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I. PHILOSOPHICAL PRELIMINARIES
1. Introduction

In this essay, we investigate generalizations of two well-known
algebraic structures, the veetor space and the module, which
arise in logics associated with certain fragments of natural
language. While we shall consider certain logical problems
from an algebraic viewpoint, we will also be interested in what
our results say about the mathematical structure of natural

language-~in particular, the structure of ethical language.

2. Cestafieda's Deontic Logie
The crucial feature of ethical language to be examined here is

most easzily illustrated by considering commands. When the
indicative sentence 'It is raining' and the imperative Sentence
'Go home!! are combined in a eonditional construction, the
resulting sentence, 'If it is raining, go home!', appears to
be an imperative. (The same phenomenon occurs in erotetie
logic-~the logic of questions, We shall return to this later.)
While this feature of language has been noted implicitly
by some authors (e.g., Rescher 1966, Ch., 3; Harrah 1961: LL),

its most explicit statement appears in the writings of



Hector-Neri Castafieda (1974, 1975). Moreover, the analysis of
deontic language (the language of ethics) presented by Castaneda
makes an attempt to explain this feature in terms of metaphysical
theses about language and predication. For these reasons, we
shall take his system as the basis for our algebraic interpre-
tation,

It will prove useful to present briefly (though we shall
not defend) some of the notions of Castaneda's deontiec logic;

a more formal presentation appears in Section II.

Many philosophers hold that the units of thinking (and
hence of language) are "propositions" and that, variously, there
is either no difference or else little or no connection between
purely econtemplative (or theoretical) thinking and practical
thinking (the sort that results in an action by the thinker).e
Castafieda, on the other hand, believes that, while propositions
are indeed the units of contemplative thinking, what he calls
"practitions" are the units of practieal thinking and that there
is a fundamental unity (though not an identity) between these
kinds of thinking.

More precisely, a proposition is a truth-valued unit of

contemplative thinking, and propositions of the simplest kind
are expressed by declarative sentences consisting of a noun
phrase (NP) plus a verb phrase (VP) in the indicative mood
(Castaneda 197h: 29ff, 109; 1975: 6, Lk, 260f).

A practition is the fundamental unit of practical thinking

and comes in two varieties: (1) A preseription is the "eommon

structure at the core" of orders, requests, pieces of advice,



entreaties, ete., "that demand of the same agents the same
actions in the same circumstances." They are not propositions,
and a preseription of the simplest kind is expressed (according
to Castaneda) by a NP in the second- or third-person plus an
infinitive VP, e.g., 'John to go heme'. (2) An intention

is the first-person counterpart of a preseription. It, too,

is not a proposition and is typieally expressed by 'I' plus

an infinitive VP. These NP + VP econstructions are called
practitives. (Castafieda 197h: 4Off, 93f, 109; 1975: 7, L3f,
91£f, 154, 172, 260f.)

The erucial difference between propositions and practitions

is in their respective modes of predication. Presumably, the
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propositional copula unites (almost) any subject with (almost)

any predicate; the practitional copula unites agents with actions
and, moreover, is different from the propositional copula., Accord-
ing to Castaneda, it is "a complex of the ordinary copuls and a
practitional operator" or "a signal of its practical or causal

openness." The ordinary, or propositiocnal, copula "ecombines the

subject and the predicate in a way suitable for possession of truth, "

while the practitional copula "eombines its subject and its predi-
cate in a way suitable for action." (Castaneda 197l: 76, 937;
1975: 96£f, 170£f, 280ff.)3

The unit of thinking, be it practiecal or contemplative, is
called a noema. . Thus, both propositions and practitions are
noemala(Castaneda 1974z 29; 1975: 7).

Finally, a @eontic judgment is a proposition formed by apply-

ing deontiec operators (such as ought or it is permissible that) 6o

a practition. They are, thus, practical noemata(because suitable
"for the guidanece of conduet") of suech forms as 'agent X ought to
do A' or 'it is wrong that X do A'. (Castaneda 1974: L2, 97;
1975: 178¢, 204, 261.)%

The fundamental prineiple with which we are presently con-

cerned is:

(Pl;) Compounds made up of both propositions and practitions not
in the scope of deontic properties [i.e., operators] are
practitions. (Castaneda 1974: 79; ef. 197Lh: 37, 80 and 1975:
174, 256.)

Several explanations or partial explanations are offered for



the truth of (P4). Pirst, Castafleda 1974: 29 can be read as
suggesting that (P4) is a reflection of the fact that practical
thinking "includes" contemplative thinking; but it is not
immediately elear how the conneetion with (Pl) might be made.

Second, (P4) might be a eonsequence of the existence of
two modes of predication, though it would need to be argued
that the combination of a proposition and a practition yields
something which is not capable of having a truth value but is
ecapable of guiding action (ef., Castafleda 1975: 280).

Third, there is Castafleda's explieit explanation:

[Tlhe mind is presented with propositions. But some-

times the mind is so set that it "marks" or "spots"

s« « » certain components of those propositions; these
"spotted" propositions are practitions, and the mind
apprehends them, (Castaleda 1975: 283.)

Thus, if one component of a mixed eompound is "spotted", so is
the compound. But the nature of "spotting" requires elaboration
before this explanation can be eomplete.

The fourth and, in my opinion, best explanation begins
by considering the abstract possibilities for the nature of
mixed compounds: they could be practitions (as in (PL4)),
propositions, or some third thing. But humans are uninterested
in mixed compounds of the latter two types, presumably because
humans "are primarily agents in, and only derivatively contem-
plators of, the universe, [and] are fundamentally concerned
with actions" (Castaflieda 1975: 112r).5 The defense of this is,

as Castaneda recognizes, another story; but an explanation in
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this direction seems to me to offer the best account within his
metaphysieal framework of all the phenomena involved in the
other explanations.

My goal in the present essay is to provide an algebraie
interpretation=-which, it is hoped, will be of some independent
interest--of the sentential fragment of Castafleda's deontie
lagic.6 It is expected that the extension of these results
to the first-order and modal fragments (i.e., to quantifiers
and to deontic operators such as the eught-to—doT) will be
relatively straightforward onee the groundwork is laid out here.

Onece again, let me stress two peoints. First, the foregoing
is not intended as a defense of Castafleda's theory. Second,

I believe that his theory is the e¢learest (though by no means
the only) one available for the algebraic-logiecal investigations

that followe.

II. SYNTAX OF SYSTEM G

Castafieda considers a family of deontic legics, one for each
ought-to~do operator. On the sentential level, there are only
two connectives, negation and conjunetion, but disjunetion and
material implication can be defined in his system in the usual
way. As axioms, he takes all truth-table tautologies. (Casta-
fleda 197L: 109ff; 1975: 260£f.)

For our purposes, we need not be concerned with more than
one member of this family of logies, so the system‘g,to be pre=-
sented here can be considered as a sentential fragment of (any)

one, representative member, It will also prove econvenient for



the algebraic interpretation to take negation, conjunction,

disjunction, and material implication as primitive connectives

or'g,nnd to use a somewhat less generous axiom set.

The alphabet of the underlying formal language of G, eon-

gists of:

(1)

(2)

(3)

(L)

A denumerable set, V., of indicative (i.e., "proposi-

tional") variables with numerical subseripts:

CPI F) (FZ’ seee

A denumerable set, V., of pure (i.e., ummixed)

practitive variables. with numerieal subseripts,

which is disjoint from V.:

1L
51' _3_2, L E NN ]

Three disjoint sets of econnectives: A set of intermal,

indicative connectives, fji, Ays Vs 41}; a set of

internal, practitive comneetives, {TE' Ap? YE, 4h 3

and a set of external connectives, 1fg' Vs 4;3.

Parenthases:a £ )i

While Castalieda favors conflating the connectives on the

grounds that their logical relationships are analogous, the

algebraic interpretation will be clearer if we retain the

distinetions. (In his terminology, we are doing "sh-logie';

Castaneda 1974: 88; 1975: 101f.) Moreover, it is conceivable

that the "deep struecture" of our ethical language has these

distinctions, and they are conflated only in the "surface

structure",

(clote_up vk 7.34)




The formation rules are as follows:

(a) The set WFI of well-formed indicatives (wfis) is the

smallest set sueh that

(1) ¥; < WFI, and

(i1) if p, g € WFI, then (-1_.2), (B Ay a), (p vy a)s
(=2 g) € WEL.

(b) The set WFP of well-formed practitives (wfps) is the

smallest set sueh that

close wp with p QD




(1) ¥, € WFE, and

{(48) 1ir A, B € WFP, then (“R&)’ (é_ A §): (é_ v _B_):

R R

(4, B) ¢ WFP, and

(iii) if p e WFI and A € WEP, then (p A, A), (A A  p),
(2 vﬁ_-é): (4 VB R), (2-)2 a), {ﬁ—bgg) € WFP.

(We let p, g5 eee 8nd A, B, ... De schematic letters ranging over
wfis and wfps, respectively.)

(e) The set WFN of well-formed noemata (wfns) =3¢ WEL v WFE.

Note that WFI and WFP are disjoint, (And we will omit parentheses
when no ambiguity results,)

To present the axiom set compactly, we introduce the following
notation: lower-case Greek letters w,P,y,... are variables ranging
over schematic letters which, in turn, range over wfns, and non-
subseripted connectives are variables ranging over subseripted
connectives., Thus, axiom schema A2, below, is really a "super"

schema among whose "subschemata! are:
R (gvyp)
B, (Av, p)
é-—bg ] % A)

é"*E (E VE 4),

ete. The axiom schemata of G (ef. Rasiowa and Sikorski 1963: 168f)

are:



@) («—vp)—»[tp—'ﬂ-ﬂ**a)]
(a2) ac-a(NVP)

(A3) (5—9(-“{5)

() (<=p) = [(p=y) > Lvp) =y )]
(A5) («AP)-ru

(atL) CMAF)—’F

9 (o) [Gop) 7 (= (<ap))]
(#8) [x—=(p—=y)] = [(x2B) = y]
() [(«ap)> gl = Las (B=p) ]
(a10) (xa o) 5

@n) [x—=(<a=a)] = ~x

(p12) v =«

There &s a "super" schematic rule of inference (MP) whose

four subschemata are:

‘girg
rgrg
ol g

-
1w

Vi
3
=]

—01% .*__9_&

-

I
1

ne
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ITI. ALGEBRAIC INTERPRETATION QF};

1. Dominance Algebras

Prineiple (Pl) is analogous to sealar multiplication in vector
spaces: the scalar product of a sealar and a vector is always

a vector. Thus, propositions play a sealar role, practitions play
a vector role. But neither a vector space nor its standard gener-
alization, a module, will do for the algebraic interpretation of
’Q, since vector spaces and modules have only four operations where
we will need eleven. Rather, we shall be interested in special
cases of what will be called, for reasons toc be elaborated upon

in Section IV, a "dominance algebra", viz., a system "econsisting"
of two algebras, one of whiech is "dominant" over the other (the
"recessive” algebra) in the sense that the results of "externally"
combining members of the recessive algebra with members of the
dominant algebra will be members of the dominant algebra. (Vectors,

e«.8+, are dominant over scalars,)

DEF 1: <M, R, I, E) is a dominance algebra (over R) iff

(i) R is an abstract algebra
(i1) M# ¢
(iii) I is a non-empty set of "internal" operations such
that for all i € I, i:M2 —= M (for ne o
(iv) E is a non-empty set of "extermal® operations such
that for all e ¢ B, e:(R® x M%) y (M xRY) » ¥

(form, n € w).

Modules (and, hence, vector spaces) are dominance algebras,

ror (M, R, i+}, {.}) is a module over R iff (i) R is a ring (hence,



altle
an abstract algebra), (ii) M # @, (iii) +:§2‘4~§ is an internal
operation such that <M, +) is an abelian group, and (iv) .:(BRxM) =+ M
is an external operation sueh that r(a+b) = ra + rb, r(sa) = (rs)a,
and (r+s)a = ra + sa, for all a,b ¢ M and r,s ¢ R (here and hence-
forth suppressing the '.' in favor of juxtaposition, for legibility).

(Cf. Herstein 196li: 160, and, espeeially, Solian 1977: 30f; ef.
also Seet, IV below.) i _ ,

The first special case of interest is that of a "Boolean"
dominance algebra:

DEF 2: <M, B, I, E) is a Boolean dominance algebra (over B) iff

it is a dominance algkbra (over B) and B is a Boolean

algebra.

¥ For convenience, we will use the following. liberal char-

acterization of Boolean algebras (ef. Rasiowa and Sikorski 1963: 71):

DEF 3: {B, {+, ¢ @, =}) is a Boolean algebra iff
(1) B#4
(11) +:B° B, .:8° B, :18° 9 B, and -:B - B are (internal)

operations sueh that, for all a,b,c € B,

(a) a+b = b+a (a') ab = ba

(b) a+(b+e) = {a+tb)+e (b') a(be) = (able
(c) ab+d = b (6" ala+) = a

(d) a(bte) = ab+ae (ar)

5]

+be = (a+b) (a+e)

(e) a(-a)+h =D (e') (a+(-2))b =D
(f) a=b = -a+b

In the second speeial case of interest, both constitutive

algebras are Boolean:



Let T =

DEF !;;:

e
]

Let
Then .
(

(1)

(i1)

(111)

L .

i
&,
B, I,

ver B

> is a double Boolean dominance algebra

pde
=
L |

-

{B, {+, «; & -})> is a Boolean algebra
4, I) is a Boolean algebra
+, X, 2:(MxB)u(BxM) = ¥ are external operations

such that, for.all p,q e B and 4,B ¢ N,
(a) p2f=A2p (@) pxA=Axp

2.3
L S

(0) p2(q28)=(pr9)xA (V) px(4%4)=(pq) XA
f-*-("*j)=(f1&)ij [L (Q!j)=(!5§)51
A#(prB)=(A%p)#B Ax(gxB)=(Axp)x B
A+ (Btp)=(p#B)tp Ax(Bxp)=(AxB)xp
p2(a#B) =(prA)#B pE(AxB)=(pxA)x B
&i(f“‘i)=(ﬂif)t1 _& Eﬂﬁ):(&ﬁr) E.i

©) (pxA)#A=A (/) Az(azp=A

W) px(g2A) -2 (pxn) @) p2(4ER)=(p+) = (ptA)
:P_Jf (At4q) = xR)x (pq) £1(ﬂ.‘£1)=(£1_{|)1(£+f’_)
Ax(ptB)=(Axp)¥(AxB)  A#(pxB)=(Atp)x(A*B)
Ax @Brp)=(Ax)®(Axp)  A#(BXp)-(a#B)x(Azp)
px (h28)=(pM*(p2®)  p(AxB)=(ptA)x(p+B)
Ax(p+q)= (A2p)#(A2q)  AZ(pq)=(A%p)x (A1q)

©plplta=a @) (p+Cp)xn=A

) p2A=-pxh
B Sk A
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A couple of remarks are in order. First, four combinatorially

possible equations are missing from this list; viz.,

(AXp)tp =
pX(p:A) = p
(aX(~4))+p
(A#(~4))Xp = p,

Vg

]
I'g

because each violates the distinction between "scalars" (members
of B) and "vectors" (members of M) (ef. n.fl).
Second, the items on the second and fourth lines under (d)

and (d') are redundant in view of the commutativity of + and X.

2. The Lindenbaum Algebra of Noemata

We can transform our formulation of the noematic logic i) (cf. n.b)

into an algebra by taking algebraic operations corresponding to

the connectives of 3 in a natural way. Thus, the algebra of noce-

% 3
mata, AN, is (WFP, WFI, {";f! '\i, 7:’ "’1}’ i‘-:s l\:t Vyl ')::i’

{A':, v'i, -f; }}, where, e.g2., the operation q: is defined so that

";fl? = 24P etc. In what follows, we may and shall omit the ” for
convenience,

Of course, AN is not a double Boolean dominance algebra (DBEDA),

since, e.g., P As P #p (for all p € WFP). If it were, our task

would be over. However, (p A} P) 4—3-_ P is a theorem of’Q (where

I'd

POy q =4, (p ~; q) As (g =; P), and similarly for "’p”"‘e)'

——— -

In order to show the relationship between G, and DBDAs, we

need to conflate items like p As P with p. This is done by the
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following technique due to Lindenbaum (ef. Rasiowa and Sikorski

1963: 209, 245). We first introduce equivalence relations on AN
9

as follows:

DERP 5: -?Ei- q irr_Pa; % is a theorem or'_C_,
Az Biff A« B is a theorem of C.
- p - - P —

Then, where '2! is a schematiec relation symbol ranging over 5
and 25 where , P,x,x are schematie letters ranging over wfis

and wfps; and where =, A, v, —» are schematic eonnectives as before,

the following hold (as can be shown via A1-A12 and MP):

(E) (i) =«
cu>%«sp,m.., Pz«
LEIL);‘«;PM Pay,*lﬁu- xzy
(ﬁf);lguap,%-ﬂ«zﬂf
Lv)j‘,«g?mﬂagsyﬂm(xax)s(F,S)
(w) L‘vdspmivis;#ﬂu(uvr)i(?trS)
ns) ;ﬁuaﬁa«mﬁ 0"'3’*“‘“(""&)*(?"’”

(M) (X A ) = « Wit”) (avea)s o

(ix) («AP)E(FM:) (w’) (xVP)-’-‘CPn:)

) "A(fﬂy)! (xap)ay (x") W(F'y)a (=vPvy

Cd) «alxvp)z & (xi”) «v(xap)=
C&;-;')KA(FVY)E ("“F’)"(“"[) (xil”) NV(F#*)§(«VF)A (ﬂ'vy)
(xise ) (NA-lct)vp.’- F (xi”) (#V"'()APEP

(xwr) """F’ g -ov B



By (i)-(iii), Ep and ., are equivalence relations.
The Lindenbaum algebra for éﬁ"ikﬁ’ is gimply the quotient
algebra ég?;. To construct it, we need the following definitions

of, respectively, equivalence classes of wfis and wfps, quotient
sets of wfis and wfps, and operations on and between those quotient

sets:

DeF &: lpl =, §9e WFI :

-0
1]
le»
i~
e

=P
o™
IR

= P

R
-

"‘"‘E"Zi =y tlpl: pe WFI }

o, =y LI8l: he WEP}

s Qlpl =y [pl D lal =y |-, 4]
lel @) [l =4 lf*;‘}l |8l @ |B| =4 144 Bl

ol @ Iyl oy lpwsl  [P1@ lel =g 14 B
Il @yl =g lp=gl  AlSplel=g 18— Bl

lpl @ 18] =y lp 4 Al
la] & lel =y l&"éfl
Lel @ |al “ |_|_= ve A |
Al @ lpl =4 12 v p
it Q) lal =y lp =t
1Al &9 gl y 1A= p
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Before presenting the definition of &N, we must make sure

that these operations are well-defined (i.e., single-valued).

Several lemmata, of which the following are representative, can

be proved:

LEM 1: Ii‘_}pg":'i q, then ®|P|= @Ic_;l.
proof: If p El qs then D &y n;g, by an instance of (Eiv).

Hence, |-;p| = {rewri: P 5, g} = {reWFl: -~;q 5, r}

= |~;a|, by instences of (Eii) and (Eiii).

But, by the definition of @, ®|g| = |~yp| = fayal

= Qllw
Similar lemmata can be proved for @, @. @, :
4 = ) =) =

and Cp. That &), @a), and @) are well-defined can be proved

by lemmata such as thiss “

LEM 2: If _p:q,mulﬂ z, E ‘*"»Mlp"ﬂ""],'@'?'.

proof: I pE g omd Az, B, thew (p PaB)zp (44, 8), byan
mslamee of (Ev). Hene, lf Agﬁl i_eﬂﬂ’:(fasﬂ)zré,?:
= fCe WEP: (g4, B)=, Cl= g4, 8] Bu, by Hhe

Lefinition of @), lpl @y 12| = [pach[=]g4 B

-_—
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Thus, (Eiv)-(Evii) insure that these operations are well-defined

and permit the following definition and theorem:

DEF 9. zﬂ, =& <9£ZE1,1 QEZ_;' {@)®f'®'®_}!
i @, @,

THM 1: ZQN is a DBDA.

proof: (i) Show (W—F-I/Ei, {@,@, @,@}) is a Boolean

algebra:

Clearly, EEE/E is non-empty. It only needs to be
B

shown that the operations satisfy (a)-(f) and (a')-
(e') of the definition of Boolean algebras, Here

we will only show, as a representative, that @

satisfies (a'):

show |p| ® lal = {a| &) lol:

"

192 pl, by (Ei)
91 @D lpl, by definition.
Gy Tt (272 1@, @, D, DI 1.

Boolean algebra can be shown in a similar fashion.

(11i)  Show ®, ®, @ satisfy clauses (a)-(£) and

(at)=(e?') of the definition of DBDA:
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(ar) snow [p| @ I8l = |8l @ lp].
lpl @ 181 = [p 4, A], by definition
= [Aa pl, by (Eir)
= 18] @ lph by defition.
(a) Similar to (a').
®)  snow, e.ce, |p| @ (191 @ |Al) =
= (lpl @ l41) @ 1Al
el @ (131 @ 141) = Il @ (14 A1) by 44,
=[p % (g% B)l, by &F.,
=|(p v ‘1,) v Al LD o
subschema of (Ex’),

=(lpl @ 131) ® 141,
by def.
The rest of (b) can be proved similarly.

(b') Similar to (b).

(e) snow (ipl @ (Al) @ 1a] = (Al:
Upl @ 181) @ 181 = 1pa 8] @ la] vy 4f.,
= [(pach) vp 8] by 2f,
= 8], by (Exi)and (Ein')



alQa

It is of interest, though not strictly necessary,

to show that ('ﬂl @ lfl) @ If' # ,f‘.

(If they were equal, then WFP n WFI # #.)

Assume, pro tempore, that they are equal. Now,

(181@® lpl) @ lpl = [2apl @ lpl-=

= l(ﬂ Ae f) %e f ,. If the latter were equal

S

to |p|, then (4 Ao p) Ve P & p, where 'g! is

either '_si‘ or 'Ep'. But neither symbol yields

-
-

a subschema of (Exi') (which is the relevant

equivalence in this case, in the form (NAP)VPEP).

Hence, the identities do not hold,
(a)=(f) and (e!')-(e') can be proved similarly (and
the absence of the other three combinatorially

possible equations can be justified, too)@

3, The Algebra of DBDAs

We now turn to some purely algebraic results about DBDAs. With

one small wrinkle, these are guite analogous to standard res=wlts
about modules in (universal) algebra.m

Let us consider two DBDAs "over" the same Boolean algebra B:

@,g,;?j,g!) and(lj,_]i},zy,gg). Technically, operations such as ~

in IM and N in Z_I'.N are distinct, but it should not prove too am-

——

biguous in what follows if we write '&' for both of them

(and similarly for the other connectives).,



DEF 10:

DEF 11:

DEF 12:

b o

h:M -+ N is a homomorphism from M to N iff, for all m,

—

’Eze;}émdp‘ =9

(1) (a) bh(~m) = ~a(m)

(b) himy #m,) = him) # b(m,)
(e) h(my Xm,) =h(m) X b(m,)

(d) Bb(my 3> m,) = hi(my) >him,), and

(11) (a) bl +m) =b +h(m (a') h(m+b) =h(m +b
(b) h(bXm) =bXh(m (b') himXp)=nhmXb
(¢) b(db2m) =b23h(m (c¢') h(m3D) =h(m) 20b

Let M' g M.

Then M' is a sub-DBDA of M iff, for all m' e M' and be B,

(1) M' is a subalgebra of M, and

(11) (2) bDitm'e M (a') m' tDbe M
(b) BXm'e M (b') m'XDbelM
(¢) 2meM' (e') m' 2beN

Let X€ M.

Then N is the sub-DBDA generated by X iff N is the smallest

sub-DBDA of M sueh that X € N.

We remark that a standard theorem of universal algebra shows that

such an N exists (cf. Grdtzer 1968: 34r).

DEF 13:

Let X € M.
Then X generates M freely iff
(1)
(i1)

X generates M, and

for all DBDAs N and for all ¢:X - N, there
exists a homomorphism "":I_*_{ <+ N such that, for
all xeX, Y(x) = ¢(x).
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With these definitions, the following theorem can be proved using

standard universal-algebraic teehniques (cf. Gré#tzer 1968: 163):

THM 2¢ If M, N are free DBDAs with n free generators (ne w,

then M is isomorphie to N.

]
Our next goal is to show that xAN is a free DBDA.

DEF 14: V is a valuation (or interpretation) of AN in {M,B,I,E)

iff V:WFN -» MuB such that
(1) V(p) € B, V(A) ¢ M, for all pe WPI, A ¢ WFR.
(i1) v(~i;_)) = «V(p) v(-.pg) = ~V(A)

2
e
<
. d
]

Vi(p vsq) = V(p) + V(q) V(a) # V(B)

V(p A; 9) = V(p) . V(g) V(A A B) = V(4) X V(B)

V(p ! q) = V(p) »V(q) V(A= B)=V(a) > V(B)
(iii) V(p v, 4) = V(p) + V(4) V(A v; p) = V(4) % V(p)
V(p A, &) = V(p) X V(a) V(A Ag P) = V(A) X V(p)
V(g < A) = Vip) 2v(a) V(a - p) = V(4) 2 V(p)

We remark that this is a "Boolean-valued interpretation”, since
B and M are Boolean algebras.

Before presenting the next definition, a few heuristic remarks
are in order. To mimie precisely the standard interpretation of
classical logic in Boolean algebras, the following sort of defini-

tion would be used:

Let X, be a class of algebras similar to AN.

Then « E’l p iff V(ie) = V(p) for every valuation V of AN

in a member of ¥ .
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Then we could say that & "is Boolean-equivalent to" p (e 53 P)

iff % = the class of Boolean algebras. An attempt at this point
to provide a general soundness theorem for L (iees, if o & p,

then a« =, B) would fail, sinee there would be no way to handle

-

equivalences of the form p 2, A (where p £

P E, A iff p +§ Ais a

theorem of C), no provisions having been made in the K-walgabras
for sueh equivalences.

In general, too, for the particular applications we have in
mind, the M and B constituents of the DBDAs will have the same
cardinality. Were we to identify them, as the clause "V(g) =
V(p)" suggests, we would be destroying our definition of a valua-
tion (clause (1)), or, rather, it would mean that we were inter-
preting AN in a Boolean algebra, not in a DBDA. Thus, we want
a clause like "V(a) = V(p)", but weaker. We want V() to "play
the same role" in one algebra that V(P) plays in the other (when
w € WEI and p ¢ WFP, say). For example, if M and B are isomorphic
to the 2-element Boolean algebra, viz., 2=1{1,0}, and Ma B = g,
then we could take M = {J,N} and B = {T,F}, where J and T "play
the same role" as 1.“' What we need, then is an isomorphism
h:M < B sueh that h(J) = T.

Combining these requirements, the definition we need is:

DEF 15: Let X be a class of algebras similar to AN such that
for each (1,B,I,E) € ), there is an isomorphism h:M 9B
for which h(V(A)) = V(p) iff A& p (for all AeuFP,
DEWFI, and valuations V of AN in-a member of %).



V(B), if &,@ are both in WFI or
both in WFP

n(v(p)), if « ¢ WEL and B g WEP
b~ (V(p)), if w e WFP and ¢ WFL

Then « gx ﬁ iff Vi) =

for all valuations V of AN in a member of .

DEF 16: o is Boolean-equivalent to P (« 25 B) iff

« T p and X = the eclass of Boolean algebras.

X

We then have the following results (the proofs are modeled after

those in Dunn):

THM 3 (General Soundness for C): Ifw g @, then =g f.

proof (by induction on length of proof):

Suppose v.,p € WFI. Then if « Eg P by virtue of one of

(Bi), (Bviii-xiv), (Bviiitexiii!), then V(x) = V(P} because
of the corresponding postulate for Boolean algebras, viz.,
DEF 3.ii.a-f, a'-e'!', Rules (Eii-vii) preserve Boolean
equivalence because of corresponding postulates on identity.

Suppose q,ﬁ € WFP. Then « EE p implies « ;—:g p anal-

ogously.

Finally, if « € WFI, p ¢ WFE, and x £, p, then V(a) =

h(v(p)); and if «x ¢ WFP, P ¢ WFI, and x 3, P, then V(x) =

1_}'1 (V(P)), analogousiy Wl

COROLLARY: £ oy is a free DBDA.

13
proof: The set of free generators will be X-= uél: Aeg EP &

lal = {BewFe: 4 = B}}. Let N be a DBDA and let 9:X = N.

—



We need to extend ¥ to a homomorphism ¥:JI, ay ¥ such

that for all |al e X, ¥(1a]) = 9lA]). To do this, we
define a function ViWFP — N inductively as follows:
V(a) =4 ?(lal)

V(ﬂpé} “ar ~V(4)
v(a v, B) =ar V(2) # V(B)

VA A, B) =gp V(A) X V(B)

V(A - B) v(a) > v(B).

ar

Next, we define Y:[, - N such that ¥(lAl) = V(a), for

all A € WFP. It suffices to show that ¥ is well-defined
and a homomorphism., We shall merely show a representative

portion of the proof of the latter:
Y(lal @ [8]) = ¥(la v, Bl) = v(a v, B) = V(&) # V(B)
= ‘l’(l_ﬂ‘) i ?(lg\). Thus, ¥ preserves

operations. As for the former, can |A| = |B| (i.e., can

A Ep B) without V(A) = V(B)? Since V is a valuation, then

by the soundness theorem Jjust proved, the answer is 'No!;

so ¥ is well-defined.§

THM I (General Completeness for G): If w 3 P, then w g P

proof: Let VQWFN - 1’i-F-IIEi v W—-F—PIE be such that vg(g) = |g\

g

and V. (4) = |A|, for all A,p € WFN. Then V_ is the

natural homomorphism of AN onto IAN’ and it is a valuation.

—

Assume that « § B. We have 3 cases: P #5_ q, A *p B, p *e A.
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If p

q, then IEI # lgl; so V (p) # V (q), by

e

definition. Hence, p *B Q.
Ir B, then A %, B, similarly,

Ir

-
T AT o

g

A, then Vc(E) # p(vctg)), where h is the iso-

morphism of DEF 15, Hence, p E 39 A. B

We conclude this section with a representation theorem for
"isomorphic" DBDAs, viz., those DBDAs with which we have been

concerned (i.e.,, those Qi,?,;,g)s for which M is isomorphic te B).

DEF 17: A double Boolean dominance algebra of sets consists of

a field of sets 'm,, a field of sects 9§, and operations
n, u', 2°:(Px WoM=M) » M such that

(i) there exists an isomorphism 1_3:%-}%, and

(i1) for all meM, be 93,

ba*m=1h(b) nm

2

s
3*
o
i
5

m n h(b)

bu'm=n) vn mJ'b=mvh(p)
B> n=RE um m 3 b =1 vn(b),

where ~ is the complement operator.

Every (isomorphic) DBDA, {M,B,I,E), is isomorphic to a

DBDA of sets, {M,P>.
proof: Since every Boolean algebra is isomorphic to a field of

sets, let i:M -+ M, j:B + 7. be such isomorphisms. Let
. 3 = -1l
k:B + M be an isomorphism, Letl}—gij_. okoJ %4%

Thus, the following diagram commutes:



i

We need to show that clauses (i) and (ii) of DEF 17 are
satisfied. Clearly, h is an isomorphism: Let b¢B, meM,
keP 1-..(-,')1[,. Then, e.g., since j'1, k, and i are isomor-

iokoj (buwm

Il

phisms, ,1_7}(“7 um)

To satisfy clause (ii), define n*, u*, 2¥ such that
3%
a wm =bl) awm, ete.
Thus, {,?y is a DBDA of sets, and J:{M,B,I,E) -»

th!7§)p where JlB = J and JlM = i, is an isomorphism. |}

A remark on the final sentence of this proof is perhaps in
order. Strictly speaking, M is the DBDA and,ﬁt is the DBDA of
sets; thus, striectly, i is the requisite representation-isomorphism.
But to thus focus our attention on M (while relegating B to the

background) is to do praectitional logic. To do true noematic

logic, we must give equal status to M and B; i.e., we must consider

DBDAs to be "systems" of algebras. We now turn to some further

observations along these lines.
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IV. GENERALIZATIONS AND CONCLUDING REMARKS

In the previous section, we have presented an algebraic interpre=~
tation of the "sentential" fragment of Castafleda's deontic logic
(ef. n.6). I hope to report on the first-order and modal exten-
sions in future essays. For the former, we will need a dominance
analogue of eylindrical algebras; for the latter, wherein the ought-
to-do operator is considered, we will need a dominance analogue of
modal cylindrical algebras--with a wrinkle: <for the ought-to-do

?
operator forms propositions from practitions. Neverthefess, there

are some interesting mathematical generalizations and philosophical
implications of the work accomplished thus far.
We may extend the notion of a dominance algebra from a pair

to an n-tuple:

DEF 18: An n-fold dominance chain of algebras (DCA) is a (2p+k)-

3% %*
tuple (g..t,....&E,Q.l,...,QE,Q.I,...,Q]_{}, where (for each

14ién) Ai is an algebra with (internal) operations in the

set Qi’ and (for each 1§§£§#T5¥%TT§).Q§ is a set of

(external) operations between the Ay such that Q? <
_42(513:42)»(42::&.1)’ Q;— ¢ &3(4}1::&3)»(&31&&-,)’ Lo

3 (B 1®hplo(byxty 4)

Q

\B %

9

ok

\

Thus, for any pair of algebras A,B (where A "precedes" B in the

DCA), the result of combining a member of A with a member of B
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by an external operation is a member of B. It is in this sense
that we may say that B "dominates" or "is dominant with respect
to" A, and A "is recessive with respect to" B.

We can call an n-fold DCA eyecliec iff there are also (external)
operations from (én;41)u(§1x§n) to A;. In general, one could

"extend" any DCA by adding external "recessive" operations. While
such generalizations as these might be of some mathematical interest,
they are beyond our present secope.

Now, in view of the closing remark of Section III and in
spite of the remark in Seétion III.1, modules are not clearly
dominance algebras (i.e., 2-fold DCAs, with A, being a ring and

A, being the group). Rather, as ordinarily defined (ef. Herstein
196l4: 160; but contrast Solian 1977: 30f), they are sets with an
"internal" binary operation (specifically, they are groups) and

a set of singulary operations (or operators) each of which is

of the form: r. (whare.£e§1.1h For our purposes, however, it

seems better to regard them as 2-fold DCAs and then to generalize
in the direction of DBDAs, since we don't want merely to be
talking about the practitional component of C. However, since,
for our purposes, the DBDA is only a 2-fold DCA, we can consider
it as a more straightforward sort of generalization of a module
when convenient (e.g., for proving theorems about free genera-
tion, ete.).

To clarify this a bit, there are at least two ways in which
to generalize the notion of a module., In the first ("straight-

forward") way, we might say that a modular algebra is an algebra

with internal operations and a set (with some structure) of singu-



lary operators. In the second way, we have a 2-fold DCA, viz., a
pair of algebras, each having internal operations and such that
there are external operations between the algebras, with one algebra
being dominant.15 This, as we have seen, generalizes still fur=-
ther to n-fold DCAs.

Such mathematical generalizations might seem empty.”’Howeven
there are applications of n-fold DCAs, where n>2. GCensider the
logic of natural language, which has, besides propositions and
practitions, also questions (and commands--c¢f. n.l;). As noted
in Section I.3, the combinations of such noemata form a dominance

chain. It is unclear which dominates which; perhgps recessive

operations would have to be considered. But such noemata as

If you shouldn't sing, then should you dance?
You should sing, but should you dance?

Sit down, or would you rather dance?
Go, won't 5011.?
suggest that the algebra of well-formed questions dominates that

of WFP, which in turn (as we have seen) dominates that of WFI.
Note that we would not want to consider this as a (3-fold?)
modular algebra (whatever that might be), since that would suggest
that guestions are the fundamental units of thought or language.
But we need all three (or four, if we count commands). Nor are
we interested in questions primarily, but in all three (or four)
structures equally, together with their interactions. So DCAs
(perhaps cyclic or even recessive) are (the) appropriate algebraic

17
structures for the mathematical analysis of natural languages.
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NOTES

1Part II (first-order fragment) and Part III (modal frag-

ment) are forthecoming. See Seet., IV.

°I am referring, here, in part to Aristotle's distinctions
between practical wisdom vs. scientific knowledge and pure vs.

practical syllogisms (ef. Aristotle, Nicomachean Ethiecs, VI-

VII, esp. 1147230) and in part to Hume's is-ought distinction
(cf. Hume 1739: 469 and discussions in Castaneda 1973, 197h:
128ff, 1975: 11f£f; and Searle 1964).

3Elaewhare, Casteneda has.favored a distinetion between
two modes of predication within the propositional sphere. It
thus appears that his complete theory requires at least three
copulas., Cf, Castafleda 1972b, 1975: 324ff.

ll'Ti:lere are other noemata; &.g., mandates are expressed by
imperative sentences, and guestions are expressed by interrog-
ative sentences, While mandates are diseussed at length in
Castaneda 1974 and 1975, they do not appear in his formal deontie

logie, and so we shall ignore them here. But ef. Sect. IV.

Sﬂetiona, i.e., other than the action of contemplating.

6Thore is a small but interesting terminologiecal difficulty

here., In general, I prefer the term 'propositional logie!,

but that obviously won't do, because of the presence of practi-
tions. 'Noematic logie! would be better but ultimately less
perspicuous than the techniecally incorrect (since practitions

are not sentences) 'sentential logie'.
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70aatiﬁada makes a distinetion between (1) an "ought=to=be"
operator which transforms indicative sentences (or propositions)
into indicatives (or propositions) thus: ought-to-be(John goes
home) = John ought to go home, and (2) an "ought-to-do" operator
which transforms practitives (or practitions) into indicatives
(or propositions) thus: ought-to-do(John to go home) = John
ought to go home. Cf. Castaneda 1972a, 1975: 46, 207; Moore
1903; and Seet. IV below.

BStriatly, three different kinds of parentheses: (i’

(Ef (,» and their right-hand counterparts, can (and perhaps

should) be employed; but such distinetions are not erucial to
what follows. Alternatively, these distinetions can be made
and then uniformly ignored (i.e., taecitly understood) except

where ambiguity would threaten.,
9 -
We could also define p =y Aiff p HE A is a theorem of G,

but this proves to be superfluous for our present purposes., It

c,osa Mf;ﬂ ?.30
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is not, however, an idle definition, for some propositions are
logically equivalent to some practitions, though they are distinct.

Note, too, that the absence of 5, ties in nicely with the absence

of the four equations from the definition of DBDA.

I *
°cr., ee8s, Hartley and Hawkes 1970, Cohn 1965, and Gritzer
1968,

"For those readers losing their way through the forest of
connectives, it will be useful to recall DEFs 3 and L.

1211 Castafiedals system, J and T are the designated (truth-like)
values for practitions and propositions, respectively. Cf. Ca-
staheda 197l : 84, 89, and Ch, l.

13Recall that ¥V, is the set of pure practitive variables; ef,

Sect. 11.
14

Thus, where mﬁéz and r, is one of the operators, r.me&a.

1sﬂnother line of generalization is to a 2-fold dominant-re=-

cessive algebra: a pair of algebras {A,B) together with a set of

operations of the form d:(AxB)u(BxA) = B and a set of operations
of the form r:(AxB)u(BxA) = A. The 4 are dominant operations; the

r recessive (clearly these terms are arbitrary in this ease).

168ut ef. Solian 1977, Ch. 16, "Multimodules".

17Shorter versions of this paper were presented to the
Niagara Linguisties Soeiety, the Mathematieal Association of

America Seaway Section, and the Association for Symboliec Logie.
I am grateful to Randall Dipert and J. Michael Dunn for their

@osr_ up wcf'& P 32.
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advice and cormments, and to the Joint Awards Couneil/University
Awards Committee of the Research Foundation of SUNY for a

Faculty Research Fellowship.
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taforee's reaport on
An Algebraic Interpretation of Deontic Logic

Part I: Sentential Fragment

The main contribution of this paper is the introduction
of the concept of a 'dominance mlgebra'. These algebras
are motivated by problems arising in deontic logic, and hence
are of interest to philosophers. Hoﬁaver, the paper is
mainly mathematical.

The theorems proved about dominance algebrae cover only
the special case of a 'double Boolean dominance algebra', and
even then, all but one concern only a specific DBDA formed from
a propositional calculus discussed in the paper. The first
result proved about this algebra is just that it is a DBDA.
The techniques used in this proof.should be familiar to
anyone who has studied the Lindenbaum algebra of standard
proposeitional calculus. The paper could be shortened by
relegating these straightforward verifications to the reader,

Skipping to the end of the paper, there is a general
representation theorem proved for DBDA's., It is an immediate
corollary to the Stone representation theorem for Boolean
algebras.

The core of the paper is concerned with an algebraic
completeness theorem for the calculus considered in the paper.
The proofe are all straightforward exercisee in working with
abstract algebras and equivilance relations defined on them,
Howevef, there seems to be a problem with a basic definition

which may prevent some of the proofe from being correct.



4 (Firet, definition 16 cannot be quite right, because
Boolean algebras are not of the correct similarity type to
fit the requirementes of defihition 15. Burely what is intended
is that Boolean algebras be considered (in the obvious way) as
- DBDA's. This is not an important point, but I mention it
because the author takes pains to maintain this distinction
for special reasons on page 22.)

Definition 15 requires that for any valuation V~there.is
an isomorphism h with the property that h(V(A))=v(p) iff Awep. (1)
Let V be the valuation which assigns to every indicative and
practitive variable the value E of the appropriate Booleanl
algebra. Since any isomorphism takes 'greatest element! to
greatest element, no mapping h can satisfy (1) since this would
imply that all pairs of Gariables (of the appropriate kind)
would be provably ‘'e-equivilant'; i.e. éﬁaz, which is absurd,
Furthermore, modification of this definition may run into f}ouble
because there do exist Boolean algebras with no non-trivial
automorphisms.

Finaelly, a trivial mistake occurs in the definition of the
set X on page 23: the clause 'IAl={B WFP : é-pQY ie redundant,
as it is always satisfied according to its definition(which is
all it is) on page 15.

Because of the above criticisme I cannot recommend this

paper for publication in the Journal of Symbolic Logic.
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