
 PAPER FOLDING AND CONVERGENT SEQUENCES

 Paper folding can help in understanding some infinite sequences and iti finding
 their limits. A simple physical model useful at all levels of ability is presented
 and infinite sequences of interest to senior high school students are explored.

 By WILLIAM J. RAPAPORT

 Indiana University?Bloomington
 Bloomington, Indiana

 THERE are many well-known phys
 ical representations of convergent se
 quences. A standard example is to traverse
 the length of a room by walking half the
 remaining distance each time a "step" is
 taken. One sequence corresponding to this
 model (0, y2, %, %, i^e, . . .) has 1 as
 its obvious limit.
 There is a sequence (see table 1) that

 also has a simple and interesting physical
 model but whose limit is not so obvious.
 And precisely because of these facts, the
 sequence and its physical representation
 can be used as the basis and motivation
 for several interesting lessons.

 The physical model requires the student
 (or the teacher) to fold a strip of paper
 according to the directions given in the
 next section. One lesson that can be based
 on this exercise involves discovery of a

 mathematical description of the resulting
 sequence and finding the limit of this
 sequence. This is done in the section called
 "Mathematical Description of the Se
 quence." In the last section, "Other Re
 lated Lessons," some other lessons that
 can be built around the physical model are
 suggested.

 Obtaining a Sequence by Folding

 Take a strip of adding-machine tape
 at least twelve inches long. (Any size piece

 The author wishes to thank Professor Stanley
 Taback for his helpful comments on an earlier
 draft of this paper.

 of paper that is suitable for folding will
 do, but at least one of its edges must be
 straight). Label the left edge A and the
 right edge (see fig. la).

 The sequence of folds is as follows:

 1. Fold to the left to coincide with A
 (see fig. lb) ; call the crease that is created

 by this fold, C (see fig. lc).

 2. Without unfolding the paper, fold
 to the right to coincide with C, forming
 a second crease, D (see fig. Id). Just as
 a check, the paper (when viewed from the
 side) should now look like fig. le).

 3. Without unfolding, fold to the left
 to coincide with D, creating crease E (top
 view in fig. If, side view in fig. lg).

 4. Continue as before, successively fold
 ing to the right, left, and so on, so that
 at the end of each folding operation,
 coincides with the crease made last.

 After three more folds, for example, the
 side view should look like figure lh.
 (Making the folds is actually quite sim

 ple, certainly much simpler than the
 verbal description.)

 An interesting question comes to mind
 immediately: Where will edge appear if
 one could continue folding indefinitely?

 Some students might not be convinced
 that this question is meaningful (unlike
 the room-traversing example where most
 students are certain that the other side of

 the room would eventually be reached).
 One way to clarify the question is to
 unfold the paper so that it resembles fig
 ure la again, except that now it is creased.
 Make a cut with scissors from to fold
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 Fig. 1

 C and then up to the top edge (see fig. 2),
 thus cutting off one-fourth of the paper.
 Now refold the paper as before, this time
 marking a dot after each fold is made
 in order to show where lands (see fig. 3).

 If the dots are thought of as points on
 a number line, you should be able to see
 how they begin to cluster around one

 point. (This can be made even clearer by
 using a longer piece of paper, thus making
 it possible to make more folds.) It is the
 cluster, or limit, point that we desire to
 find. You might guess, by inspection, that
 the limit point is a certain, very simple,
 fraction of the way from A to B* Let us
 now find out exactly.

 second cut

 Fig. 2

 first
 "cut

 D E F
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 tg)  We thus obtain the following sequence (of
 positions of B) :

 Fig. 3
 Mathematical Description of the Sequence

 Think of the top edge of the paper as
 a number line, with 0 at edge A and 1 at
 edge B. We have already mapped the
 sequence of folds onto a sequence of dots
 or points. We now want to map this point
 sequence onto a sequence of numbers so
 that we can employ numerical techniques
 to answer our question. The trick is to do
 this in an efficient way. Allowing each
 student in a laboratory situation to do
 this in his or her own way is advisable.
 Alternatively, some class time could be
 spent on deciding precisely what mapping
 to use. I suggest the following.

 After fold 1, ? is at 0 on the number
 line. After fold 2, is at ^, since it then
 coincides with crease C (which was the
 result of folding the paper in half). After
 fold 3, coincides with crease D, which
 was obtained by folding the halved paper
 in half; is now at %. Although the
 fourth fold halves again, the result is not
 Ys, but %. The reason for this may be
 seen by realizing that the exercise is a
 physical model for averaging: after the
 fourth fold, is in the middle of its last
 two positions and y2). Folding, that is,
 averaging, a fifth time yields %?? Table 1
 may be derived.

 TABLE 1

 Fold  Position of

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

 0
 1/2
 1/4
 3/8
 5/16
 11/32
 21/64
 43/128
 85/256
 171/512
 341/1024

 3
 8 ' 16

 Our question may now be phrased more
 precisely: What is the limit of sequence St

 In order to answer this question, it is
 necessary to find a formula for arbitrary
 terms of S. Clearly, the denominators of
 the terms are powers of 2. In fact, for
 fold n, the denominator (of the fraction
 representing the position of after the
 nth fold) ia?""1. Let the first term (i.e., 0)
 in sequence S be called aly the second term
 (i.e., y2) a*, and so on, so that we may
 say that the denominator of a* is 2*"1 (for
 > 1 ; it is assumed throughout that is

 a natural number). Now the numerator of
 an for each is needed.

 It is at this point that the students'
 problem-solving abilities are put to the
 test, for although there are many pat
 terns to be found in this sequence, a pat
 tern that will be useful for our purposes
 can prove to be quite elusive. One method
 (out of many) begins by expressing S
 recursively (where a and a* are given)
 and then finding an equivalent formula in
 which an depends only on (i.e., a form
 ula that does not require knowing in ad
 vance any terms of S).
 We have already seen that each term is

 the average of the two preceding terms.
 (Note that before folding, i.e., at "fold"
 0, is located at 1. Question: Where is

 at "fold" -1?) Thus,

 (1)

 al = 0
 Cht = i

 On + <*n+l
 ^+2 = -?  (if > 1).

 Formula (1) is a recursive formula (with
 two initial conditions) that generates S.
 It allows us to imagine folding as many
 times as we wish, eliminating the practical
 limitations of the thickness and length of
 the paper. The problem, though, is to find
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 lim a?, and, as interesting as (1) may be,
 n???

 it does not help much.
 Recall that a formula is needed for the

 numerator of an for each n. That is, a
 formula is wanted for an arbitrary term of
 the sequence S' of numerators:

 S': 0, 1, 1, 3, 5, 11, ... .

 Call each term of this new sequence bn (for
 > 1). Thus, an = 6n/2n'1 (for > 1).

 Next is the derivation of a simple recursive
 formula for any term of wherein each
 term depends on the two previous terms.
 The determination of this formula is a
 nice short exercise by itself. The result
 follows:

 ?! = 0
 (2) b2 = 1

 6n+2 = 2bn + K+1 (if > 1).

 However, this is not just what was
 wanted.

 There is a more interesting line of
 attack. Is there any property of either
 sequence, S or that reflects the physical
 fact that the folds alternate from right
 to left? There are at least two such prop
 erties.

 First, observe that each term of S' (af
 ter the first) is either one more than or
 one less than twice the preceding term;
 that is, ??+i = 2bn ? 1 (for > 1). One
 can then verify (or discover) formula
 (3) :

 (3)  ?! = 0

 6W+1 = 2?n + (-l)n-1 (ifn> 1).

 Here, the alternation in folding direction
 is reflected in the alternating parity of the
 terms of the sequence (1, ? 1, 1, ? 1,. . .)
 generated by ( ?l)n_1. Formula (3) is
 halfway to the general formula ; it repre
 sents an improvement over (2) in that it
 has only one initial condition. In order to
 eliminate the need for any such initial
 condition, it is necessary to express the nth
 term of S' (or S) in terms of only.

 Success comes by observing a further
 pattern: the sums of consecutive pairs of
 terms of S' are powers of 2. That is,

 (4) ?n+&n+1 = 2w-1 (forn>l).
 Since (4) is equivalent to

 (5) 6n+1 = 2"-1 - bn (forn>l),
 the right-hand sides of (3) and (5) may
 be set equal to each other in order to find
 the desired formula (n > 1, throughout).

 26n + (-l)n-1 = 2"-1 - bn
 sbn = 2 "1 - (-I)""1

 2"1 - (-1 "1 (6)

 (7)

 =

 a? =  - (-ir
 3?2

 With (7) we have reached our goal. It
 now remains to find lim a . This may be

 -?oo

 done as follows:

 lim a?
 -+a

 = lim 2 "1 - (-1)*
 3?2"-1

 ? ^-(-ir1 - ?'llI?l ^ ? -? &

 But |-1/2| < 1; therefore, lim (-1/2)"'1

 = lim (-1/2)" = 0 (cf. Walter Rudin,
 ??oo

 Principles of Mathematical Analysisf
 theorem 3.20). Hence, lim a = 1/3, as the

 n? ?

 reader may have conjectured. (An interest
 ing point to consider is this: Where did the
 3 come from, when it was powers of 2 that
 seemed to play such an important role?
 Hint: Look at (6).)
 A different method of solution arises

 from the aspect of S' that reflects the
 alternating property of the folding rule.
 Two subsequences can be derived from
 S'?one for even values of and one for
 odd values of (see table 2).
 Clearly, the odd values correspond to
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 TABLE 2

 Odd  Even

 0
 1
 5

 21
 85

 2
 4
 6
 8
 10

 1
 3
 11
 43
 171

 folds to the left and the even values to
 folds to the right The student should dis
 cover (or be led to see) that the pair-wise
 differences of the terms of the odd sub
 sequence are 1, 4, 16, 64, ... , and those
 for the even subsequence are 2, 8, 32, 128,
 .... That is, for the odd subsequence,
 the pair-wise differences are 2?, 22, 2*,...,
 22*, . . . (k > 0), whereas for the even
 subsequence, the pair-wise differences are
 21, 28,25, . . . , 22*+1, . . . (fc > 0).

 The students should then find (follow
 ing the methods suggested above) formu
 las for these subsequences, calculate the
 limits for each subsequence, and see that
 each limit is This alternative ap
 proach affords a good example of the fact
 that if a sequence converges to a limit L,
 then all of its subsequences also converge
 to L.

 Other Related Lessons

 One of the nicer aspects of this exercise
 is that it can be used at many levels of
 ability and for many different purposes.

 At an elementary level, all the numer
 ical manipulations can be ignored and the
 emphasis placed on making the folds, in
 order to give the students an intuitive
 idea of limits that differs fremi the more

 familiar example mentioned at the begin
 ning.

 A lesson could also be developed for a
 unit on measuring. For such a lesson, a
 twelve-inch length of adding-machine tape
 and a twelve-inch ruler for each student
 (or a thirty-six-inch length and a yard
 stick for a larger group) would be ideal.
 The student could then measure, after
 each fold, the distance of each crease from

 edge Ay getting a sequence whose limit is
 4" (or 12" for the 36" length). This would
 not only afford practice in measurement,
 but also give the students a good feel for
 the limiting process. (One warning for
 metric enthusiasts: % of 12" is a very
 "clean" 4", but % of 10 cm. might prove
 impractical. Try a 15 cm. length or some
 other multiple of 3 ; after all, a teacher's
 materials must be prepared in advance
 just as much as a magician's!)

 For a class studying fractions, this exer
 cise could be used to give the students
 practice in working with fractions, using
 formula (1) to derive terms in the se
 quence. Moreover, by changing each frac
 tion into its decimal equivalent, the stu
 dents not only will have practice in di
 vision, but also will be able to "see" the
 terms of the sequence approach .333 . . . ,
 both from "above" and from "below." And,
 of course, it may serve as a motivat
 ing exercise for a unit on averaging.

 ATTACH ,f you are one of the many NCTM mem
 . bers who will move this year, please let
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 UEQE address. Use this form-attach your

 E E magazine address label and print your
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Addendum to “Paper Folding and Convergent Sequences”

The method illustrated in the previous paper uses the techniques of 
continuous mathematics, in particular, limits.  

The problem posed in that paper can also be solved using the techniques 
of discrete mathematics, in particular, recurrence relations.  

That technique is described in the following extracts from my Lecture 
Notes on Discrete Math (November 2010).  

Please ignore the partial notes on other topics at the beginning and at the 
end of the document.  The full set of lecture notes for the course is 
online at https://cse.buffalo.edu/~rapaport/191/

https://cse.buffalo.edu/~rapaport/191/


l. ∃xP(x), where x is a variable, is WF by rec case (vii), 
because P(x) is a WF propositional function by the base case.

5. 

a. Question:

"⊕" is the symbol for exclusive disjunction.
Let A,B be WFFs of FOL.
Is (A ⊕ B) a WFF of FOL?

b. Answer:

Not according to the above definition.
But surely it "should be" considered as a WFF of FOL, right?
Here's how we can use it without changing the definition of WFF:

We can define the symbol "⊕" as follows:

Let A,B be any 2 WFFs of FOL.
Then let (A ⊕ B) be an abbreviation for:

((A ∨ B) ∧ ¬(A ∧ B))

In other words,
any time that we use (A ⊕ B),
we would just be being lazy,
and we should really write out the full definition,
which is a WFF of FOL.

§§7.1–7.2: Recurrence Relations

I. Recursive Def (of a sequence {an}):

Let ai be terms of the sequence.
Let Ci be constants. Let h be a function.

Base Cases (or: Initial Conditions):

a0 = C0
…
an–1 = Cn–1

Recursive Case (or: Recurrence Relation):

an = h(a0, …, an–1)

II. 

A. Normally, an = f(n) "explicitly";
i.e.)



the nth term of the sequence would be defined directly in terms of n

B. Questions:

1. What's the relation between f & h?
2. Can we compute f, given h?

Next lecture… 
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Discrete Structures

Lecture Notes, 19 Nov 2010
Last Update: 22 November 2010

Note:  or  material is highlighted

Note: A username and password may be required to access certain documents. Please contact Bill Rapaport.
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…Previous lecture

§§7.1–7.2: Recurrence Relations

I. Recurrence Relations:

A. A sequence can be defined in two different ways:

1. non-recursively ("explicitly"),
in terms of its current I/P:

an = f(n)

2. recursively,
by giving initial conditions (first few terms)

a0 = C0, …, an–1 = Cn–1

& a recurrence relation that defines the sequence in terms of its previous O/P:

an = h(a0 = C0, …, an–1)

B. Question: Given initial conditions & recurrence relation an = h(a0 = C0, …, an–1),
(how) can we compute the explicit formula f(n)?

This is called "solving" the recurrence relation.

C. E.g.)

1. initial conditions:

a0 = C0
a1 = C1

recurrence relation:

an = 3an–1 – 2an–2, ∀ n ≥ 2

http://www.cse.buffalo.edu/~rapaport/191
mailto:rapaport@buffalo.edu?subject=191
http://www.cse.buffalo.edu/~rapaport/575/F07/bill.txt
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2. Lots of different sequences share this pattern,
differing only in their initial conditions

a. Given the initial conditions,
we can compute the nth term (n ≥ 2)
without knowing what the function does to its I/P!

b. We compute it on the basis of what it did:
we compute it on the basis of what its previous O/P was!

c. Here are some examples:
(initial conditions are in the first 2 rows;
last row shows "explicit" "solution",
i.e.) def in terms of I/P)

a0 0 0 1 1 1 2 2
a1 0 1 0 1 2 1 2
a2 0 3 –2 1 4 –1 2
a3 0 7 –6 1 8 –5 2
a4 0 15 –14 1 16 –13 2
a5 0 … –30 1 … … …
… … … … … … … …
an 0 2n–1 2–2n 1 2n 3–2n 2

D. What good are recurrence relations?

1. They describe similar patterns of growth,
based on differing initial conditions or "seeds"

2. E.g.) compound interest:

2 people deposit different amounts of $ in same bank;
∴ same recurrence relation computes their interest;

But the actual interest depends on their initial deposit!

II. So the question is: How to "solve" a recurrence relation.

A. Def:

A linear, homogeneous, recurrence relation of degree 2
with constant coefficients

isdef
a recurrence relation of the form

an = c1an–1 + c2an–2

where c1, c2 ∈ R & c2 ≠ 0



1. See text for complete def of linear homogeneous recurrence relation of degree k with
constant coefficients.

2. "linear": no exponents
3. "homogeneous": all terms are multiples of the ai

Note: pronounced "homoJEENee-us",
not "hoMOJenus", with 5 syllables

4. "constant coefficients":
they are not functions of n;
they are constants

B. This determines a family of sequences
that differ only in their initial conditions.

E.g.) The Fibonacci recurrence relation:

fn = fn–1 + fn–2

is a linear homegeneous recurrence relation of degree 2
and can have differing intial conditions,
yielding different Fibonacci sequences:

1. f0 = 0 & f1 = 1 yields:

0,1,1,2,3,5,…

2. f0 = 1 & f1 = 1 yields:

1,1,2,3,5,…

3. f0 = 1 & f1 = 2 yields:

1,2,3,5,…

C. They are solvable!

III. How do you solve them?

A. The trick:

Given a0=C0, a1=C1, & an=c1an–1+c2an–2
look for solutions of the form an = rn, for constant r

B. Why?

1. Because, in the simplest case, when an=c1an–1,
the ratio of sucessive terms is constant;
∴ it's a geometric sequence

2. Given the sequence
a0 = C0
an = c1an–1



we have:

a0 = C0
a1 = c1C0
a2 = c1²C0
…
an = c1

nC0
∴ an = a0c1

n

C. an = rn is a solution
(i.e., an "explicit", non-recursive formula)
for an = c1an–1 + c2an–2

↔

(an =) rn = c1rn–1 + c2rn–2 (by substituting rn for an)
↔

rn         c1rn–1 + c2rn–2

___ = _____________ (for r ≠ 0)
rn–2           rn–2 

↔
r² = c1r + c2

↔
r² – c1r – c2 = 0 [the characteristic equation of the recurrence relation]

↔
r is a solution of this equation [the characteristic root]
(i.e., makes the equation come out T)

IV. Thm 1 (p. 462):

In a theorem, you have to say where everything comes from;
i.e., you must give their data types.

Let C0, C1 ∈ N be constants.

Let a0 = C0 and a1 = C1 be the initial conditions of a recurrence relation.

Let c1, c2 ∈ R be such that an = c1an–1 + c2an–2 is the recurrence relation.

Let r1 ≠ r2 be 2 distinct roots of the "characteristic equation"

r² – c1r – c2

of the recurrence relation. Then:

(∃α1, α2 ∈ R)(∀n ∈ N)[an = α1r1
n + α2r2

n]

i.e.) the recurrence relation for the nth term
can be computed non-recursively



using the formula in terms of αi and ri

This is a non-constructive existence claim!

We need an algorithm to show how to find the αi

V. (Outline of) procedure (i.e., algorithm)
for solving a (linear homogeneous) recurrence relation
(of degree 2 with constant coefficients):

Details will be given in the next lecture.

I/P: recurrence relation an = c1an–1 + c2an–2

1. Set up the characteristic equation:

r² – c1r – c2

2. Solve the characteristic eqn for r1, r2

a. if r1 = r2,
then begin O/P "no solution"; halt end
else goto (2b)

b. Find α1, α2 such that an = α1r1
n + α2r2

n:

a. Use initial conditions to produce 2 simultaneous eqns in 2 unknowns:

b. Solve these for α1 & α2

O/P: explicit formula for an, namely:

an = α1r1
n + α2r2

n

Next lecture… 
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§§7.1–7.2: Recurrence Relations (cont'd)

I. Thm 1 (p. 462):

Let C0, C1 ∈ N be constants.

Let a0 = C0 and a1 = C1 be the initial conditions for a recurrence relation;
i.e., the first 2 terms of a sequence.

Let c1, c2 ∈ R be such that an = c1an–1 + c2an–2 is the recurrence relation.

Let r1 ≠ r2 be 2 distinct roots of the "characteristic equation"

r² – c1r – c2

of the recurrence relation.

Then:

(∃α1, α2 ∈ R)(∀n ∈ N)[an = α1r1
n + α2r2

n]

i.e.) the sequence defined recursively
in terms of initial conditions and a recurrence relation

can be computed non-recursively
using the formula in terms of αi and ri

This is a non-constructive existence claim!

We need an algorithm to show how to find the αi

II. Procedure (i.e., algorithm) for solving a (linear homogeneous) recurrence relation
(of degree 2 with constant coefficients):
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I/P: recurrence relation an = c1an–1 + c2an–2

1. Set up the characteristic equation:

r² – c1r – c2

2. Solve the characteristic eqn for r1, r2

a. if r1 = r2,
then begin O/P "no solution"; halt end
else goto (2b)

b. Use:

        –b + √(b² – 4ac)
r1 = ______________
                   2a

and

        –b – √(b² – 4ac)
r2 = ______________
                   2a

where ar² + br + c = 0

i.e.)

a = 1
b = –c1
c = –c2

∴

        –c1 + √(c1² – 4c2)
r1 = ______________
                   2

and

        –c1 – √(c1² – 4c2)
r2 = ______________
                   2

3. Find α1, α2 such that an = α1r1
n + α2r2

n:

r1 & r2 were computed in step 2

a. Use initial conditions to produce 2 simultaneous eqns in 2 unknowns:

i. a0 = α1r1
0 + α2r2

0 = α1 + α2 (!)

ii. a1 = α1r1
1 + α2r2

1 = α1r1 + α2r2



b. Solve these for α1 & α2

Note: α1 = a0 – α2 (from 3(a)(i))

∴ a1 = (a0 – α2)r1 + α2r2 (from 3(a)(ii)) 
          = a0r1 – α2r1 + α2r2
          = a0r1 + α2(r2 – r1)

∴ α2(r2 – r1) = a1 – a0r1

∴ α2 = (a1 – a0r1) / (r2 – r1)

…which is why r1 ≠ r2 !

∴ α1 = a0 – α2 = a0 – (a1 – a0r1) / (r2 – r1)
          = (a0r2 – a0r1 + a0r1 – a1) / (r2 – r1)
          = (a0r2 – a1) / (r2 – r1)

O/P: explicit formula for an, namely:

an = α1r1
n + α2r2

n

III. As an example, let's solve the Fibonacci recurrence relation:

A. f0 = 0
f1 = 1

fn = fn–1 + fn–2

0,1,1,2,3,5,…

B. Solution:

1. Char Eqn: r² – c1r – c2 = 0

What are c1, c2 s.t. fn = c1fn–1 + c2fn–2?

Answer: c1 = c2 = 1

∴ char eqn is: r² – r – 1 = 0

Digression:

Consider a "golden rectangle":

—allegedly the most aesthetically pleasing rectangle:

The front of the Parthenon has the shape of a golden rectangle.

Index cards come in golden rectangles: 3×5; 5×8 (note the Fibonacci numbers!)

http://en.wikipedia.org/wiki/Golden_rectangle
http://www.ancient-greece.org/architecture/parthenon.html


The "golden ratio" (see the picture of the golden rectangle, above) is:

 r + 1      r
_____ = _
    r         1

∴ r² = r + 1
∴ r² – r – 1 = 0  [does that look familiar?]

2. Solve for r:

r = (1 ± √(1 + 4))/2 = (1 ± √5)/2

This is (these are?) the golden ratio(s):

√5 = 2.236067977…
(1+√5)/2 =   1.6180339885…
(1–√5)/2 = –0.6180339885…
Also: the reciprocal of (1+√5)/2 = 0.6180339885…

Weird!

3. Find α1, α2 s.t. fn = α1r1
n + α2r2

n :

Let r1 = (1+√5)/2 & r2 = (1–√5)/2

f0 = 0 = α1r1
0 + α2r2

0 = α1 + α2

f1 = 1 = α1r1
1 + α2r2

1

          = α1((1+√5)/2) + α2((1–√5)/2)

Solve:

0 = α1 + α2
∴ α1 = –α2

1 = α1((1+√5)/2) + α2((1–√5)/2)

∴ 1 = –α2((1+√5)/2) + α2((1–√5)/2)

        = α2( (–1–√5)/2 + (1–√5)/2 )

        = α2( (–1–√5+1–√5)/2 )

        = α2( (–2√5)/2 )

        = –α2√5

∴ α2 = –1/√5

∴ α1 =   1/√5

4. ∴ fn = (1/√5)((1+√5)/2)n – (1/√5)((1–√5)/2)n

See lecture notes for 11/15/2010, §VI !

http://www.google.com/search?q=golden+ratio
http://www.cse.buffalo.edu/~rapaport/191/F10/lecturenotes-20101115.html


IV. Another example:

A. A long time ago, I discovered that if you fold a piece of paper in ½, then fold the top half back, then
fold it ¼ of the way, then fold it back and fold it 3/8 of the way, and so on (see Fig. 1, below), the
edge of the paper winds up 1/3 of the way from the edge!

1. More precisely, fold it according to the following directions:



2. 

3. The question is: Where does B end up?

And the answer is: 1/3 of the way from the edge!

The puzzle is: How does a sequence of foldings-in-half yield the number 1/3?

B. For the use of continuous math (i.e., limits) to prove this, see:

"Paper Folding and Convergent Sequences" (Rapaport 1974)

C. Here's the sequence of folds, expressed recursively:

a0 = 0 (paper begins unfolded, at one edge, or 0")
a1 = ½ (first fold moves the edge ½, to middle of paper)

an = (an–1 + an–2)/2

(each subsequent fold moves the edge to the average of its previous two positions)

    = ½an–1 + ½an–2

0, ½, ¼, 3/8, 5/16, 11/32, …

http://www.cse.buffalo.edu/~rapaport/191/recursion.html#rapaport74


The curious feature is that each term in the sequence has a denominator that is a power of 2,
yet the limit of the folds is 1/3.

Where did the "3" come from?

D. Let's solve this recurrence relation:

I/P: an = ½an–1 + ½an–2

1. Char Eqn: r² – ½r – ½

2. Solve for r:

r = (½ ± √(¼ + 4*½))/2
  = (½ ± √(¼ + 2))/2
  = (½ ± √(9/4))/2
  = (½ ± 3/2)/2
  ∈ {1, –½}

i.e.) r1 = 1 & r2 = –½

3. Solve for α:

a0 = 0 = α1 + α2

∴ α2 = –α1

a1 = ½ = 1*α1 + (–½*α2) = α1 – α2/2

∴ ½ = α1 + α1/2 = 3α1/2

∴ 1 = 3α1

∴ α1 = 1/3  [there's the 1/3!!!]

∴ α2 = –1/3

O/P:

an = α1r1
n + α2r2

n

     = (1/3)*1n + (–1/3)*(–½)n =      1/3 – (1/3)*(–½)n      = (1/3)(1 – (–½)n)

(As n gets bigger, the –½n gets smaller and smaller;
in the limit it goes to 0, so the limit of the sequence is 1/3)

V. 

A. A final example, to be continued next time…

Consider this sequence:

a0 = C0
a1 = C1



an = 3an–1 – 2an–2, ∀ n ≥ 2

Try it! Use the algorithm to show that an = 2n – 1, as suggested in the table in the previous lecture.

(answer will be given in the next lecture)

Next lecture… 
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§§7.1–7.2: Recurrence Relations (cont'd)

I. Answer to the example from last lecture:

A. 
Consider this sequence:

a0 = C0 = 0
a1 = C1 = 1

an = 3an–1 – 2an–2, ∀ n ≥ 2

B. Execution of our algorithm:

I/P: an = 3an–1 – 2an–2

1. Char Eqn: r² – 3r + 2 = 0

2. Solve for r:

r1 = (3 + √(9 – 4*2))/2 = (3+√1)/2 = 2

r2 = (3 – √(9 – 4*2))/2 = (3–√1)/2 = 1

3. Find αi:

a0 = α1*20 + α2*10 = α1 + α2 = 0

∴ α1 = –α2

a1 = α1*2¹ + α2*1¹ = 2α1 + α2 = 1

∴ 2(–α2) + α2 = 1

http://www.cse.buffalo.edu/~rapaport/191
mailto:rapaport@buffalo.edu?subject=191
http://www.cse.buffalo.edu/~rapaport/575/F07/bill.txt
http://www.cse.buffalo.edu/~rapaport/575/F07/rapaport.txt
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∴ –α2 = 1

∴ α2 = –1

∴ α1 = 1

O/P:

∴ an = α1r1
n + α2r2

n

         = 1*2n + (–1)*1n

         = 2n – 1

C. You should try this for the other initial conditions shown in the table in the previous lecture to make
sure that you get the same answers that I did.

§8.1 and §8.5: Relations

I. In language, including languages from math & CS (such as programming languages), there are:

A. noun phrases:

individual terms & descriptions, including proper names

e.g.) 'Fido', 'Prof. Rapaport', '2'

general terms and descriptions

e.g.) 'dog', 'professor', 'real number'

B. verb phrases:

e.g.) 'sees', 'runs', 'divides', '<'

C. adjective phrases & prepositional phrases:

e.g.) 'is red', 'is even'

1. We can model these mathematically as follows:

a. objects in the domain: model individual NPs
b. sets of objects: model general NPs, intransitive VPs, adjective phrases, properties
c. n-ary relations (Cartesian products of sets): model transitive VPs, relational properties, prepositions

II. 

A. Def:

Let A,B be sets.
Then R is a binary relation on A and B

=def
          R ⊆ A × B

B. Notation:

Let a ∈ A, b ∈ B.

http://www.cse.buffalo.edu/~rapaport/191/F10/lecturenotes-20101119.html#chart

