen
begin
list them;
list possible properties of Ns
end
elsif N is an object of an act performed by an agénén
begin
report that;
list possible properties of Ns
end
end
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elsif N represents a subclass of abstract objben
begin
list direct class inclusions of N & ownership of Ns;
if system finds functional information about Ns,
then list:
function,
actions of Ns that can't be deduced from class inclusions,
stative properties only if there are general rules,
synonyms for ‘N’
else begin
list possible properties of Ns;
if system finds actions of N or synonyms for ‘Nhen list them
elsif N is an object of an act performed by an agémén report that
end
end
else{we lack class inclusions, sp:
begin
list:
named individuals of class N,
ownership,
possible properties;
if system finds information on structure, function, actighen list it
elsif N is object of act performed by agetiten report that
end
end.
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Appendix 2: Algorithm for Verb Definition

Input unknown verb V'

begin {defn _verb }
report on cause & effect;
categorize the subject;
if V is used with an indirect object,
then categorize objects & indirect object
elsif V is used with a direct object distinct from its subject,
then categorize the object
elsif V is used with its subject as direct object,
then list the object as “itself”
end.
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