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Abstract

I survey a common theme that pervades the philosophy of computer science
(and philosophy more generally): the relation of computing to the world. Are
algorithms merely certain procedures entirely characterizable in an “indige-
nous”, “internal’, “intrinsic”, “local”, “narrow”, “syntactic” (more generally:
“intra-system”), purely-Turing-machine language? Or must algorithms in-
teract with the real world, having a purpose that is expressible only in a lan-
guage with an “external”, “extrinsic”, “global”, “wide”, “inherited” (more
generally: “extra-” or “inter-”system) semantics?
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1 Preface

If you begin with Computer Science, you will end with Philosophy.1

I am deeply honored to receive the 2015 Covey Award from IACAP,2 in part be-
cause of my illustrious predecessors, and in part because of its namesake, Preston
Covey,3 whom I knew and who inspired me as I began my twin journeys in philos-
ophy and computing.

1.1 From Philosophy to Computer Science, and Back Again

Contrary to the motto above, I began with philosophy, found my way to computer
science, and have returned to a mixture of the two. Inspired by [Hofstatder, 1980],
quoting [Sloman, 1978] to the effect that a philosopher of mind who knew no AI
was like a philosopher of physics who knew no quantum mechanics,4 my philo-
sophical interests in philosophy of mind led me to study AI at SUNY Buffalo
with Stuart C. Shapiro,5 which led to a faculty appointment in computer science
there. (Along the way, my philosophy colleagues and I at SUNY Fredonia pub-
lished one of the first introductory logic textbooks to use a computational approach
[Schagrin et al., 1985].)

I discovered that my relatively arcane philosophy dissertation on Meinong
was directly relevant to Shapiro’s work in AI, providing an intensional semantics
for his SNePS semantic-network processing system [Shapiro and Rapaport, 1987],
[Shapiro and Rapaport, 1991].6 And I realized that the discovery of quasi-indexicals
(‘he himself’, ‘she herself’, etc.) by my dissertation advisor [Castañeda, 1966]
could repair a “bug” in the knowledge-representation theory of [Maida and Shapiro, 1982]
(see [Rapaport, 1986a]); this work was itself debugged with the help of my doctoral
student Janyce M. Wiebe [Rapaport et al., 1997].)

1“Clicking on the first link in the main text of a Wikipedia article, and then repeating the
process for subsequent articles, usually eventually gets you to the Philosophy article. As of
May 26, 2011, 94.52% of all articles in Wikipedia lead eventually to the article Philosophy”
(http://en.wikipedia.org/wiki/Wikipedia:Getting to Philosophy). If you begin with “Computer Sci-
ence”, you will end with “Philosophy” (in 12 links).

2http://www.iacap.org/awards/
3http://en.wikipedia.org/wiki/Covey Award
4“I am prepared to go so far as to say that within a few years, if there remain any philosophers who

are not familiar with some of the main developments in artificial intelligence, it will be fair to accuse
them of professional incompetence, and that to teach courses in philosophy of mind, epistemology,
aesthetics, philosophy of science, philosophy of language, ethics, metaphysics, and other main areas
of philosophy, without discussing the relevant aspects of artificial intelligence will be as irresponsible
as giving a degree course in physics which includes no quantum theory” [Sloman, 1978, p. 5].

5http://www.cse.buffalo.edu/∼shapiro/
6I presented some of this work at CAP 1987.
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My work with Shapiro and our SNePS Research Group at Buffalo enabled me
to rebut my Covey Award predecessor’s Chinese-Room Argument [Searle, 1980]
using my theory of “syntactic semantics” [Rapaport, 1986c], [Rapaport, 1988],
[Rapaport, 1995], [Rapaport, 2012].7 And both of these projects, as well as one
of my early Meinong papers [Rapaport, 1981], led me, together with another doc-
toral student (Karen Ehrlich) and (later) a colleague from Buffalo’s Department of
Learning and Instruction (Michael W. Kibby) to develop a computational and ped-
agogical theory of contextual vocabulary acquisition [Rapaport and Kibby, 2007],
[Rapaport and Kibby, 2014].8

1.2 The Philosophy of Computer Science

All of this inspired me to create and teach a course on the philosophy of com-
puter science [Rapaport, 2005b]9 and to write up my lecture notes as a textbook
[Rapaport, 2015].

The course and the text begin with a single question: What is computer sci-
ence?10 To answer this, we need to consider a sequence of questions:

• Is computer science a science? (And what is science?) Or is it a branch of
engineering? (What is engineering?) Or is it a combination? Or perhaps
something completely different, new, sui generis?

• If it is a science, what is it a science of? Of computers? In that case, what is
a computer? Or of computation?

• What is computation? What is an algorithm? What is a procedure? Are
recipes algorithms? What is the (Church-Turing) Computability Thesis?11

What is hypercomputation? What is a computer program? Is it an imple-
mentation of an algorithm?

• What is an implementation? What is the relation of a program to that which it
models or simulates? For that matter, what is simulation? And can programs
be considered to be (scientific) theories? What is software, and how does it
relate to hardware? And can, or should, one or both of those be copyrighted
or patented? Can computer programs be (logically) verified?

7I presented some of this work at IACAP 2009 and NACAP 2010.
8I presented some of this work at NACAP 2006.
9Presented at NACAP 2006 in my Herbert A. Simon Keynote Address,

http://www.hass.rpi.edu/streaming/conferences/cap2006/nacp 8 11 2006 9 1010.asx
10This is the first question, but, because there are two intended audiences—philosophy students

and computer-science students—I actually begin with a zeroth question: What is philosophy?
11See [Soare, 2009, §§3.5, 12] for this naming convention.
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• There are, of course, issues in the philosophy of AI: What is AI? What is the
relation of computation to cognition? Can computers think? What are the
Turing Test and the Chinese-Room Argument?

• Finally, there are issues in computer ethics, but I only touch on two that I
think are not widely dealt with in the already voluminous computer-ethics
literature: Should we trust decisions made by computers? Should we build
“intelligent” computers?

There are many issues that I don’t deal with: The nature of information, the role of
the Internet in society, the role of computing in education, and so on. However, my
goal in the book is not to be comprehensive, but to provide background on some
of the major issues and a guide to some of the major papers, and to raise questions
for readers to think about (together with a guide to how to think about them—
the text contains a brief introduction to critical thinking and logical evaluation of
arguments). For a philosophy textbook, raising questions is more important than
answering them. My goal is to give readers the opportunity and the means to join
a long-standing conversation and to devise their own answers to some of these
questions.

2 A Common Thread: Computing and the World

In the course of writing the book, I have noticed a theme that pervades its topics. In
line with my goals for the book, I have not yet committed myself to a position; I am
still asking questions and exploring. In this essay, I want to share those questions
and explorations with you.

The common thread that runs through most, if not all, of these topics is the
relation of computing to the world:

Is computing about the world? Is it “external”, “global”, “wide”, or
“semantic”?

Or is it about descriptions of the world? Is it, instead, “internal”, “lo-
cal”, “narrow”, or “syntactic”?

And I will quickly agree that it might be both! In that case, the question is how the
answers to these questions are related.

This theme should be familiar; I am not announcing a newly discovered philo-
sophical puzzle. But it isn’t necessarily familiar or obvious to the students who
are my book’s intended audience, and I do want to recommend it as a topic worth
thinking about and discussing.
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In this section, we’ll survey these issues as they appear in some of the philos-
ophy of computer science questions of §1.2. In subsequent sections, we’ll go into
more detail. But I only promise to raise questions, not to answer them (in both the
course and the text: I prefer to challenge my students’ thinking, not to tell them
what to think).

2.1 Some Thought Experiments

Castañeda used to say that philosophizing must begin with data. So let’s begin with
some data in the form of real and imagined computer programs.

2.1.1 Rey’s and Fodor’s Chess and War Programs

[Fodor, 1978, p. 232], taking up a suggestion by Rey, asks us to consider a com-
puter that simulates the Six Day War and a computer that simulates (or actually
plays?) a game of chess, but which are such that “the internal career of a machine
running one program would be identical, step by step, to that of a machine running
the other”.

A real example of the same kind is “a method for analyzing x-ray diffraction
data that, with a few modifications, also solves Sudoku puzzles” [Elser, 2012]. Or
consider a computer version of the murder-mystery game Clue that exclusively
uses the Resolution rule of inference, and so could be a general-purpose proposi-
tional theorem prover instead.12

In these examples, do we have one algorithm, or two?13

2.1.2 Cleland’s Recipe for Hollandaise Sauce

Cleland offers an example of a recipe for hollandaise sauce [Cleland, 1993],
[Cleland, 2002]. Let’s suppose that we have an algorithm (a recipe) that tells us
to mix eggs and oil, and that outputs hollandaise sauce.14 Suppose that, on Earth,
the result of mixing the egg and oil is an emulsion that is, in fact, hollandaise sauce.
And let us suppose that, on the Moon, mixing eggs and oil does not result in an
emulsion, so that no hollandaise sauce is output (instead, the output is a messy
mixture of eggs and oil).

12Robin Hill, personal communication.
13Compare this remark: “Recovering motives and intentions is a principal job of the historian.

For without some attribution of mental attitudes, actions cannot be characterized and decisions as-
sessed. The same overt behavior, after all, might be described as ‘mailing a letter’ or ‘fomenting a
revolution.’ ” [Richards, 2009, 415].

14Calling a recipe an “algorithm” should be more controversial than it is: [Preston, 2013, Ch. 1]
usefully discusses the non-algorithmic, improvisational nature of recipes.
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Can a Turing machine make hollandaise sauce? Is making hollandaise sauce
computable?

2.1.3 A Blocks-World Robot

Consider a blocks-world computer program that instructs a robot how to pick up
blocks and move them onto or off of other blocks [Winston, 1977]. I once saw
a live demo of such a program. Unfortunately, the robot picked up, then dropped,
one of the blocks, because the block was not correctly placed, yet the program con-
tinued to execute “perfectly” even though the output was not what was intended.
[Rapaport, 1995, §2.5.1].

Did the program behave as intended?

2.1.4 A GCD Program

[Rescorla, 2013, §4] offers an example reminiscent of Cleland’s, but less “physi-
cal”. Here is a Scheme program for computing the greatest common divisor (GCD)
of two numbers:

(define (gcd a b)
(if (= b 0)

a
(gcd b (remainder a b))))

Implement this program on two computers, one (M10) using base-10 notation
and one (M13) using base-13 notation. Rescorla argues that only M10 executes the
Scheme program for computing GCDs, even though, in a “narrow” sense, both
computers are executing the “same” program. When the numerals ‘115’ and ‘20’
are input to M10, it outputs the numeral ‘5’; “it thereby calculates the greatest
common divisor of the corresponding numbers” [Rescorla, 2013, p. 688]. But the
numbers expressed in base-13 by ‘115’ and ‘20’ are 18710 and 2610, respectively,
and their GCD is 110, not 510. So, in a “wide” sense, the two machines are doing
“different things”.

Are these machines doing different things?

2.1.5 A Spreadsheet

I vividly remember the first semester that I taught a “Great Ideas in Computer
Science” course aimed at computer-phobic students. We were going to teach the
students how to use a spreadsheet program, something that I had never used! So,
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with respect to this, I was as naive as any of my students. My TA, who had used
spreadsheets before, gave me something like the following instructions:

enter a number in cell 1;
enter a number in cell 2;
enter ‘=〈click on cell 1〉〈click on cell 2〉’ in cell 3

I had no idea what I was doing. I was blindly following her instructions and had
no idea that I was adding two integers. Once she told me that that was what I was
doing, my initial reaction was “Why didn’t you tell me that before we began?”.

When I entered those data into the spreadsheet, was I adding two numbers?

2.2 What Is Computer Science?

Science, no matter how conceived, is generally agreed to be a way of understand-
ing the world. So, if computer science is a science, then it should be a way of
understanding the world computationally.

Engineering, no matter how conceived, is generally agreed to be a way of
changing the world (preferably by improving it).15 So, if computer science is an
engineering discipline, then it should be a way of changing (improving?) the world
by implementing algorithms in computer programs that can have physical effects.

Computer science tries to do both: to understand the world computationally,
and to change the world by building computational artifacts. In introductory classes,
I offer the following definition:

Computer science is the scientific study16 of:

• what can be computed (narrowly, which mathematical functions
are computable; widely, which real-world tasks are automatable
[Forsythe, 1968]),

• how to compute such functions or tasks (how to represent the
necessary information and construct appropriate algorithms),

• how to compute them efficiently,

• and how to engineer computers that can implement those com-
putations in the real world.

15“[S]cience tries to understand the world, whereas engineering tries to change it” [Staples, 2015,
§1], paraphrasing [Marx, 1845, Thesis 11]: “The philosophers have only interpreted the world, in
various ways; the point is to change it.” Was Marx proposing a discipline of “philosophical engineer-
ing”?

16Using the adjective ‘scientific’ instead of the noun ‘science’ neatly backgrounds the science-vs.-
engineering dispute. Engineering is “scientific”, even if it isn’t a “science”. Whether or not computer
science is a “science”, it is surely a systematic, scientific field of study.
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And here we glimpse the first strand of our thread: Is computation concerned
with (a) the internal workings of a computer (both abstractly in terms of the theory
of computation—e.g., the way in which a Turing machine works—as well as more
concretely in terms of the internal physical workings of a physical computer)? Or
with (b) how those internal workings can reach out to the world in which they are
embedded? Or both?

2.3 What Is a Computer?

Computer science might be the study of computers or of computation. If it is
the former, then we need to ask what a computer is. Is it an abstract, mathematical
entity, in particular, a Turing machine (or a universal Turing machine)? (Or, for that
matter, anything logically equivalent to a Turing machine, such as a λ-“calculator”
or a recursive-function “machine”?) Or is it any physical, real-world object that
implements a (universal) Turing machine? (Or both, of course.) If it is physical,
which things in the world are computers (besides the obvious suspects, such as
Macs, PCs, iPhones, etc.)? Notably, is the brain a computer? Is the solar system a
computer (computing Kepler’s laws)? Is the universe a computer?17

Here, we see another strand of our thread: Where should we look for an answer
to what a computer is? Should we look narrowly to mathematics, or more widely
to the real world?

2.4 What Is Computation?

If computer science is the study of computation, then we need to ask what compu-
tation is. Is it “narrow”, focusing only on the operations of a Turing machine (print,
move) or on basic recursive functions (successor, predecessor, projection)? Or is
it “wide”, involving, say, chess pieces and a chess board (for a chess program), or
soldiers and a battlefield (for a wargame simulator)? Is it independent of the world,
or is it world-involving?

Are algorithms purely logical? Or are they “intentional” [Hill, 2015] and “tele-
ological” [Anderson, 2015]? Which of the following two forms do they take?:

Do P
(where ‘P’ is either a primitive computation, or a set of computations
recursively structured by sequence, selection, and repetition, i.e., a
“procedure”).

17On the brain, see, e.g., [Searle, 1990]; on the solar system, see, e.g., [Copeland, 1996,
§2], [Perruchet and Vinter, 2002, §1.3.4], [Shagrir, 2006, p. 394]; on the universe, see, e.g.,
[Weinberg, 2002], [Wolfram, 2002], [Lloyd and Ng, 2004].
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Or

In order to accomplish goal G, do P

If the former, then computation is “narrow”; if the latter, then “wide” (see §4).
What is a procedure such as P? Are recipes procedures? Is “Make hollandaise

sauce” a high-level procedure call? If so, then computation is wide (see §4.4).
Is making hollandaise sauce Turing-machine computable? Or is it a (physical)

task that goes beyond (abstract) Turing machines? How does interactive (or oracle)
computation relate to Turing-machine computation? Turing-machine computation
seems to be “narrow”; the others, “wide” (see §6).

2.5 What Is a Computer Program?

Is an algorithm an implementation of a function, a computer program an implemen-
tation of an algorithm, and a process (i.e., a program being executed on a computer)
an implementation of a program? Implementation is a relation between something
more or less abstract and something else that is more or less concrete (at least, less
abstract). It is the central relation between abstraction and reality (as well as where
science meets engineering).

Elsewhere, I have argued that implementation is most usefully understood
as (external) semantic interpretation. More precisely, I is an implementation, in
medium M, of “Abstraction” A iff I is a semantic interpretation or model of A,
where A is some syntactic domain and M is the semantic domain [Rapaport, 1999,
128], [Rapaport, 2005a]. Typically (but not necessarily), I is a real-world system
in some physical medium M, and A is an abstract or formal system (but both I and
A could be abstract; see §4.2). The theme of the relation of computing to the real
world is obviously related to this issue.

It has been claimed that (at least some) computer programs are theories.18 How
do theories relate to the world? Do computer programs simulate the world? (See
§7.1.)

Are computer programs software or hardware? Here we have a computational
version of the mind-body problem. And it has legal ramifications in terms of what
can be copyrighted and what can be patented.

Can computer programs be verified? This question concerns, at least in part,
the correlation of a syntactic description (of the world) with a domain of semantic
interpretation (i.e., the world being described) (see §7.1).

It is time to delve into some of these.
18[Simon and Newell, 1962, p. 97], [Johnson-Laird, 1981, pp. 185–186] [Pylyshyn, 1984, p. 76].

For the contrasting view, see [Moor, 1978, §4], [Thagard, 1984].
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3 Inputs, Turing Machines, and Outputs

Any machine is a prisoner of its input and output domains.
[Newell, 1980, 148]

The tape of a Turing machine records symbols in its “cells”, usually ‘0’ or ‘1’.
Is the tape the input-output device of the Turing machine? Or is it the machine’s
internal memory device?19

Given a Turing machine for computing a certain mathematical function, it is
certainly true that the function’s inputs will be inscribed on the tape at the beginning
of the computation, and the outputs will be inscribed on the tape by the time that the
computation halts. Moreover, the inscriptions on the tape will be used and modified
by the machine during the computation, in the same way that a physical computer
uses its internal memory for storing intermediate results of a computation. So it
certainly looks like the answer to our questions is: both.

But, although Turing’s a-machines were designed to simulate human comput-
ers,20 Turing doesn’t talk about the humans who would use them. A Turing ma-
chine doesn’t accept user-supplied input from the external world! It begins with
all data pre-stored on its tape and then simply does its own thing, computing the
output of a function and leaving the result on the tape. Turing machines don’t “tell”
anyone in the external world what the answers are, though the answers are there
for anyone to read because the “internal memory” of the machine is visible to the
external world. Of course, a user would have to be able to interpret the symbols on
the tape; thereon hangs a tale.

Are the symbols on the tape really inputs and outputs in the sense of coming
from, and being reported to, the external world? Are inputs and outputs an essential
part of an algorithm? After all, the input-output interface “merely” connects the
algorithm with the world. It may seem outrageous to deny that they are essential,
but it’s been done!

3.1 Are Inputs Needed?

It’s outrageous, because algorithms are supposed to be ways of computing mathe-
matical functions, and mathematical functions, by definition, have inputs and out-
puts. They are, after all, certain sets of ordered pairs of inputs and outputs, and you
can’t very well have an ordered pair that is missing one or both of those. Markov’s
informal characterization of algorithm has an “applicability” condition stating that
algorithms must have “The possibility of starting from original given objects which

19[Dresner, 2003] and [Dresner, 2012] discuss this.
20And thus constitute the first AI program!
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can vary within known limits” [Markov, 1954, p. 1]. Those “original given objects”
are, presumably, the input.

But Knuth’s informal characterization of the notion of algorithm has an “in-
put” condition stating that “An algorithm has zero or more inputs” [Knuth, 1973,
p. 5; my italics]! He not only doesn’t explain this, but he goes on to characterize
outputs as “quantities which have a specified relation to the inputs” [Knuth, 1973,
p. 5]. The “relation” would no doubt be the functional relation between inputs and
outputs, but, if there is no input, what kind of a relation would the output be in?21

Knuth is not alone in this: Hartmanis and Stearns’s classic paper on computational
complexity allows their multi-tape Turing machines to have at most one tape, which
is an output-only tape; there need not be any input tapes [Hartmanis and Stearns, 1965,
p. 288].

One way to understand this is that some programs, such as prime-number gen-
erators, merely output information. In cases such as this, although there may not
be any explicit input, there is an implicit input (roughly, ordinals: the algorithm
outputs the nth prime, without explicitly requesting an n to be input). Another kind
of function that might seem not to have any (explicit) inputs is a constant func-
tion, but, again, its implicit input could be anything (or anything of a certain type,
“varying within known limits”, as Markov might have said).

So, what constitutes input? Is it simply the initial data for a computation? Or
is it information supplied to the computer from the external world (and interpreted
or translated into a representation of that information that the computer can “un-
derstand” and manipulate)?

3.2 Are Outputs Needed?

Markov, Knuth, and Hartmanis & Stearns all require at least one output. Markov,
for example, has an “effectiveness” condition stating that an algorithm must “ob-
tain a certain result”.

But [Copeland and Shagrir, 2011, pp. 230–231] suggest that a Turing machine’s
output might be unreadable. Imagine, not a Turing machine with a tape, but a
physical computer that literally prints out its results. Suppose that the printer is
broken or that it has run out of ink. Or suppose that the programmer failed to in-
clude a ‘print’ command in the program. The computer’s program would compute
a result but not be able to tell the user what it is. Consider this algorithm from
[Chater and Oaksford, 2013, p. 1172, citing an example from [Pearl, 2000]]:

1. input P

21Is this a relation to a non-existent entity in a Meinongian sense? See [Grossmann, 1974, p. 109],
[Rapaport, 1986b, §4.5].

11



2. multiply P by 2; store in Y

3. add 1 to Y ; store in Z

This algorithm has an explicit input, but does not appear to have an output. The
computer has computed 2X +1 and stored it away in Z for safekeeping, but doesn’t
tell you its answer. There is an answer, but it isn’t output. (“I know something that
you don’t!”?)

So, what constitutes “output”? Is it simply the final result of a computation? Or
is it some kind of translation or interpretation of the final result that is physically
output and implemented in the real world? In the former case, wouldn’t both of
§2.1.4’s base-10 and base-13 GCD computers be doing the same thing? A prob-
lem would arise only if they told us what results they got, and we—reading those
results—would interpret them, possibly incorrectly.

3.3 When Are Inputs and Outputs Needed?

Do computations have to have inputs and outputs? The mathematical
resources of computability theory can be used to define ‘computations’
that lack inputs, outputs, or both. But the computations that are gen-
erally relevant for applications are computations with both inputs and
outputs. [Piccinini, 2011, p. 741, n. 11; my italics]

Machines live in the real world and have only a limited contact with it.
Any machine, no matter how universal, that has no ears (so to speak)
will not hear; that has no wings, will not fly. [Newell, 1980, 148]22

Narrowly conceived, algorithms might not need inputs and outputs. Widely con-
ceived, they do. Any input from the external world would have to be encoded by
a user into a language “understandable” by the Turing machine (or else the Turing
machine would need to be able to decode such external-world input). And any
output from the Turing machine to be reported to the external world (e.g., a user)
would have to be encoded by the Turing machine (or decoded by the user). Such
codings would, themselves, have to be algorithmic.

In fact, the key to determining which real-world tasks are computable—one of
computer science’s main questions (§2.2)—is finding coding schemes that allow
the sequence of ‘0’s and ‘1’s (i.e., a natural number in binary notation) on a Turing
machine’s tape to be interpreted as a symbol, a pixel, a sound, etc. A mathematical
function on the natural numbers is computable iff it is computable by a Turing

22‘Universal’, as Newell uses it here, means being able to “produce an arbitrary input-output
function” [Newell, 1980, 147].
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machine (according to the Computability Thesis); thus, a real-world problem is
computable iff it can be encoded as such a computable mathematical function.

But it’s that wide conception, requiring algorithmic, semantic interpretations
of the inputs and outputs, that leads to various debates.

3.4 Must Inputs and Outputs Be Interpreted Alike?

Another input-output issue, not discussed much in the literature, is relevant to our
theme. [Rescorla, 2007, p. 254] notes that

Different textbooks employ different correlations between Turing ma-
chine syntax and the natural numbers. The following three correlations
are among the most popular:23

d1(n) = n.

d2(n+1) = n.

d3(n+1) = n,as an input.

d3(n) = n,as an output.

A machine that doubles the number of strokes computes f (n) = 2n un-
der d1, g(n) = 2n+1 under d2, and h(n) = 2n+2 under d3. Thus, the
same Turing machine computes different numerical functions relative
to different correlations between symbols and numbers.

Let’s focus on interpretations like d3 (for d1 and d2, see §5.1). This idea of hav-
ing different input and output interpretations occurs all the time in the real world.
(I don’t know how often it is considered in the more rarefied atmosphere of com-
putation theory.) For example, machine-translation systems that use an “interlin-
gua” work this way: Chinese input is encoded into an “interlingual” representation
language (often thought of as an internal, “meaning”-representation language that
encodes the “proposition” expressed by the Chinese input), and English output is
generated from that interlingua (re-expressing in English the proposition that was
originally expressed in Chinese).24 Cognition (assuming that it is computable!)
also works this way: Perceptual encodings into the “language” of the biological
neural network of our brain surely differ from motor decodings. (Newell’s above-
quoted examples of hearing and flying are surely different.)

23[The symbol ‘x’ represents a sequence of x strokes, where x is a natural number.–WJR]
24[Liao, 1998] used SNePS for this purpose. On interlinguas in computer science, see

[Daylight, 2013, §2].
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Consider a Common Lisp version of Rescorla’s GCD program. The Com-
mon Lisp version will look identical to the Scheme version (the languages share
most of their syntax), but the Common Lisp version has two global variables—
*read-base* and *print-base*—that tell the computer how to interpret
input and how to display output. By default, *read-base* is set to 10. So the
Common Lisp read-procedure sees the three-character sequence ‘115’ (for exam-
ple); decides that it satisfies the syntax of an integer; converts that sequence of
characters to an internal representation of type integer—which is represented
internally as a binary numeral implemented as bits or switch-settings—does the
same with (say) ‘20’; and computes their GCD using the algorithm from §2.1.4
on the binary representation. If the physical computer had been an old IBM ma-
chine, the computation might have used binary-coded decimal numerals instead,
thus computing in base 10. If *read-base* had been set to 13, the input charac-
ters would have been interpreted as base-13 numerals, and the very same Common
Lisp (or Scheme) code would have correctly computed the GCD of 18710 and 2610.
One could either say that the algorithm computes with numbers—not numerals—
or with base-2 numerals as a canonical representation of numbers, depending on
one’s view concerning such things as Platonism or nominalism. And similarly for
output: The switch-settings containing the GCD of the input are then output as
base-10 or base-13 numerals, as pixels on a screen or ink on paper, depending on
the value of such things as *print-base*. The point, once again, with respect
to Rescorla’s example, is that a single Common Lisp (or Scheme) algorithm is be-
ing executed correctly by both M10 and M13. Those machines are different; they
do not “have the same local, intrinsic, physical properties” [Rescorla, 2013, 687],
because M10 has *read-base* and *print-base* set to 10, whereas M13
has *read-base* and *print-base* set to 13.25

The aspect of this situation that I want to remind you of is whether the tape is
the external input and output device, or is, rather, the machine’s internal memory.
If it is the machine’s internal memory, then, in some sense, there is no (visible or
user-accessible) input or output (§3). If it is an external input-output device, then
the marks on it are for our convenience only. In the former case, the only accurate
description of the Turing machine’s behavior is syntactically in terms of stroke-
appending. In the latter case, we can use that syntactic description but we can also
embellish it with one in terms of our interpretation of what it is doing. (We’ll return
to this in §5.1.)

25I am indebted to Stuart C. Shapiro, personal communication, for the ideas in this paragraph.
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4 Are Algorithms Teleological (Intentional)?

Let’s begin untangling our thread with the question of whether the proper way to
characterize an algorithm must include the intentional or teleological preface “In
order to accomplish goal G” (Hereafter, just “To G”, for short).

4.1 What Is an Algorithm?

The history of computation theory is, in part, an attempt to make mathematically
precise the informal notion of an algorithm. Turing more or less “won” the com-
petition. (At least, he tied with Church. Gödel, also in the race, placed his bet
on Turing [Soare, 2009]). Many informal characterizations of “algorithm” exist
(such as Knuth’s and Markov’s; see §3.1); they can be summarized as follows
[Rapaport, 2012, Appendix, pp. 69–71]:

An algorithm (for executor E) [to accomplish goal G] is:

1. a procedure P, i.e., a finite set (or sequence) of statements (or
rules, or instructions), such that each statement S is:

(a) composed of a finite number of symbols (better: uninter-
preted marks) from a finite alphabet

(b) and unambiguous (for E—i.e.,
i. E “knows how” to do S,

ii. E can do S,
iii. S can be done in a finite amount of time
iv. and, after doing S, E “knows” what to do next—),

2. P takes a finite amount of time, i.e., halts,

3. [and P ends with G accomplished].26

26“[N]ote. . . that the more one tries to make precise these informal requirements for something
to be an algorithm, the more one recapitulates Turing’s motivation for the formulation of a Turing
machine” [Rapaport, 2012, p. 71]. The characterization of a procedure as a set (or sequence) of state-
ments (or rules or instructions) is intended to abstract away from issues about imperative/procedural
vs. declarative presentations. Whether the “letters” of the alphabet in which the algorithm is written
are considered to be either symbols in the classical sense of mark-plus-semantic-interpretation or else
uninterpreted marks (symbols that are not “symbolic of” anything) is another aspect of our common
thread. Talk of “knowing how” does not presume that E is a cognitive agent (it might be a CPU), but
I do want to distinguish between E’s (i) being able in principle (i.e., “knowing how”) to execute a
statement and (ii) being able in practice to (i.e., “can”) execute it. Similarly, “knowing” what to do
next does not presume cognition, but merely a deterministic way to proceed from one statement to
the “next”. Here, ‘know’ and its cognates are used in the same (not necessarily cognitive) way that
AI researchers use it in the phrases ‘knowledge base’ and ‘knowledge representation’.
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4.2 Do Algorithms Need a Purpose?

I think that the notion of an algorithm is best understood with respect to an executor.
One machine’s algorithm might be another’s ungrammatical input
[Suber, 1988]. We can probably rephrase the above characterization without refer-
ence to E, albeit awkwardly, hence the parentheses around the E-clauses.

But the present issue is whether the bracketed G-clauses are essential. My
former student Robin K. Hill has recently argued in favor of including G, roughly
on the grounds that a “prospective user” needs “some understanding of the task
in question” over and above the mere instructions ([Hill, 2015, §5]. Algorithms,
according to Hill, must be expressed in the form “To G, do P”, not merely “Do P”.

[Marr, 1982] analyzed information processing into three levels: computational
(what a system does), algorithmic (how it does it), and physical (how it is imple-
mented). I have never liked these terms, preferring ‘functional’, ‘computational’,
and ‘implementational’, respectively: Certainly, when one is doing mathematical
computation (the kind that [Turing, 1936] was concerned with), one begins with a
mathematical function (i.e., a certain set of ordered pairs), asks for an algorithm
to compute it, and then seeks an implementation of it, possibly in a physical sys-
tem such as a computer or the brain (or perhaps even [Searle, 1982]’s beer cans
and levers powered by windmills), but not necessarily (e.g., the functionality of an
abstract data type such as a stack can be abstractly implemented using a list).27

Marr’s “computational” level is rather murky. Egan takes the mathematical
functional view just outlined.28 On that view, Marr’s “computational” level is
mathematical.

[Anderson, 2015, §1], on the other hand, says that Marr’s “computational” level

concern[s] the presumed goal or purpose of a mapping,29 that is, the
specification of the ‘task’ that a particular computation ‘solved.’ Al-
gorithmic level questions involve specifying how this mapping was
achieved computationally, that is, the formal procedure that transforms
an input representation into an output representation.

On this view, Marr’s “computational” level is teleological. In the formulation
“To G, do P”, the “To G” preface expresses the teleological aspect of Marr’s “com-
putational” level; the “do P” seems to express Marr’s “algorithm” level.

According to [Bickle, 2015], Marr was trying to counter the then-prevailing
methodology of trying to describe what neurons were doing (a “narrow”, internal,

27This is one reason that I have argued that implementation is semantic interpretation
[Rapaport, 1999], [Rapaport, 2005a].

28[Egan, 1991, pp. 196–107], [Egan, 1995, p. 185]; cf. [Shagrir and Bechtel, 2015, §2.2].
29Of a mathematical function?
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implementation-level description) without having a “wide”, external, “computa-
tional”-level purpose (a “function” in the teleological, not mathematical, sense).
Such a teleological description would tell us “why” neurons behave as they do
[Marr, 1982, p. 15, as quoted in [Bickle, 2015]].

[Shagrir and Bechtel, 2015, §2.2] suggest that Marr’s “computational” level
conflates two separate, albeit related, questions: not only “why”, but also “what”.
On this view, Egan is focusing on the “what”, whereas Anderson is focusing on the
“why”. We will return to this in a moment.

Certainly, knowing what the goal of an algorithm is makes it easier for cognitive-
agent executors to follow the algorithm and to have a fuller understanding of what
they are doing. I didn’t understand that I was adding when my TA told me to enter
certain data into the cells of the spreadsheet. It was only when she told me that that
was how I could add two numbers with a spreadsheet that I understood.

Now, (I like to think that) I am a cognitive agent who can come to understand
that entering data into a spreadsheet can be a way of adding. A Turing machine that
adds or a Mac running Excel is not such a cognitive agent. It does not understand
what addition is or that that is what it is doing. And it does not have to. However, an
AI program running on a robot that passes the Turing test would be a very different
matter; I have argued elsewhere that such an AI program could, would, and should
(come to) understand what it was doing.30

The important point is that—despite the fact that understanding what task an
algorithm is accomplishing makes it easier to understand the algorithm itself—
“blind” following of the algorithm is all that is necessary to accomplish the task.
Understanding the task—the goal of the algorithm—is expressed by the inten-
tional/teleological preface. This is akin to dubbing it with a name that is mean-
ingful to the user, as we will discuss in §5.2.

That computation can be “blind” in this way is what [Fodor, 1980] expressed
by his “formality condition” and what Dennett has called

Turing’s. . . strange inversion of reasoning. The Pre-Turing world was
one in which computers were people, who had to understand math-
ematics in order to do their jobs. Turing realised that this was just
not necessary: you could take the tasks they performed and squeeze
out the last tiny smidgens of understanding, leaving nothing but brute,
mechanical actions. IN ORDER TO BE A PERFECT AND BEAUTI-
FUL COMPUTING MACHINE IT IS NOT REQUISITE TO KNOW

30[Rapaport, 1988], [Rapaport, 2012]. See my former doctoral student Albert Goldfain’s work
on how to get AI computer systems to understand mathematics in addition to merely doing it
[Goldfain, 2006], [Goldfain, 2008].

17



WHAT ARITHMETIC IS. [Dennett, 2013, p. 570, caps in original]31

As I read it, the point is that a Turing machine need not “know” that it is adding,
but agents who do understand adding can use that machine to add.

Or can they? In order to do so, the machine’s inputs and outputs have to be
interpreted—understood—by the user as representing the numbers to be added.
And that seems to require an appropriate relationship with the external world. It
seems to require a “user manual” that tells the user what the algorithm does in the
way that Hill prescribes, not in the way that my TA explained what a spreadsheet
does. And such a “user manual”—an intention or a purpose for the algorithm—in
turn requires an interpretation of the machine’s inputs and outputs.

The same is true in my spreadsheet example. Knowing that I am adding helps
me understand what I am doing when I fill the spreadsheet cells with certain values
or formulas. But the spreadsheet does its thing without needing that knowledge.

And it is true for Searle in the Chinese Room [Searle, 1980]: Searle-in-the-
room might not understand what he is doing, but he is understanding Chinese.32

Was Searle-in-the-room simply told, “Follow the rule book!”? Or was he told,
“To understand Chinese, follow the rule book!”? If he was told the former (which
seems to be what Searle-the-author had in mind), then, (a) from a narrow, internal,
first-person point of view, Searle-in-the-room can truthfully say that he doesn’t
know what he is doing (in the wide sense). In the narrow sense, he does know that
he is following the rule book, just as I didn’t know that I was using a spreadsheet
to add, even though I knew that I was filling certain cells with certain values. And
(b) from the wide, external, third-person point of view, the native-Chinese-speaking
interrogator can truthfully tell Searle-in-the-room that he is understanding Chinese.
When Searle-in-the-room is told that he has passed a Turing test for understanding
Chinese, he can—paraphrasing Molière’s bourgeois gentleman—truthfully admit
that he was speaking Chinese but didn’t know it.33

These examples suggest that the user-manual/external-world interpretation is
not necessary. Algorithms can be teleological, and their being so can help cognitive
agents who execute them to more fully understand what they are doing. But they
don’t have to be teleological.

31See also the more easily accessible [Dennett, 2009, p. 10061].
32Too much has been written on the Chinese-Room Argument to cite here, but [Cole, 1991], my

response to Cole in [Rapaport, 1990], [Rapaport, 2000], and [Rapaport, 2006, 390–397] touch on
this particular point.

33“Par ma foi! il y a plus de quarante ans que je dis de la prose sans que j’en susse rien, et je
vous suis le plus obligé du monde de m’avoir appris cela.” “Upon my word! It has been more than
forty years that I have been speaking prose without my knowing anything about it, and I am most
obligated to you in the world for having apprised me of that.” (my translation)
(http://en.wikipedia.org/wiki/Le Bourgeois gentilhomme).
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4.3 Can Algorithms Have More than One Purpose?

In addition to being teleological, algorithms seem to be able to be multiply teleo-
logical, as in the chess-war example and its kin. That is, there can be algorithms of
the form:

To G1, do P.

and algorithms of the form:

To G2, do P.

where G1 6= G2, and where G2 does not subsume G1 (or vice versa), although the
Ps are the same. In other words, what if doing P accomplishes both G1 and G2?
How many algorithms do we have in that case? Two? (One that accomplishes G1,
and another that accomplishes G2, counting teleologically, or “widely”?) Or just
one? (A single algorithm that does P, counting more narrowly?)

Multiple teleologies are multiple realizations of an algorithm narrowly con-
strued: ‘Do P’ can be seen as a way to algorithmically implement the higher-level
“function” (mathematical or teleological) of accomplishing G1 as well as G2. E.g.,
executing a particular subroutine in a given program might result in checkmate
or winning a battle. Viewing multiple teleologies as multiple realizations (multi-
ple implementations) can also account for hollandaise-sauce failures on the Moon,
which could be the result of an “implementation-level detail” [Rapaport, 1999] that
is irrelevant to the abstract, underlying computation.

4.4 What If G and X Come Apart?

What if “successfully” executing P fails to accomplish goal G? This could happen
for external, environmental reasons (hence my use of ‘wide’, above). Does this
mean that G might not be a computable task even though P is?

The blocks-world computer’s model of the world was an incomplete, partial
model; it assumed that its actions were always successful. I’ll have more to say
about partial models in §7.1. For now, the point is that this program lacked feed-
back from the external world. There was nothing wrong with the environment, as
there is in the lunar hollandaise-sauce case; rather, there was incomplete informa-
tion about the environment.

Rescorla’s GCD computers do “different things” by doing the “same thing”.
The difference is not in how they are doing what they are doing, but in the inter-
pretations that we users of the machines give to their inputs and outputs. Would
[Hill, 2015] say that the procedure encoded in that Scheme program was therefore
not an algorithm?
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What is more central to the notion of “algorithm”: all of parts 1–3 in our in-
formal characterization in §4 (“To G, do P”), or just parts 1–2, i.e., without the
bracketed goals (just “Do P”)? Is the algorithm the narrow, non-teleological, “pur-
poseless” (or non-purposed) entity? Or is the algorithm the wide, intentional, tele-
ological (i.e., goal-directed) entity? On the narrow view, the wargame and chess
algorithms are just one algorithm, the hollandaise-sauce recipe does work on the
Moon (its computer program might be logically verifiable even if it fails to make
hollandaise sauce), and Rescorla’s “two” GCD programs are also just one algo-
rithm that does its thing correctly (but only we base-10 folks can use it to compute
GCDs). On the wide view, the wargame and chess programs are two, distinct al-
gorithms, the hollandaise-sauce recipe fails on the Moon (despite the fact that the
program might have been verified—shades of the Fetzer controversy that we will
discuss in §7.1!), and the Scheme program when fed base-13 numerals is doing
something wrong (in particular, its “remainder” subroutine is incorrect).34

These examples suggest that the wide, goal-directed nature of algorithms tele-
ologically conceived is due to the interpretation of their input and output. As
[Shagrir and Bechtel, 2015, §2.3] put it, Marr’s “algorithmic level. . . is directed
to the inner working of the mechanism. . . . The computational level looks outside,
to identifying the function computed and relating it to the environment in which
the mechanism operates”.

We can combine these insights: Hill’s formulation of the teleological or inten-
tional nature of algorithms had two parts, a teleological “preface” specifying the
task to be accomplished, and a statement of the algorithm that accomplishes it.
One way to clarify the nature of Marr’s “computational” level is to split it into its
“why” and its “what” parts. The “why” part is the task to be accomplished. The
“what” part can be expressed “computationally” (I would say “functionally”) as
a mathematical function (possibly, but not necessarily, expressed in “why” termi-
nology), but it can also be expressed algorithmically. Finally, the algorithm can
be implemented. So, we can distinguish the following four Marr-like levels of
analysis:

“Computational”-What Level: Do f (i) = o

“Computational”-Why Level: To G, do f (i) = o

Algorithmic Level: To G, do A f (i) = o

Implementation Level: To G, do IA f (i) = o

where:
34At least as Rescorla describes it; it does the right thing on the Shapiro-Rapaport interpretation

discussed in §3.4.
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• G is the task to be accomplished or explained, expressed in the language of
the external world, so to speak;

• f is an input-output function that accomplishes G, expressed either in the
same language or perhaps expressed in purely mathematical language;

• A f is an algorithm that implements f (i.e., it is an algorithm that has the same
input-output behavior as f ); and

• I is an implementation (perhaps in the brain or on some computer) of A f .35

[Shagrir and Bechtel, 2015, §4] say that “The what aspect [of the “computa-
tional” level] provides a description of the mathematical function that is being
computed. The why aspect employs the contextual constraints in order to show
how this function matches with the environment.” These seem to me to nicely
describe the two clauses of what I call the “computational-why” level above.

5 Do We Compute with Symbols or with Meanings?

5.1 What Is This Turing Machine Doing?

What do Turing machines compute with? For that matter, what do we compute
with? This is not the place for us to get into a discussion of nominalism in mathe-
matics, though our common thread leads there.

[Rescorla, 2007, p. 253] reminds us that

A Turing machine manipulates syntactic entities: strings consisting of
strokes and blanks. . . . Our main interest is not string-theoretic func-
tions but number-theoretic functions. We want to investigate com-
putable functions from the natural numbers to the natural numbers. To
do so, we must correlate strings of strokes with numbers.36

Once again, we see that it is necessary to interpret the strokes.

35[Egan, 1995, p. 187, n. 8], citing McGinn, notes that even what I am calling the “computational”-
what level can be phrased intentionally as, e.g., “To compute the Laplacean of a Gaussian, do
f (i) = o”, where f is the Laplacean and i is the (output of a) Gaussian. So perhaps there is a
level intermediate between the what- and why-levels, something along these lines: “To accomplish
A f (i) = o, do A f (i) = o”, where A is expressed in pure Turing-machine language. Note, too, that
both clauses can vary independently: Not only can f implement many different Gs (as in the chess-
wargame example), but G can be implemented by many different A f s.

36Turing machines differ interestingly from their logical equivalents in the Computability Thesis:
The λ-calculus and recursive-function theory deal with functions and numbers, not symbols for them.
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Here is [Peacocke, 1999]’s example: Suppose that we have a Turing machine
that outputs a copy of the input appended to itself (thus doubling the number of
input strokes): input ‘/’, output ‘//’; input ‘//’, output ‘////’, and so on. What is our
Turing machine doing? Isn’t “outputting a copy of the input appended to itself” the
most neutral description? After all, that describes exactly what the Turing machine
is doing, leaving the interpretation (e.g., doubling the input) up to the observer.
If we had come across that Turing machine in the middle of the desert and were
trying to figure out what it does, something like that would be the most reasonable
answer. Why someone might want a copy-appending Turing machine is a different
matter that probably would require an interpretation of the strokes. But that goes
far beyond what the Turing machine is doing.

Rescorla offered three interpretations of the strokes (see §3.4). Do we really
have one machine that does three different things? What it does (in one sense
of that phrase) depends on how its input and output are interpreted, i.e., on the
environment in which it is working. In different environments, it does different
things; at least, that’s what Cleland said about the hollandaise-sauce recipe.

[Piccinini, 2006, §2] says much the same thing:

In computability theory, symbols are typically marks on paper individ-
uated by their geometrical shape (as opposed to their semantic prop-
erties). Symbols and strings of symbols may or may not be assigned
an interpretation; if they are interpreted, the same string may be inter-
preted differently. . . . In these computational descriptions, the identity
of the computing mechanism does not hinge on how the strings are
interpreted.

By ‘individuated’, Piccinini is talking about how one decides whether what appear
to be two programs (say, one for a wargame battle and one for a chess match) are,
in fact, two distinct programs or really just one program (perhaps being described
differently). He suggests that it is not how the inputs and outputs are interpreted
(their semantics) that matters, but what the inputs and outputs look like (their syn-
tax). So, for Piccinini, the wargame and chess programs are the same; for Cleland,
they would be different. For Piccinini, the hollandaise-sauce program running on
the Moon works just as well as the one running on Earth; for Cleland, only the
latter does what it is supposed to do.

So, the question “Which Turing machine is this?” has only one answer, given
in terms of its syntax (“determined by [its] instructions, not by [its] interpretations”
[Piccinini, 2006, §2]). But the question “What does this Turing machine do?” has
n+ 1 answers: one syntactic answer and n semantic answers (one for each of n
different semantic interpretations).
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A related issue shows our thread running through action theory: Given a cal-
culator that I use to add two numbers, how would you describe my behavior? Am
I pushing certain buttons in a certain sequence? (A “syntactic”, narrow, internal
answer: I am “doing P”.) Or am I adding two numbers? (A teleological, “seman-
tic”, wide, external answer: I am accomplishing G.) Or am I adding two numbers
by pushing those buttons in that sequence? (A teleological (etc.) answer, together
with a syntactic description of how I am doing it: I am accomplishing G, by doing
P.) [Rapaport, 1990], [Rapaport, 1993]. This is the same situation that we saw in
the spreadsheet example. (We will see it again in §5.2.2).

In some sense, all of these answers are correct, merely(?) focusing on different
aspects of the situation. But a further question is: Why (or how) does a Turing ma-
chine’s printing and moving thus and so, or my pushing certain calculator buttons
thus and so, result in adding two numbers? And the answer to that seems to require
a semantic interpretation. This is the kind of question that Marr’s “computational”
level is supposed to respond to.

If I want to know which Turing machine this is, I should look at the internal
mechanism (roughly, [Dennett, 1971]’s “design” stance) for the answer
[Piccinini, 2006]. But if I’m interested in buying a chess program (rather than a
wargame simulator), then I need to look at the external/inherited/wide semantics
[Cleland, 1993].

Since we can arbitrarily vary inherited meanings relative to syntactic
machinations, inherited meanings do not make a difference to those
machinations. They are imposed upon an underlying causal structure.
[Rescorla, 2014, p. 181]

On this view, the hollandaise-sauce-making computer does its thing whether it’s
on Earth or the Moon (whether its output is hollandaise sauce or not). Perhaps
its output is some kind of generalized, abstract, hollandaise-sauce type, whose im-
plementations/instantiations/tokens on the Moon are some sort of goop, but whose
implementations/instantiations/tokens on Earth are what are normally considered
to be (successful) hollandaise sauce.

Here is another nice example [Piccinini, 2008, p. 39]:

a loom programmed to weave a certain pattern will weave that pattern
regardless of what kinds of thread it is weaving. The properties of the
threads make no difference to the pattern being woven. In other words,
the weaving process is insensitive to the properties of the input.

As Piccinini points out, the output might have different colors depending on the
colors of the input threads, but the pattern will remain the same. The pattern is
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internal to the program; the colors are external, to use other terminology. If you
want to weave an American flag, you had better use red, white, and blue threads in
the appropriate ways. But even if you use puce, purple, and plum threads, you will
weave an American-flag pattern.

Which is more important: the pattern or the colors? That’s probably not exactly
the right question. Rather, if you want a certain pattern, this program will give it
to you; if you want a certain pattern with certain colors, then you need to have the
right inputs (you need to use the program in the right environment). This aspect of
our thread reappears in the philosophy of mathematics concerning “structuralism”:
Is the pattern, or structure, of the natural numbers all that matters? Or does it also
matter what the natural numbers in the pattern “really” are?37

5.2 Syntactic Semantics

5.2.1 Syntax vs. Semantics

‘Syntax’ is usually understood in the narrow sense of the grammar of a language,
and ‘semantics’ is usually understood as the meanings of the morphemes, words,
and sentences of a language. But, following [Morris, 1938, pp. 6–7], I take ‘syntax’
very broadly to be the study of the properties of, and relations among, the elements
of a single set (or formal system), and ‘semantics’ very broadly to be the study of
the relations between any two sets whatsoever (each with its own syntax).38 Syntax
is concerned with “intra-system” properties and relations; semantics is concerned
with “extra-system” relations (where the “system” in question is the “syntactic”
domain), or, viewed sub specie aeternitatis, it is concerned with “inter-system”
relations (i.e., relations between two domains, one of which is taken as the syntactic
domain and the other as a semantic domain).

So, one way to answer the questions at the end of §5.1 is by using an external
semantic interpretation: These Turing-machine operations or those button presses
(considered as being located in a formal, syntactic system of Turing-machine op-
erations or button pressings) can be associated with numbers and arithmetical op-
erations on them (considered as being located in a distinct, Platonic (or at least
external) realm of mathematical entities).39 In the formulation “To G, do P”, P

37For a survey, see [Horsten, 2015, §4].
38So, the grammar of a language—syntax in the narrow sense—is the study of the properties of,

and relations among, its words and sentences. Their referential meanings are given by a semantic
interpretation relating the linguistic items to concepts or objects [Rapaport, 2012, §3.2].

39This realm has a syntactic organization in terms of properties and relations among its entities,
i.e., its ontology [Rapaport, 1986b], [Rapaport, 2006, p. 392]. Ontology is syntax (by the definition
of ‘syntax’ given here). Relations between two domains, each with its own syntax (or ontology) is
semantics.
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can be identified syntactically (at the “computational-what” level), but G needs to
be identified semantically—and then P can be (re-)interpreted semantically in G’s
terms (at the “computational-why” level). (These are the n+1 answers of §5.1.)

5.2.2 Syntactic Semantics

Another way to answer these questions uses an “internal” kind of semantics, the
kind that I have called “syntactic semantics”. Syntactic semantics arises when the
semantic domain of an external semantic interpretation is “internalized” into the
syntactic domain. In that way, the previous semantic relations between the two
previously independent domains have become relations within the new unified do-
main, turning them into syntactic relations.40 Syntactic semantics is akin to (if not
identical with) what Rescorla has called “indigenous semantics” [Rescorla, 2012],
[Rescorla, 2014]. My version emphasizes the importance of conceptual-role se-
mantics (distinct from, but including, inferential-role semantics) [Rapaport, 2002];
Rescorla’s version emphasizes causal relations.41

Without going into details (some of which are spelled out in the cited papers),
note that one way to give this kind of semantics is in terms of (named) subroutines
(which accomplish subtasks of the overall algorithm). We can identify collections
of statements in a program that “work together”, then package them up, name the
package, and thus identify subtasks.

E.g., the following Logo program draws a unit square by moving forward 1
unit, then turning 90 degrees right, and doing that 4 times:

repeat 4 [forward 1 right 90]

But Logo won’t “know” what it means to draw a square unless we tell it that

to square
repeat 4 [forward 1 right 90]
end

Another example is the sequence of instructions “turnleft; turnleft; turnleft”, in
Karel the Robot [Pattis et al., 1995], which can be packaged up and named “turn-
right”:

DEFINE-NEW-INSTRUCTION turnright AS
BEGIN
turnleft;turnleft;turnleft
END

40[Rapaport, 1988], [Rapaport, 1995], [Rapaport, 2006], [Rapaport, 2012]; see also [Kay, 2001].
41[Egan, 1995, p. 181]’s “structural properties” and [Bickle, 2015, esp. §5]’s description of

“causal-mechanistic explanations” in neuroscience may also be “syntactic/indigenous” semantics.
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Notice here that Karel still can’t “turn right” (i.e., 90◦ clockwise); it can only turn
left three times (i.e., 270◦ counterclockwise).

Of course, the Logo and Karel programs still have no understanding in the way
we do of what a square is or what it means to turn right. They are now capable only
of associating those newly defined symbols (‘square’, ‘turnright’) with certain pro-
cedures. The symbols’ meanings for us are their external semantics; the words’
meanings (or “meanings”?) for the Logo or Karel programs are their internal “syn-
tactic semantics” due to their relationships with the bodies of those programs.

There is a caveat: Merely naming a subroutine does not automatically endow it
with the meaning of that name [McDermott, 1980]. But the idea that connections
(whether conceptual, inferential, or causal) can be “packaged” together is a way of
providing “syntactic” or “indigenous” semantics. If the name is associated with ob-
jects that are external to the program, then we have external/wide/inherited/extra-
system semantics. If it is associated with objects internal to the program, then
we have internal/narrow/syntactic/indigenous/intra-system semantics. Identifying
subroutines is syntactic; naming them leads to semantics: If the name is externally
meaningful to a user, because the user can associate the name with other external
concepts, then we have semantics in the ordinary sense (subject to McDermott’s
caveat); if it is internally meaningful to the computer, because the computer can
associate the name with other internal names, then we have “syntactic” or “indige-
nous” semantics.

5.3 Internalization

As noted in §5.2.2, external semantic relations between the elements of two do-
mains (a “syntactic” domain described syntactically and a “semantic” domain de-
scribed ontologically (i.e., syntactically!) can be turned into internal syntactic rela-
tions (“syntactic semantics”) by internalizing the semantic domain into the syntac-
tic domain. After all, if you take the union of the syntactic and semantic domains,
then all formerly external semantic relations are now internal syntactic ones.

One way that this happens for us cognitive (and arguably computational) agents
is by sensory perception, which is a form of input encoding. For animal brains, per-
ception interprets signals from the external world into a biological neural network.
For a computer that accepts input from the external world, the interpretation of ex-
ternal or user input as internal switch settings (or inscriptions on a Turing-machine
tape) constitutes a form of perception. Both are forms of what I am calling “inter-
nalization”. As a result, the interpretation becomes part of the computer’s or the
brain’s intra-system, syntactic/indigenous semantics [Rapaport, 2012].
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My colleague Stuart C. Shapiro advocates internalization in the following form:42

Shapiro’s Internalization Tactic
Algorithms do take the teleological form, “To G, do P”,
but G must include everything that is relevant:

• To make hollandaise sauce on Earth, do P.

• To find the GCD of 2 integers in base-10, do Q.

• To play chess, do R, where R’s variables range over chess pieces and
a chess board.

• To simulate a wargame battle, do R, where R’s variables range over
soldiers and a battlefield.

And the proper location for these teleological clauses is in the preconditions and
postconditions of the program. Once they are located there, they can be used in
the formal verification of the program, which proceeds by proving that, if the pre-
conditions are satisfied, then the program will accomplish its goal as articulated in
the postconditions. This builds the external world (and any attendant external se-
mantics) into the algorithm: “There is no easy way to ensure a blueprint stays with
a building, but a specification can and should be embedded as a comment within
the code it is specifying” [Lamport, 2015, 41]. The separability of blueprint from
building is akin to the separability of G from P; embedding a specification into
code as (at least) a comment is to internalize it as a pre- or postcondition. More
importantly, such pre- and postconditions need not be “mere” comments; they can
be internalized as “assertible” statements in a program, thus becoming part of a
program’s (self-)verification process [Lamport, 2011].43

As I suggested in §4.1, we can avoid having Cleland’s hollandaise-sauce recipe
output a messy goop by limiting its execution to one location (Earth, say) without
guaranteeing that it will work elsewhere (on the Moon, say). This is no different
from a partial mathematical function that is silent about what to do with input from
outside its domain, or from an algorithm for adding two integers that specifies no
particular behavior for non-numerical input.44 Another way is to use the “Denver
cake mix” strategy: I have been told that packages of cake mix that are sold in

42Personal communication. [Smith, 1985, p. 24] makes a similar point: “as well as modelling the
artifact itself, you have to model the relevant part of the world in which it will be embedded.”

43Note the similarity of (a) internalizing external/inherited semantics into internal/syntactic se-
mantics to (b) the Deduction Theorem in logic, which can be thought of as saying that a premise of
an argument can be “internalized” as the antecedent of an argument’s conditionalized conclusion:
P ` C ⇔ ` (P → C).

44“Crashing” is a well-defined behavior if the program is silent about illegal input. More “well-
behaved” behavior requires some kind of error handling.
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mile-high Denver come with alternative directions. The recipe or algorithm should
be expressed conditionally: If location = Earth, then do P; if location = Moon, then
do Q (where Q might be the output of an error message).

6 Interactive (Hyper?)Computation

Hypercomputation—“the computation of functions that cannot be” computed by
a Turing machine [Copeland, 2002, p. 461]—is a challenge to the Computability
Thesis. Many varieties of hypercomputation involve such arcana as computers op-
erating in Malament-Hogarth spacetime.45 Here, I want to focus on one form of
hypercomputation that is more down to earth. It goes under various names (though
whether there is a single “it” with multiple names, or multiple “it”s is an issue that
I will ignore here): ‘interactive computation’ [Wegner, 1995, p.45], ‘reactive com-
putation’ (Pneuli’s term; see [Hoffmann, 2010]), or ‘oracle computation’ (Turing’s
term; useful expositions are in [Feferman, 1992], [Davis, 2006], [Soare, 2009], and
[Soare, 2013]).

Remember that Turing machines do not really accept input from the exter-
nal world; the input to a function computed by a Turing machine is pre-stored—
already printed on its tape; Turing machines work “offline”. Given such a tape, the
Turing machine computes (and, hopefully, halts). A student in an introductory pro-
gramming course who is asked to write an interactive program that takes as input
two integers chosen randomly by a user and that produces as output their GCD has
not written a (single) Turing-machine program. The student’s program begins with
a Turing machine that prints a query on its tape and halts; the user then does the
equivalent of supplying a new tape with the user’s input pre-stored on it; and then
a(nother) Turing machine uses that tape to compute a GCD, query another input,
and (temporarily) halt.

Each run of the student’s program, however, could be considered to be the
run of a Turing machine. But the read-loop in which the GCD computation is
embedded in that student’s program takes it out of the realm of a Turing machine,
strictly speaking.

That hardly means that our freshman student has created a hypercomputer that
computes something that a Turing machine cannot compute. Such interactive com-
putations, which are at the heart of modern-day computing, were mathematically
modeled by Turing using his concept of an oracle. Our freshman’s computer pro-
gram’s query to the user to input another pair of integers is nothing but a call to an
oracle that provides unpredictable, and possibly uncomputable, values. (Computer
users who supply input are oracles!)

45http://en.wikipedia.org/wiki/Hypercomputation
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Many interactive computations can be simulated by Turing machines, simply
by supplying all the actual inputs on the tape at the start. The Kleene Substitution
Property states that data can be stored effectively (i.e., algorithmically) in pro-
grams;46 the data need not be input from the external world. A typical interactive
computer might be an ATM at the bank. No one can predict what kind of input will
be given to that ATM on any given day; but, at the end of the day, all of the day’s
inputs are known, and that ATM can be simulated by a TM.

But that is of no help to anyone who wants to use an ATM on a daily basis.
Computation in the wild must allow for input from the external world (including or-
acles). And that is where our thread re-appears: Computation must interact with the
world. A computer without physical transducers that couple it to the environment
[Sloman, 2002, §5, #F6, pp. 17–18] would be solipsistic. The transducers allow for
perception of the external world (and thereby for interactive computing), and they
allow for manipulation of the external world (and thereby for computers—robots,
including computational chefs—that can make hollandaise sauce). But the com-
putation and the external-world interaction (the interpretation of the computer’s
output in the external world) are separable and distinct. And there can, therefore,
be slippage between them (leading to such things as blocks-world and hollandaise-
sauce failures), multiple interpretations (chess vs. wargame), etc.

7 Program Verification and the Limits of Computation

7.1 Program Verification

Let’s consider programs that specify physical behaviors a bit further. In a classic
and controversial paper, [Fetzer, 1988] argued to the effect that, given a computer
program, you might be able to logically prove that its (primitive) instruction RING
BELL will be executed, but you cannot logically prove that the physical bell will
actually ring (a wire connecting computer and bell might be broken, the bell might
not have a clapper, etc.). Similarly, we might be able to logically prove that the
hollandaise-sauce program will execute correctly, but not that hollandaise sauce
will actually be produced. For Fetzer and Cleland, it’s the bells and the sauce that
matter in the real world: Computing is about the world.

7.2 The Limits of Computation: Putting the World into Computers

What the conference [on the history of software] missed was soft-
ware as model,. . . software as medium of thought and action, soft-

46Also called the Kleene Recursion Theorem [Case, nd].
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ware as environment within which people work and live. It did not
consider the question of how we have put the world into computers
[Mahoney and Haigh (ed.), 2011, pp. 65–66; my emphasis]

[Smith, 1985] has articulated this problem most clearly. For Smith, computing is
about a model of the world. According to him, to design a computer system to
solve a real-world problem, we must do two things:

1. Create a model of the real-world problem.

2. Represent the model in the computer.

The model that we create has no choice but to be “delimited”, that is, it must
be abstract—it must omit some details of the real-world situation. Abstraction is
the opposite of implementation. It is the removal of “irrelevant” implementation
details. His point is that computers only deal with their representations of these
abstract models of the real world. They are twice removed from reality.47

All models are necessarily “partial”, hence abstract. But action is not abstract:
You and the computer must act in the complex, real world, and in real time. Yet
such real-world action must be based on partial models of the real world and in-
ferences based on incomplete and noisy information (cf. [Simon, 1996]’s notion
of “bounded rationality” and the need for “satisficing”). Moreover, there is no
guarantee that the models are correct.

Action can help: It can provide feedback to the computer system, so that the
system won’t be isolated from the real world. Recall our blocks-world program
that didn’t “know” that it had dropped a block, but “blindly” continued executing
its program to put the block on another. If it had had some sensory device that
would have let it know that it no longer was holding the block that it was supposed
to move, and if the program had had some kind of error-handling procedure in it,
then it might have worked much better (it might have worked “as intended”).

The problem, on Smith’s view, is that mathematical model theory only dis-
cusses the relation between two descriptions: the model itself (which is a partial
description of the world) and a description of the model. It does not discuss the
relation between the model and the world; there is an unbridgeable gap. In Kan-
tian fashion, a model is like eyeglasses for the computer, through which it sees the
world, and it cannot see the world without those glasses. The model is the world
as far as the computer can see. The model is the world as the computer sees it.

47“Human fallibility means some of the more subtle, dangerous bugs turn out to be errors in
design; the code faithfully implements the intended design, but the design fails to correctly handle a
particular ‘rare’ scenario” [Newcombe et al., 2015, 67].
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Both Smith and Fetzer agree that the program-verification project fails, but for
slightly different reasons: For Fetzer (and Cleland), computing is about the world;
it is external and contextual. Thus, computer programs can’t be verified, because
the world may not be conducive to “correct” behavior: A physical part might break;
the environment might prevent an otherwise-perfectly-running, “correct” program
from accomplishing its task (such as making hollandaise sauce on the Moon using
an Earth recipe); etc.

For Smith, computing is done on a model of the world; it is internal and narrow.
Thus, computer programs can’t be verified, but for a different reason, namely, the
model might not match the world.48 Note that Smith also believes that computers
must act in the real world, but it is their abstract narrowness that isolates them from
the concrete, real world at the same time that they must act in it.

The debate over whether computation concerns the internal, syntactic manip-
ulation of symbols or the external, semantic interpretation of them is at the heart
of Smith’s gap. This is made explicitly clear in the following passages from Ma-
honey’s history of computing:

Recall what computers do. They take sequences, or strings, of
symbols and transform them into other strings.49. . .

The transformations themselves are strictly syntactical, or struc-
tural. They may have a semantics in the sense that certain symbols
or sequences of symbols are transformed in certain ways, but even
that semantics is syntactically defined. Any meaning the symbols may
have is acquired and expressed at the interface between a computation
and the world in which it is embedded. The symbols and their combi-
nations express representations of the world, which have meaning to
us, not to the computer. . . . What we can make computers do depends
on how we can represent in the symbols of computation portions of
the world of interest to us and how we can translate the resulting trans-
formed representation into desired actions. . . .

So putting a portion of the world into the computer means design-
ing an operative representation of it that captures what we take to be
its essential features. That has proved. . . no easy task; on the con-
trary it has proved difficult, frustrating, and in some cases disastrous.
[Mahoney and Haigh (ed.), 2011, p. 67, my italics]

48Perhaps a better way of looking at things is to say that there are two different notions of “verifi-
cation”: an internal and an external one. Cf. [Tedre and Sutinen, 2008, pp. 163–164].

49Here, compare [Thomason, 2003, p. 328]: “all that a program can do between receiving an input
and producing an output is to change variable assignments”. And [Lamport, 2011, p. 6]: “an execu-
tion of an algorithm is a sequence of states, where a state is an assignment of values to variables”.
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The computer’s indigenous semantics—its “Do P” (including P’s modules or
“levels of structure” (its compositionality)—is syntactic and non-teleological. Its
inherited (“acquired”) semantics, “which have meaning to us”—its “To G”—is
teleological, but depends on our ability to represent our view of the world to it. As
[Rescorla, 2007, p. 265] observes, we need a computable theory of the semantic
interpretation function, but, as Smith observes, we don’t (can’t?) have one, for rea-
sons akin to the Computability Thesis problem: Equivalence between something
formal (e.g., a Turing-machine or a formal model) and something non-formal (e.g.,
an algorithm or a portion of the real world) cannot be formally proved.

Smith’s gap is due, in part, to the fact that specifications are abstractions. How
does one know if something that has been omitted from the specification is impor-
tant or not? This is why “abstraction is an art”, as Lamport said, and why there’s
no guarantee that the model is correct (in the sense that it matches reality).

8 Summary and Conclusion

I have not attempted in this overview to resolve these issues. I am still struggling
with them, and my goal was to convince you that they are interesting, and perhaps
important, issues that are widespread throughout the philosophy of computer sci-
ence and beyond, to issues in the philosophy of mind, philosophy of language, and
the ethics and practical uses of computers. But I think we can see opportunities for
some possible resolutions.

We can distinguish between the question of which Turing machine a certain
computation is and the question of what goal that computation is trying to accom-
plish. Both questions are important, and they can have very different answers.
Two computations might implement the same Turing machine, but be designed to
accomplish different goals.

And we can distinguish between two kinds of semantics: wide/external/extrinsic/-
inherited and narrow/internal/intrinsic/“syntactic”/indigenous. Both kinds exist,
have interesting relationships and play different, albeit complementary, roles.

Algorithms narrowly construed (minus the teleological preface) are what is
studied in the mathematical theory of computation. To decide whether a task is
computable, we need to find an algorithm that can accomplish it. Thus, we have
two separate things: an algorithm (narrowly construed, if you prefer) and a task.
Some algorithms can accomplish more than one task (depending on how their in-
puts and outputs are interpreted by external/inherited semantics). Some algorithms
may fail, not because of a buggy, narrow algorithm, but because of a problem at the
real-world interface. That interface is the (algorithmic) coding of the algorithm’s
inputs and outputs, typically through a sequence of transducers at the real-world

32



end (cf. [Smith, 1987]). Physical signals from the external world must be trans-
duced (encoded) into the computer’s switch-settings (the physical analogues of a
Turing machine’s ‘0’s and ‘1’s), and the output switch-settings have to be trans-
duced (decoded) into such real-world things as displays on a screen or physical
movements by a robot.

At the real-world end of this continuum, we run into Smith’s gap. From the
narrow algorithm’s point of view, so to speak, it might be able to asymptotically
approach the real world, in Zeno-like fashion, without closing the gap. But, just as
someone trying to cross a room by only going half the remaining distance at each
step will eventually cross the room (though not because of doing it that way), so
the narrow algorithm implemented in a physical computer will do something in the
real world. Whether what it accomplishes was what its programmer intended is
another matter. (In the real world, there are no “partial functions”!)

One way to make teleological algorithms more likely to be successful is by
Shapiro’s strategy: Internalizing the external, teleological aspects into the pre- and
post-conditions of the (narrow) algorithm, thereby turning the external/inherited
semantic interpretation of the algorithm into an internal/indigenous syntactic se-
mantics.

What Smith shows is that the external semantics for an algorithm is never a re-
lation directly with the real world, but only to a model of the real world. That is, the
real-world semantics has been internalized. But that internalization is necessarily
partial and incomplete.

There are algorithms simpliciter, and there are algorithms for accomplishing
a particular task. Alternatively, all algorithms accomplish a particular task, but
some tasks are more “interesting” than others. The algorithms whose tasks are
not currently of interest may ultimately become interesting when an application
is found for them, as in the case of non-Euclidean geometry. Put otherwise, the
algorithms that do not accomplish tasks may ultimately be used to accomplish a
task.

Algorithms that explicitly accomplish a(n interesting) task can be converted
into algorithms whose tasks are not explicit in that manner by internalizing the
task into the algorithm narrowly construed. This can be done by internalizing the
task, perhaps in the form of pre-and postconditions, perhaps in the form of named
subroutines (modules). Both involve syntactic or indigenous semantics.

As promised, I have raised more questions than I have answered. But that’s
what philosophers are supposed to do!50

50I am grateful to Robin K. Hill and to Stuart C. Shapiro for discussion and comments on earlier
drafts.
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