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Abstract 
 

A survey of various proposed definitions of ‘computer science’, arguing that 
it is a “portmanteau” scientific study of a family of topics surrounding both 
theoretical and practical computing. Its single most central question is: What 
can be computed (and how)?  Four other questions follow logically from 
that central one: What can be computed efficiently, and how? What can be 
computed practically, and how? What can be computed physically, and how? 
What should be computed, and how?
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The Holy Grail of computer science is to capture the messy complexity 
of the natural world and express it algorithmically. 
— Teresa Marrin Nakra, quoted in [Davidson, 2006, p. 66]. 

 
 

1    Philosophy of Computer Science 
 

In   2004,   I   created   a   course   on   the   philosophy   of   computer   science 
[Rapaport, 2005b];1  a draft of a textbook based on the course is available online 
[Rapaport, 2017].    The book is  intended for readers who might know some 
philosophy but no computer science,  those who might know some computer 
science but no philosophy, and even those who know little or nothing about both. 
So, we begin by asking what philosophy is (primarily aimed at the computer- 
science audience), and, in particular:  What is “the philosophy of X ”? (where 
X = things like: science, psychology, history, and, of course, computer science). 

I  take  the  focal  question  of  the  philosophy  of  computer  science  to  be: 
What is computer science?   To answer this, we need to consider a series of 
questions, each of which leads to another: Is computer science a science, a branch 
of engineering, some combination of them, or something else altogether?   To 
answer these, we need to ask what science is and what engineering is. 

Whether science or engineering, computer science is surely scientific, so we 
next ask what it is a (scientific) study of .   Computers?   If so, then what is a 
computer?   Or is computer science a study of computation?   If so, then what 
is computation?   What is an algorithm?   ([Rapaport, 2017, Ch. 8] is a close, 
line-by-line reading of sections of [Turing, 1936].)   Algorithms are said to be 
procedures, or recipes, so what is a procedure?  What is a recipe?  What is the 
Church-Turing Computability Thesis (that our intuitive notion of computation is 
completely captured by the formal notion of Turing-machine computation)?2 What 
is “hypercomputation” (i.e., the claim that the intuitive notion of computation goes 
beyond Turing-machine computation)? 

Computations  are  expressed  in  computer  programs,  which  are  executed 
by computers, so what is a computer program?    Are computer programs 
“implementations” of algorithms? If so, then what is an implementation? What is 
the relation of programs and computation to the world?3 Are programs (scientific) 
theories? What is the difference between software and hardware? Are programs 
copyrightable texts, or are they patentable machines?  Ontologically, they seem 
to be both texts and machines, yet legally they cannot be both copyrightable and 

1 See syllabus and supporting documents at http://www.cse.buffalo.edu/∼rapaport/510.html 
2 See [Soare, 2009, §12] on this name. 
3 As discussed in [Smith, 1985]; see also [Rapaport, 2015].
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patentable [Newell, 1986]. Can computer programs be verified [Fetzer, 1988]? 
We then turn to issues in the philosophy of AI, focusing on the Turing Test and 

the Chinese Room Argument [Turing, 1950], [Searle, 1980]. 
Finally, we consider two questions in computer ethics, which, when I created 

the course, were not much discussed, but are now at the forefront of computational 
ethical debates: (1) Should we trust decisions made by computers? [Moor, 1979]— 
a question made urgent by the advent of automated vehicles. And (2) should we 
build “intelligent” computers? Do we have moral obligations towards robots? Can 
or should they have moral obligations towards us? 

And, along the way, we look at how philosophers reason and evaluate logical 
arguments.4 

Although these questions arise naturally from our first question (What is 
computer science?), they do not exhaust the philosophy of computer science. Many 
topics are not covered:  the nature of information, social and economic uses of 
computers, the Internet, etc. However, rather than aiming for universal coverage, 
I seek to provide a foundation for further discussion: Neither the course nor the 
book is designed to answer all (or even any) of the philosophical questions that 
can be raised about the nature of computer science, computers, and computation. 
Rather, they provide background knowledge to “bring students up to speed” on the 
conversations about these issues, so that they can read the literature for themselves 
and perhaps become part of the conversations by contributing their own views. The 
present paper is a synopsis of [Rapaport, 2017, Chapter 3], based on my Barwise 
Prize talk at the APA.5 

4 Computer Science Curricula 2013 covers precisely these sorts of argument-analysis techniques 
under  the  headings  of  Discrete  Structures  [DS]/Basic  Logic,  DS/Proof  Techniques,  Social 
Issues  and  Professional  Practice  [SP]  (in  general),  and  SP/Analytical  Tools  (in  particular). 
Many  other  CS2013  topics  also  overlap  those  in  the  philosophy of  computer  science.    See 
http://ai.stanford.edu/users/sahami/CS2013/ 

5 I am grateful to Thomas M. Powers and Richard M. Rubin for comments and discussion at 
the 2017 APA Eastern Division session where I presented the material in the present essay.  And 
I am especially grateful to the American Philosophical Association Committee on Philosophy and 
Computers for this distinct honor, which recognizes “contributions to areas relevant to philosophy 
and  computing” (http://www.apaonline.org/?barwise).    Because  of  my  philosophy interests  in 
philosophy of mind, I was inspired—by [Hofstatder, 1980]’s review of [Sloman, 1978], which quoted 
Sloman (p. 5) to the effect that a philosopher of mind who knew no AI was like a philosopher of 
physics who knew no quantum mechanics—to study AI at SUNY Buffalo with Stuart C. Shapiro. 
This eventually led to a faculty appointment in computer science at Buffalo.  Along the way, my 
philosophy colleagues and I at SUNY Fredonia published one of the first introductory logic textbooks 
to use a computational approach [Schagrin et al., 1985].   At Buffalo, I was amazed to discover 
that my relatively arcane philosophy dissertation on Meinong was directly relevant to Shapiro’s 
work in AI, providing an intensional semantics for his SNePS semantic-network processing system 
[Shapiro and Rapaport, 1987], [Shapiro and Rapaport, 1991]. And then I realized that the discovery 
of quasi-indexicals (‘he himself’, ‘she herself’, etc.; [Castañ eda, 1966]) by my dissertation advisor,
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2    Preliminary Questions 
 

However, before investigate what computer science is, it’s worth asking some 
preliminary questions. 

 

 
2.1   What Is the Name of this Discipline? 

 
Should we call the discipline ‘computer science’ (which seems to assume that it is 
the science of a certain kind of machine), or ‘computer engineering’ (which seems 
to assume that it is not a science, but a branch of engineering), or ‘computing 
science’ (which seems to assume that it is the science of what those machines do), 
or ‘informatics’ (which suggests that it is a mathematical discipline concerned with 
information)? 

In this essay—but only for convenience—I call it ‘computer science’. 
However, by doing so, I do not presuppose that it is the science of computers. 
Think of the subject as being called by a 15-letter word ‘computerscience’ that 
may have as little to do with computers or science as ‘cattle’ has to do with cats. 
Or, to save space and suppress presuppositions, just think of it as “CS”. 

 

 
2.2   Why Ask what CS Is? 

 
There are both academic and philosophical motivations for trying to define CS. 

 
 

2.2.1   Academic Motivations 
 

There is the political question of where to locate a CS department: In a college, 
faculty, or school of (arts and) science? Of engineering? Or in its own college, 
faculty, or school (perhaps of informatics, along with communications and library 
science)? 

There is the pedagogical question of what to teach in an introductory course: 
Programming? Computer literacy? The mathematical theory of computation? Or 

 
Hector-Neri Castañ eda, could repair a “bug” in a knowledge-representation theory that Shapiro 
had developed with another convert to computer science (from psychology), Anthony S. Maida 
[Maida and Shapiro, 1982]. This work was itself debugged with the help of yet another convert (from 
English), my doctoral student Janyce M. Wiebe [Rapaport et al., 1997]. My work with Shapiro and 
our SNePS Research Group at Buffalo enabled me to rebut [Searle, 1980] using “syntactic semantics” 
[Rapaport, 1986], [Rapaport, 1988], [Rapaport, 1995], [Rapaport, 2000], [Rapaport, 2012].   Both 
of these projects, as well as one of my early Meinong papers [Rapaport, 1981], led me, together 
with another doctoral student (Karen Ehrlich) and (later) a colleague from Buffalo’s Department of 
Learning and Instruction (Michael W. Kibby), to develop a computational and pedagogical theory of 
vocabulary acquisition from context [Rapaport and Kibby, 2007], [Rapaport and Kibby, 2014].
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an introduction to several different branches of CS, including, perhaps, some of its 
history? 

And there is the publicity question: How should a CS department advertise 
itself so as to attract good students? How should the discipline advertise itself so as 
to encourage primary- or secondary-school students to consider it as something to 
study in college or to consider it as an occupation? How should it advertise itself so 
as to attract more women and minorities to the field? How should it advertise itself 
to the public at large, so that ordinary citizens might have a better understanding of 
what CS is? 

Different motivations may yield different definitions. 
 
 

2.2.2   Philosophical Motivations 
 

The philosophical question concerns what CS “really” is.  Is it like some other 
academic discipline (mathematics, physics, engineering)? Or is it sui generis? 

To illustrate this difference, consider two very different comments by two 
Turing-award–winning computer scientists (as cited in [Gal-Ezer and Harel, 1998, 
p. 79]): Marvin Minsky, a founder of artificial intelligence, once said: 

 
Computer science has such intimate relations  with so many other 
subjects that it is hard to see it as a thing in itself. 
[Minsky, 1979, my italics] 

 
On the other hand, Juris Hartmanis, a founder of computational complexity theory, 
has said: 

 
Computer science differs from the known sciences so deeply that it has 
to be viewed as a new species among the sciences. 
[Hartmanis, 1993, p. 1; my italics] (cf. [Hartmanis, 1995, p. 10]) 

 
 

3    Two Kinds of Definitions 
 

3.1   An Extensional Definition of CS 
 

As with most non-mathematical concepts, there are probably no necessary and 
sufficient conditions for being CS. At best, the various branches of the discipline 
share only a family resemblance. If no intensional definition can be given in terms 
of necessary and sufficient conditions, perhaps an extensional one can: Perhaps CS 
is simply whatever computer scientists do: “Computing has no nature. It is what it 
is because people have made it so” [Mahoney, 2011, p. 109].
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So,  what  do  computer  scientists  do?     Ordered  from  the  most  to  the 
least abstract, this might range from the abstract mathematical theories of 
computation, computational complexity, and program development; through 
software engineering, operating systems, and AI; to computer architecture, chip 
design, networks, and social uses of computers. But this is less than satisfactory as 
a definition. 

 

 
3.2   Intensional Definitions 

 
In the absence of necessary and sufficient conditions or an extensional definition, 
we can ask what the methodology of CS is: Is it a methodology used elsewhere? 
Or is it a new methodology? And then we can ask what its object of study is: Does 
it study something that other disciplines also study?  Or does it study something 
new? And is its object of study unique to CS? 

As for methodology, CS has been said to be: 
•	 an art form 

([Knuth, 1974a, p. 670] has said that programs can be beautiful), 
•	 an art and science 

(“Science is knowledge which we understand so well that we can teach it to 
a computer; and if we don’t fully understand something, it is an art to deal 
with it. . . . [T]he process of going from an art to a science means that we 
learn how to automate something” [Knuth, 1974a, p. 668]), 

•	 a liberal art [Perlis, 1962, p. 210], [Lindell, 2001] 
(along the lines of the classical liberal arts of logic, math, or astronomy), 

•	 a branch of mathematics [Dijkstra, 1974], 
•	 a natural science [McCarthy, 1963], [Newell et al., 1967], [Shapiro, 2001], 
•	 an empirical study of the artificial [Simon, 1996b], 
•	 a combination of science and engineering 

[Hartmanis, 1993], [Hartmanis, 1995], [Loui, 1995], 
•	 just engineering [Brooks, 1996], 
•	 or—generically—a “study” 

 
But a study of what? Here is an alphabetical list of some of the objects that it 

“traffics” in (to use [Barwise, 1989]’s term): algorithms, automation, complexity,
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computers, information, intelligence, numbers (and other mathematical objects), 
problem solving, procedures, processes, programming, symbol strings. 

It is now time to look at some answers to our title question in more detail. 
 
 

4    CS Is the Science of Computers 
 

Allen Newell, Alan Perlis, and Herbert Simon argued that CS is exactly what its 
name suggests: 

 
Wherever there are phenomena, there can be a science to describe and 
explain those phenomena. . . . There are computers. Ergo, computer 
science is the study of computers. [Newell et al., 1967, p. 1373]. 

 
This argument is actually missing a premise to the effect that the science of 
computers (which the first two premises imply the existence of) is CS and not 
some other discipline. 

[Loui, 1987, p. 175] has objected to the first premise, noting that there are 
toasters, but no science of toasters. Another objection to the first premise, explicitly 
considered by Newell,  Perlis,  & Simon,  is that science studies only natural 
phenomena, but that computers are non-natural artifacts.  They replied that there 
are also sciences of artifacts. But one could respond in other ways: Where is the 
dividing line between nature and artifice, anyway? Are birds’ nests artificial? As 
[Mahoney, 2011, p. 159ff] observes, not only are artifacts part of nature, we use 
them to study nature; indeed, nature itself might be computational in nature (so to 
speak). 

Another objection that they consider is to the missing premise, that the science 
of computers is not CS but some other subject: electrical engineering, or math, 
or, perhaps, psychology.  They reply that CS overlaps each of these, but that no 
single discipline subsumes all of CS. Of course, this reply assumes that CS itself 
is a cohesive whole, which the extensional characterization in §3.1 seems to belie. 
One of my department’s deans once suggested that CS would eventually dissolve: 
The computer engineers would rejoin the EE department, the complexity theorists 
would join the math department, my AI colleagues might go into psychology, I 
would go back into philosophy, and so on.  (In much the same way, microscopy 
dissolved into microbiology, optical engineering, etc. [Boorstin, 1983, p. 376]; see 
further discussion in [Rapaport, 2017, §3.5.3]). 

The most significant objection that they consider is that CS studies something 
besides computers, namely, algorithms.   Their reply is also significant:  They 
change their definition! They conclude that CS is the science of computers and 
surrounding phenomena, including algorithms.
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5    CS Studies Algorithms 
 

Donald Knuth starts his definition, largely without any argument other than a 
recitation of  its history,  roughly where Newell,  Perlis,  &  Simon end theirs: 
“[C]omputer science is . . . the study of algorithms” [Knuth, 1974b, p. 323].  He 
cites, approvingly, a statement by the computer scientist George E. Forsythe that 
the central question of CS is:  What can be automated?  (On that question, see 
§14.1.1.1, below.) 

Knuth goes on to point out, however, that you need computers in order to 
properly study algorithms, because “human beings are not precise enough nor fast 
enough to carry out any but the simplest procedures” [Knuth, 1974b, p. 323]. Are 
computers really necessary?  Do you need a compass and straightedge to study 
geometry? (Hilbert probably didn’t think so.) Do you need a microscope to study 
biology? (Watson and Crick probably didn’t think so.) On the other hand, “deep 
learning” algorithms do seem to need computers in order to determine if they will 
really do what they are intended to do, and do so in real time [Lewis-Kraus, 2016]. 
(We’ll return to this in §11.) 

So, just as Newell, Perlis, & Simon said that CS is the study of computers and 
related phenomena such as algorithms, Knuth says that it is the study of 
algorithms and related phenomena such as computers!  Stated a bit more 
bluntly, Newell, Perlis, & Simon’s definition comes down to this: CS is the 
science of computers and algorithms.  Knuth’s definition comes down to this: 
CS is the study of algorithms and computers.  Ignoring for now the subtle 
difference between “science” and “study”, what we have here are extensionally 
equivalent, but intensionally distinct, definitions. Shades of the blind men and the 
elephant! 

To be fair, however, some ten years later, [Knuth, 1985, pp. 170–171] backed 
off from the “related phenomena” definition, more emphatically defining CS 
as “primarily the study of algorithms”, because he “think[s] of algorithms as 
encompassing the whole range of concepts dealing with well-defined processes, 
including the structure of data that is being acted upon as well as the structure of 
the sequence of operations being performed”, preferring the name ‘algorithmics’ 
for the discipline. He also suggested that what computer scientists have in common 
(and that differentiates them from people in other disciplines) is that they are all 
“algorithmic thinkers” [Knuth, 1985, p. 172]. (We’ll return to this notion in 
§13.4.)
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6    CS Studies Information 
 

Others say “A plague on both your houses”:  CS is not the study of computers 
or of algorithms, but of information: [Forsythe, 1967, p. 3, my italics] said that 
CS is “the art and science of representing and processing information and, in 
particular, processing information with the logical engines called automatic digital 
computers.” Peter J. Denning defined it as “the body of knowledge dealing with 
the design, analysis, implementation, efficiency, and application of processes that 
transform information” [Denning, 1985, p. 16, my italics]. Jon Barwise said that 
computers are best thought of as “information processors”, rather than as numerical 
“calculators” or as “devices which traffic in formal strings . . .  of meaningless 
symbols” [Barwise, 1989, pp. 386–387]. And [Hartmanis and Lin, 1992, p. 164] 
define CS this way: 

 
What is the object of study [of CS and engineering]? For the physicist, 
the object of study may be an atom or a star. For the biologist, it may 
be a cell or a plant.  But computer scientists and engineers focus on 
information, on the ways of representing and processing information, 
and on the machines and systems that perform these tasks. 

 
Presumably, those who study “the ways of representing and processing” are the 
scientists, and those who study “the machines and systems” are the engineers. 
And, of course, it is not just information that is studied; there are the usual “related 
phenomena”:  Computer science studies how to represent and (algorithmically) 
process information, as well as the machines and systems that do this. 

Simon takes an interesting position on the importance of computers as 
information processors [Simon, 1977, p. 1186]: He discusses two “revolutions”: 
The first was the Industrial Revolution, which “substitut[ed] . . . mechanical energy 
for the energy of man [sic] and animal”. The second was (were?) the Information 
Revolution(s), beginning with “written language”, then “the printed book”, and 
now the computer.  He then points out that “The computer is a device endowed 
with powers of utmost generality for processing symbols.” So, pace Barwise, the 
computer is an information processor because information is encoded in symbols. 

But here the crucial question is: What is information? The term ‘information’ 
as  many  people  use  it  informally  has  many  meanings:    It  could  refer  to 
Claude  Shannon’s  mathematical  theory  of  information  [Shannon, 1948];   or 
to Fred Dretske’s or Kenneth Sayre’s philosophical theories of information 
[Dretske, 1981],  [Sayre, 1986];   or  to  several  others.      (For  a  survey,  see 
[Piccinini, 2015, Ch. 14].) 

As I noted in §1, the philosophy of information is really a separate (albeit 
closely  related!)  topic  from  the  philosophy  of  computer  science.     But,  if
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‘information’ isn’t intended to refer to some specific theory, then it seems to be 
merely a vague synonym for ‘data’ (itself a vague term!).  As Michael Rescorla 
observes, “Lacking clarification [of the term ‘information’], the description [of 
“computation as ‘information processing’ ”] is little more than an empty slogan” 
[Rescorla, 2015, §6.1]. 

And Gualtiero Piccinini has made the stronger claim that computation is 
distinct from information processing in any sense of ‘information’.  He argues, 
e.g., that semantic information requires representation, but computation does not; 
so, computation is distinct from semantic information processing [Piccinini, 2015, 
Ch. 14, §3]. 

 
 

7    CS Is a Natural Science (of Procedures) 
 

Then there are those who agree that CS is a natural science, but not of computers, 
algorithms, or  information:  Stuart C. Shapiro agrees with Newell,  Perlis,  & 
Simon that CS is a science, but he differs on what it is a science of, siding more 
with Knuth, but not quite:  “Computer Science is a natural  science that studies 
procedures” [Shapiro, 2001, my italics].  Procedures are not natural objects, but 
they are measurable natural phenomena, in the same way that events are not 
(natural) “objects” but are (natural) “phenomena”. On this point, [Denning, 2007] 
cites examples of the “discovery” of “information processes in the deep structures 
of many fields”: biology, quantum physics, economics, management science, and 
even the arts and humanities, concluding that “computing is now a natural science”, 
not (or no longer?) “a science of the artificial”.   So, potential objections that 
sciences only study natural phenomena are avoided. 

For Shapiro, procedures include, but are not limited to, algorithms. Whereas 
algorithms  are  typically  considered  to  be  precise,  to  halt,  and  to  produce 
correct solutions, the more general notion allows for variations on these themes: 
(1) Procedures (as opposed to algorithms) may be imprecise, such as in a recipe. 
Does CS really study things like recipes?  According to Shapiro (personal 
communication), the answer is ‘yes’: An education in CS should help you write 
a better cookbook, because it will help you understand the nature of procedures 
better! ([Sheraton, 1981] discusses the difficulties of writing recipes.) (2) 
Procedures need not halt: A procedure might go into an infinite loop either by 
accident or, more importantly, on purpose, as in an operating system or a program 
that computes the infinite decimal expansion of π. (3) Nor do they have to produce 
a correct solution: A chess procedure does not always play optimally. 

And CS is a science, which, like any science, has both theoreticians (who study 
the limitations on, and kinds of, possible procedures) as well as experimentalists.
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And, as [Newell and Simon, 1976] suggest in their discussion of empirical results 
(see §8, below), there are “fundamental principles” of CS as a science.  Newell 
& Simon cite two: (1) The Physical Symbol System Hypothesis (a theory about 
the nature of symbols in the context of computers) and (2) Heuristic Search (a 
problem-solving method). Shapiro cites two others: (1) the Computability Thesis 
and (2) the Boehm-Jacopini Theorem that codifies “structured programming” 
[Bö hm and Jacopini, 1966]. 

Moreover, Shapiro says that computer science is not just concerned with 
algorithms and procedures that manipulate abstract information, but also with 
procedures that  are  linked  to  sensors  and  effectors  that  allow  computers to 
operate in the real world.  Procedures are, or could be, carried out in the real 
world by physical agents, which could be biological, mechanical, electronic, etc. 
Where do computers come in?  According to Shapiro, a computer is simply “a 
general-purpose procedure-following machine”. (But does a computer “follow” a 
procedure, or merely “execute” it?) 

Several  pleas  for  elaboration  can  be  urged  on  Shapiro:   Does  his  view 
de-emphasize the role of computers in CS, or is it merely a  version of the 
“surrounding phenomena” viewpoint (as with Knuth’s view that CS is the study 
of the phenomena surrounding algorithms)?6   Does the emphasis on procedures 
(rather than algorithms) lead us into the fraught territory of “hypercomputation” 
[Rapaport, 2017, Ch. 11]? (We’ll return to procedures in §13.3.) 

 
 

8    CS Is Not a Natural  Science 
 

In 1967, Simon joined with Newell and Perlis to argue that CS was the natural 
science of (the phenomena surrounding) computers. Two years later, in his classic 
book The Sciences of the Artificial [Simon, 1996b, 3rd edition], he said that it was 
a natural science of the artificial: Natural science studies things in the world, but 
he was careful not to say that the “things” must be “natural”!  “The central task 
of a natural science is . . .  to show that complexity, correctly viewed, is only a 
mask for simplicity; to find pattern hidden in apparent chaos” [Simon, 1996b, p. 1]. 
Indeed, “The world we live in today is much more a[n] . . . artificial world than it 
is a natural world.  Almost every element in our environment shows evidence of 
human artifice” [Simon, 1996b, p. 2]. So, (natural) science can study artifacts; the 
“sciences of the artificial” are natural sciences. 

And then, in a classic paper from 1976, Newell and Simon updated their earlier 
characterization.   Instead of saying that CS is the science of (the phenomena 
surrounding) computers,  they now said that it is the “empirical ” “study” of 

 
6 Knowing Shapiro, I strongly suspect that it is the latter.
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those phenomena, “not just the hardware, but the programmed, living machine” 
[Newell and Simon, 1976, pp. 113, 114; my italics]. 

CS is not a science (in the classic sense) on the grounds that it doesn’t 
always strictly follow the scientific (or “experimental”) method.  E.g., often one 
experiment will suffice to answer a question in CS, whereas in other sciences, 
numerous experiments have to be run. However, CS, like science, is empirical— 
because programs running on computers are experiments, though not necessarily 
like experiments in other experimental sciences.  In fact, one difference between 
CS and other experimental sciences is that, in CS, the chief objects of study (the 
computers and the programs) are not “black boxes”.  Most natural phenomena 
are things whose internal workings we cannot see directly but must infer from 
experiments we perform on them. But we know exactly how and why computers 
and computer programs behave as they do (they are “glass boxes”, so to speak), 
because  we (not  nature)  designed  and  built  them.    So,  we  can  understand 
them in a way that we cannot understand more “natural” things.   (However, 
although this is the case for “classical” computer programs, it is not the case for 
artificial-neural-network programs: “A neural network, however, was a black box” 
[Lewis-Kraus, 2016, §4]; see the comments about Google Translate in §11, below.) 

By “programmed, living machines”, they meant computers that are actually 
running programs—not just the static machines sitting there waiting for someone 
to use them (computers without programs), nor the static programs just sitting 
there on a piece of paper waiting for someone to load them into the computer, 
nor the algorithms just sitting there in someone’s mind waiting for someone to 
express them in a programming language—but processes that are actually 
running on a computer.  A program might be a static piece of text or the static 
way that a computer is hardwired.   A process is a dynamic entity—the 
program in the “process” of actually being executed by the computer. 

However, to study “programmed living machines”, we certainly do need to 
study the algorithms that they are executing. After all, we need to know what they 
are doing; i.e., it seems to be necessary to know what algorithm a computer is 
executing. On the other hand, in order to study an algorithm, it does not seem to be 
necessary to have a computer around that can execute it or to study the computer 
that is running it. It can be helpful and valuable to study the computer and to study 
the algorithm actually being run on the computer, but the mathematical study of 
algorithms and their computational complexity doesn’t need the computer.  That 
is, the algorithm can be studied as a mathematical object, using only mathematical 
techniques, without necessarily executing it. It may be very much more convenient, 
and even useful, to have a computer handy, as Knuth notes, but it does not seem 
to be necessary.  If that’s so, then it would seem that algorithms are really the 
essential object of study of CS: Both views require algorithms, but only one
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requires computers. (We’ll see a counterargument in §11.) 
 
 

9    CS Is Engineering, Not Science 
 

The software engineer Frederick P. Brooks,  Jr.,  says that CS isn’t science— 
which he calls “analytic”—because, according to him, it is not concerned with 
the “discovery of facts and laws” [Brooks, 1996]. Instead, he argues that it is “an 
engineering discipline”. Computer scientists are “concerned with making things”: 
with physical tools such as computers and with abstract tools such as algorithms, 
programs, and software systems for others to use;  the computer scientist is a 
toolmaker.   Computer science, he says, is concerned with the usefulness and 
efficiency of the tools it makes; it is not, he says, concerned with newness for 
its own sake (as scientists are).  So, “the discipline we call ‘computer science’ ” 
is really the “synthetic”—i.e., the engineering—discipline that is concerned with 
computers. 

Here is his argument [Brooks, 1996, pp. 61–62]: 
 

1. “[A] science is concerned with the discovery of facts and laws.” 
 

2. “[T]he scientist builds in order to study; 
the engineer studies in order to build. 

 
3. The purpose of engineering is to build things. 

 
4. Computer scientists “are concerned with making things, be they computers, 

algorithms, or software systems”. 

5. ∴	“the discipline we call ‘computer science’ is in fact not a science but a 
synthetic, an engineering, discipline.” 

 
Let’s accept premise 1 for now; it seems reasonable enough.7 

The point of the second premise is this:  If a scientist’s goal is to discover 
facts and laws—i.e., to study rather than to build—then anything built by the 
scientist is only built for that ultimate purpose. But building is the ultimate goal 
of engineering, and any studying (or discovery of facts and laws) that an engineer 
does along the way to building something is merely done for that ultimate purpose. 
For science, building is a side-effect of studying; for engineering, studying is a 
side-effect of building. Both scientists and engineers, according to Brooks, build 
and study, but each focuses more on one than the other. (Does this remind you of 
the algorithms-vs.-computers dispute in §§4–5?) 

 
7 I discuss this issue in more detail in [Rapaport, 2017, Ch. 4].
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The  second  premise  supports  the  third,  which  defines engineering  as  a 
discipline whose goal is to build things, i.e., a “synthetic”—as opposed to an 
“analytic”—discipline. “We speak of engineering as concerned with ‘synthesis,’ 
while science is concerned with ‘analysis’ ” [Simon, 1996b, p. 4]. “Where physical 
science is commonly regarded as an analytic discipline that aims to find laws 
that generate or explain observed phenomena, CS is predominantly (though not 
exclusively) synthetic, in that formalisms and algorithms are created in order to 
support specific desired behaviors” [Hendler et al., 2008, p. 63]. As with his claim 
about the nature of science in the first premise, the accuracy of Brooks’s notion of 
engineering is a topic for another day.8 So, let’s also assume the truth of the second 
and third premises for the sake of the argument. 

Clearly, if the fourth premise is true, then the conclusion will follow validly 
(or, at least, it will follow that computer scientists belong on the engineering side 
of the science–engineering, or studying–building, spectrum).  But is it really the 
case that computer scientists are (only? principally?) concerned with building or 
“making things”? And, if so, what kind of things? 

Moreover, computer scientists do discover and analyze facts and laws: 
Consider the theories of computation and of computational complexity, and the 
“fundamental principles” cited at the end of §7, above. Computer scientists devise 
theories about how to build things, and they try to understand what they build. All 
of this seems to be more science than engineering. 

Interestingly, Brooks seems to suggest that computer scientists don’t build 
computers, even if that’s what he says in the conclusion of his argument!  He 
says that “Even when we build a computer the computer scientist designs only the 
abstract properties—its architecture and implementation. Electrical, mechanical, 
and refrigeration engineers design the realization” [Brooks, 1996, p. 62, col. 1]. I 
think this passage is a bit confused: Briefly, I think the “abstract properties” are 
the design for the realization; the engineers build the realization (they don’t design 
it) [Rapaport, 1999], [Rapaport, 2005a]. But it makes an interesting point: Brooks 
seems to be saying that computer scientists only design abstractions, whereas other 
(real?) engineers implement them in reality. This is reminiscent of the distinction 
between the relatively abstract specifications for an algorithm (which typically 
lack detail) and its relatively concrete (and highly detailed) implementation in a 
computer program. Brooks (following [Zemanek, 1971]) calls CS “the engineering 
of abstract objects”: If engineering is a discipline that builds, then what computer- 
science-qua-engineering builds is implemented abstractions. 

 
8 Covered in [Rapaport, 2017, Ch. 5].
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10    Science xor Engineering? 
 

So, is CS a science of some kind (natural or otherwise), or is it not a science at all, 
but some kind of engineering? Here, we would be wise to listen to two skeptics 
about the exclusivity of this choice: 

 
Let’s  remember  that  there  is  only  one  nature—the division  into 
science and engineering, and subdivision into physics, chemistry, civil 
and electrical, is a human imposition, not a natural one.   Indeed, 
the division is a human failure;  it reflects our limited capacity to 
comprehend the whole.  That failure impedes our progress; it builds 
walls just where the most interesting nuggets of knowledge may lie. 
[Wulf, 1995, p. 56; my italics] 

 
Debates about whether [CS is] science or engineering can . . .  be 
counterproductive, since we clearly are both, neither, and more . . . . 
[Freeman, 1995, p. 27, my italics] 

 
 

11    CS as “Both” 
 

Could CS be both science and engineering— perhaps the science of computation 
and the engineering of computers—i.e., the study of the “programmed living 
machine”? 

It certainly makes no sense to have a computer without a program. It doesn’t 
matter whether the program is hardwired (in the way that a Turing machine is); 
i.e., it doesn’t matter whether the computer is a special-purpose machine that can 
only do one task. The program is not separable from the machine; it is built into 
its structure.  And it doesn’t matter whether the program is a piece of software 
(like a program inscribed on a universal Turing machine’s tape); i.e., it doesn’t 
matter whether the computer is a general-purpose machine that can be loaded 
with different “apps” allowing the same machine to do many different things.  It 
is simply the case that, without a program, the computer wouldn’t be able to do 
anything.  So, insofar as CS is about computers and hence is engineering, it must 
also be about computation and hence a science (at least, a mathematical science). 

But it also makes little sense to have a program without a computer to run it 
on. Yes, you can study the program mathematically (e.g., try to verify it) or study 
its computational complexity [Loui, 1996], [Aaronson, 2013], etc.). 

 
The ascendancy of logical abstraction over concrete realization has 
ever since been a guiding principle in computer science, which has
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kept itself organizationally almost entirely separate from electrical 
engineering. The reason it has been able to do this is that computation 
is primarily a logical concept, and only secondarily an engineering 
one.   To compute is to engage in formal reasoning, according to 
certain formal symbolic rules,  and it makes no logical  difference 
how the formulas are  physically represented,  or  how the logical 
transformations of them are physically realized. 
[Robinson, 1994, p. 12, my italics] 

 
But what good would it be (for that matter, what fun would it be!) to have, say, a 
program for passing the Turing test that never had an opportunity to pass it? Thus, 
without a computer, the program wouldn’t be able to actually do anything.  So, 
insofar as CS is about computation and hence is science, it should (must?) also be 
about computers and hence an engineering discipline. 

So, computers require programs in order for the computer to do anything, and 
programs require computers in order for the program to actually be able to do 
anything.  This is reminiscent of Kant’s slogan that “Thoughts without content 
are empty, intuitions without concepts are blind. . . . The understanding can intuit 
nothing, the senses can think nothing.  Only through their union can knowledge 
arise” [Kant, 1787, p. 93 (A51/B75)]. Similarly, we can say: “Computers without 
programs are empty; programs without computers are blind.  Only through the 
union of a computer with a program can computational processing arise.” A good 
example of this is the need for computers to test certain “deep learning” algorithms 
that Google used in their Translate software: Without enough computing power, 
there was no way to prove that their connectionist programs would work as 
advertised [Lewis-Kraus, 2016, §2].  So, CS must be both a science (that studies 
algorithms) and an engineering discipline (that builds computers). 

But  we  need  not  be  concerned with  these  two  fighting words,  because, 
fortunately, there are two very convenient terms that encompass both: ‘scientific’ 
and ‘STEM’. Surely, not only natural science, but also engineering, not to mention 
“artificial science”, “empirical studies”, and mathematics are all scientific. And, 
lately, NSF and the popular press have taken to referring to “STEM” disciplines— 
science, technology, engineering, and mathematics—precisely in order to have 
a single term to emphasize their similarities and interdependence, and to avoid 
having to try to spell out differences among them.9 

So let’s agree for the moment that CS might be both science and engineering. 
What about Freeman’s other two options:  neither and more?   

 
9 Nothing should be read into the ordering of the terms in the acronym: The original acronym was 

the less mellifluous ‘SMET’! And educators, perhaps with a nod to Knuth’s views, have been adding 
the arts, to create ‘STEAM’ (http://stemtosteam.org/).
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12    CS as “More” 
 

12.1   CS Is a New Kind of Engineering 
 

Michael Loui defines CS as  “the theory,  design,  and analysis of  algorithms 
for processing [i.e., for storing, transforming, retrieving, and transmitting] 
information, and the implementations of these algorithms in hardware and in 
software” [Loui, 1987, p. 176]. He argues that CS is “a new species of engineering” 
[Loui, 1995, p. 1].  He first argues that CS is an engineering discipline on the 
grounds that engineering (1) is concerned with what can exist (as opposed to what 
does exist), (2) “has a scientific basis”, (3) is concerned with “design”, (4) analyzes 
“trade-offs”, and (5) has “heuristics and techniques”. “Computer science has all 
the significant attributes of engineering”; therefore, CS is a branch of engineering 
[Loui, 1987, p. 176]. 

Let’s consider each of these “significant attributes”: First, his justification that 
CS is not “concerned with . . . what does exist” is related to the claim that CS is 
not a natural science, but a science of human-made artifacts.  We have already 
considered two possible objections to this: First, insofar as procedures are natural 
entities, CS—as the study of procedures—can be considered a natural science. 
Second, insofar as some artifacts—such as bird’s nests, beehives, etc.—are natural 
entities, studies of artifacts can be considered to be scientific. 

Next,  according  to  Loui,  the  “scientific  basis”  of  CS  is  mathematics. 
The scientific basis of “traditional engineering disciplines such as mechanical 
engineering and electrical engineering” is physics. This is what makes it “new”; 
we’ll come back to this. 

According to Loui, engineers apply the principles of the scientific base of their 
engineering discipline to “design” a product: “[A] computer specialist applies the 
principles of computation to design a digital system or a program” [Loui, 1987, 
p. 176].   But not all computer scientists (or “specialists”) design systems or 
programs; some do purely theoretical work.  And, in any case, if the scientific 
basis of CS is mathematics, then why does Loui say that computer “specialists” 
apply “the principles of computation”? I would have expected him to say that they 
apply the principles of mathematics.  Perhaps he sees “computation” as being a 
branch of mathematics. Or perhaps he doesn’t think that the abstract mathematical 
theory of computation is part of CS, but that seems highly unlikely, especially in 
view of his definition of computer science as including the theory and analysis of 
algorithms. It’s almost as if he sees computer engineering as standing to computer
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science in the same way that mechanical or electrical engineering stand to physics. 
But then it is not computer science that is a branch of engineering. 

Let’s turn briefly to trade-offs:  “To implement algorithms efficiently, the 
designer of  a  computer system must  continually evaluate trade-offs between 
resources” such as time vs. space, etc. [Loui, 1987, p. 177]. This is true, but doesn’t 
support his argument as well as it might.  For one thing, it is not only system 
designers who evaluate such trade-offs; so do theoretical computer scientists— 
witness the abstract mathematical theory of complexity. And, as noted above, not 
all computer scientists design such systems. So, at most, it is only those who do 
who are doing a kind of engineering. 

Finally,  as  for  heuristics,  Loui  seems  to  have  in  mind  rough-and-ready 
“rules  of  thumb”  rather  than  formally  precise  theories  in  the  sense  of 
[Newell and Simon, 1976].     (See  §14.1.3,  below,  for  more  on  this  kind  of 
heuristics.) Insofar as engineers rely on such heuristics [Koen, 1988], and insofar 
as some computer scientists also rely on them, then those computer scientists are 
doing something that engineers also do.  But so do many other people: Writers 
surely rely on rule-of-thumb heuristics (“write simply and clearly”); does that make 
them engineers? This is probably his weakest premise. 

The second part of Loui’s argument is to show how CS is a “new” kind of 
engineering [Loui, 1995, p. 31]: 

1. “[E]ngineering disciplines have a scientific basis”. 
 

2. “The scientific fundamentals of computer science . . .  are rooted . . .  in 
mathematics.” 

 

3. “Computer science is therefore a new kind of engineering.” (italics added) 

This argument can be made valid by adding two missing premises: 

A. Mathematics is a branch of science. 
 

B. No other branch of engineering has mathematics as its basis. 
 

We can assume from his first argument that CS is a kind of engineering. So, from 
that and 1, we can infer that CS (as an engineering discipline) must have a scientific 
basis. We need premise A so that we can infer that the basis of CS (which, by 2, is 
mathematics) is indeed a scientific one. Then, from B, we can infer that CS must 
differ from all other branches of engineering. It is, thus, mathematical engineering. 

However, despite these arguments, Loui also says this:  “It is impossible to 
define a reasonable boundary between the disciplines of computer science and 
computer engineering.  They are  the same discipline” [Loui, 1987, p. 178, my 
italics].  But doesn’t that contradict the title of his essay (“Computer Science Is 
an Engineering Discipline”)?
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12.2   CS Is a New Kind of Science 
 

Recall that Hartmanis said that “computer science differs from the known sciences 
so deeply that it has to be viewed as a new species among the sciences” 
[Hartmanis, 1993, p. 1].  First, Hartmanis comes down on the side of CS being 
a science: It is a “new species among the sciences”. A chimpanzee is a different 
species from a tiger “among the animals”, but they are both animals. 

But what does it mean to be “a new species” of science?  Both chimps and 
tigers are species of animals, and both lions and tigers are species within the 
genus Panthera. Is the relation of computer science to other sciences more like the 
relation of chimps to tigers (relatively distant) or lions to tigers (relatively close)? 
A clue comes in Hartmanis’s next sentence: 

 
This view is justified by observing that theory and experiments in 
computer science play a different role and do not follow the classic 
pattern in physical sciences. [Hartmanis, 1993, p. 1] 

 
This  strongly  suggests  that  CS  is  not  a  physical  science  (such  as  physics 
or  biology),  and  Hartmanis  confirms  this  suggestion  on  p.  5:    “computer 
science,  though not a  physical science,  is indeed a science” (my italics;  cf. 
[Hartmanis, 1993, p. 6], [Hartmanis, 1995, p. 11]). The non-physical sciences are 
typically taken to include at least the social sciences (such as psychology) and 
mathematics. So, it would seem that the relation of CS to other sciences is more 
like that of chimps to tigers: distantly related species of the same, high-level genus. 
And, moreover, it would seem to put computer science either in the same camp as 
(either) the social sciences or mathematics, or else in a brand-new camp of its own, 
i.e., sui generis. 

Hartmanis offers this definition of CS: 
 

At the same time, it is clear that the objects of study in computer 
science are information and the machines and systems which process 
and  transmit  information.   From this alone,  we can see that CS 
is concerned with the abstract subject of information, which gains 
reality only when it has a physical representation, and the man-made 
devices which process the representations of information.  The goal 
of computer science is to endow these information processing devices 
with as much intelligent behavior as possible. 
[Hartmanis, 1993, p. 5, my italics] (cf. [Hartmanis, 1995, p. 10]) 

 
Although it may be “clear” to Hartmanis that information (an “abstract subject”) is 
(one of) the “objects of study in computer science”, he does not share his reasons 
for that clarity.  Since, as we have seen, others seem to disagree that CS is the
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study of information (e.g., it could be the study of computers or the study of 
algorithms), it seems a bit unfair for Hartmanis not to defend his view.  But he 
cashes out this promissory note in [Hartmanis, 1995, p. 10], where he says that 
“what sets [CS] apart from the other sciences” is that it studies “processes [such as 
information processing] that are not directly governed by physical laws”. And why 
are they not so governed? Because “information and its transmission” are “abstract 
entities” [Hartmanis, 1995, p. 8]. This makes computer science sound very much 
like mathematics.  That is not unreasonable, given that it was this aspect of CS 
that led Hartmanis to his ground-breaking work on computational complexity, an 
almost purely mathematical area of CS. 

But it’s not just information that is the object of study; it’s also information- 
processing machines, i.e., computers. Computers, however, don’t deal directly with 
information, because information is abstract, i.e., non-physical. For one thing, this 
suggests that, insofar as CS is a new species of non-physical science, it is not a 
species of social science: Despite its name, the “social” sciences deal with pretty 
physical things: societies, people, speech, etc. 

Hartmanis explicitly says that CS is a science and is not engineering, but his 
comments imply that it is both.  I don’t think he can have it both ways.  This is 
remiscent of the dialogue between Newell, Perlis, & Simon on the one hand, and 
Knuth on the other. Both Loui and Hartmanis agree that computer science is a new 
kind of something or other; each claims that the scientific and mathematical aspects 
of it are central; and each claims that the engineering and machinery aspects of it 
are also central. But one calls it ‘science’, while the other calls it ‘engineering’. 
Again, it seems to be a matter of point of view. 

A very similar argument (that does not give credit to Hartmanis!) that CS is a 
new kind of science can be found in [Denning and Rosenbloom, 2009]. We’ll look 
at some of what they have to say in §13.1. 

 
 

13    CS as “Neither” 
 

And now for some things completely different . . . 
 
 

13.1   CS Has Its Own Paradigm 
 

Hartmanis argued that CS was sui generis among  the  sciences.   Denning 
& Peter A. Freeman offer a slightly stronger argument to the effect that CS 
is neither science,  engineering,  nor  math;  rather  CS  has  a  “unique 
paradigm” [Denning and Freeman, 2009, p. 28]. 

But their position is somewhat muddied by their claim that “computing is a
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fourth great domain of science alongside the physical, life, and social sciences” 
[Denning and Freeman, 2009, p. 29, my italics]. That implies that CS is a science, 
though of a different kind, as Hartmanis suggested. 

It also leaves mathematics out of science! In a related article published three 
months earlier in the same journal, Denning & Paul S. Rosenboom assert without 
argument that “mathematics . . . has traditionally not been considered a science” 
[Denning and Rosenbloom, 2009, p. 28].  Denying that math is a science allows 
them to avoid considering CS as a mathematical science (an option that we explore 
in [Rapaport, 2017, Ch. 3, §3.10.2]). 

In any case, to justify their conclusion that CS is truly sui generis, Denning 
&  Freeman  need  to  show  that  it  is  not  a  physical,  life,  or  social  science. 
Denning  &  Rosenbloom say  that  “none  [of  these]  studies  computation  per 
se” [Denning and Rosenbloom, 2009, p. 28].   This is only half of what needs 
to  be  shown;   it  also  needs  to  be  shown  that  CS  doesn’t  study  physical, 
biological, or social entities.  Obviously, it does study such things, though that 
is not its focus.   As they admit, CS is “used extensively in all the domains” 
[Denning and Rosenbloom, 2009, p. 28]; i.e., computation is used by scientists in 
these domains as a tool. 

So, what makes CS different? Denning & Freeman give a partial answer: 
 

The central focus of the computing paradigm can be summarized 
as information processes—natural or constructed processes that 
transform  information.      . . .   [T]he  computing  paradigm  . . .   is 
distinctively different because of its central focus on information 
processes. [Denning and Freeman, 2009, pp. 29–30] 

 This is only a partial answer, because it only discusses the object of study (which,  
as we saw in §6, is somewhat vague). 

The rest of their answer is provided in a table showing the methodology 
of CS (Table 2, p. 29), which comes down to their version of “computational 
thinking” [Denning and Freeman, 2009, p. 30]. We’ll explore what that is in §13.4. 
Denning & Freeman’s version of it is close to what I will present as “synthetic” 
computational thinking in §14.1.1.1. 

 

 
13.2   CS Is the Study of Complexity 

 
It has been suggested that CS is the study of complexity—not just the mathematical 
subject of  “computational complexity”,  but complexity in general and in  all 
of  nature.     [Ceruzzi, 1988,  pp.  268–270]  ascribes  this  to  Jerome  Wiesner 
[Wiesner, 1958].  But all Wiesner says is that “Information processing systems 
are but one facet of . . .  communication sciences . . .  that is, the study of . . . ̀the
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problems of organized complexity’ ” (quoted in [Ceruzzi, 1988, p. 269]). But even 
if computer science is part of a larger discipline (“communication sciences”?) that 
studies complexity, it doesn’t follow that CS itself is the study of complexity. 

According to Ceruzzi, Edsgar Dijkstra also held this view:  “programming, 
when stripped of  all  its  circumstantial irrelevancies,  boils down to  no  more 
and no less than very effective thinking so as to avoid unmastered complexity” 
[Dijkstra, 1975, §4, p. 3]. It is hierarchical structure that “offers a standard way to 
handle complexity” [Lamport, 2012, p. 16]: 

 
[P]rograms are built from programs.  . . . Programs are compilations 
in another sense as well.   Even the smallest sub-program is also 
a compilation of sub-components.   Programmers construct sub- 
programs by assembling into a coherent whole such discrete program 
elements as data, data structures, and algorithms. The “engineering” 
in software engineering involves knowing how to assemble these 
components to produce the desired behavior. 
[Samuelson et al., 1994, pp. 2326–2327] 

 
The idea that a complex program is “just” a construction from simpler things, 

each of which—recursively—can be analyzed down to the primitive operations and 
data structures of one’s programming system (for a Turing machine, these would 
be the operations of printing and moving, and data structures constructed from ‘0’s 
and ‘1’s) is, first, the underlying way in which complexity can be dealt with and, 
second, where engineering (considered as a form of construction) comes into the 
picture. 

But, again, at most this makes the claim that part of computer science is the 
study of complexity. CS certainly offers many techniques for handling complexity: 
structured programming,  abstraction,  modularity,  hierarchy,  top-down design, 
stepwise refinement, object-oriented programming, recursion, etc.  So, yes, CS 
is one way—perhaps even the best way—to manage (or avoid) complexity, not 
that it is the study of it.  What’s missing from Dijkstra’s argument, in any case, 
is a premise to the effect that computer science is the study of programming, 
but Dijkstra doesn’t say that, either in [Dijkstra, 1975] or in [Dijkstra, 1976], 
the document that Ceruzzi says contains that premise.  ([Khalil and Levy, 1978], 
however, do make that claim.) 

But [Denning et al., 1989, p. 11] point out that viewing “ ‘computer science 
[as] the study of abstraction and the mastering of complexity’ . . . also applies to 
physics, mathematics, or philosophy”; no doubt many other disciplines also study 
complexity. So defining CS the study of complexity doesn’t seem to be right.
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13.3   CS Is the Philosophy(!) of Procedures 
 

Could CS be the study of procedures, yet be a branch of philosophy instead of 
science? One major introductory CS text claims that CS is neither a science nor the 
study of computers [Abelson et al., 1996, “Preface to the First Edition”]. Rather, it 
is what they call ‘procedural epistemology’, which they define (italics added) as: 

 
the study of the structure of knowledge from an imperative point of 
view, as opposed to the more declarative  point of view taken by 
classical mathematical subjects.  Mathematics provides a framework 
for dealing precisely with notions of “what is.” Computation provides 
a framework for dealing precisely with notions of “how to.” 

 
And, of course, epistemology is, after all, a branch of philosophy. 

“How to” is certainly important, and interestingly distinct from “what is”. 
But this distinction is hard to make precise.   Many imperative statements can 
be converted to declarative ones; e.g., each “ p :- q” rule of a Prolog program 
can be interpreted either procedurally (“to achieve p, execute q”) or declaratively 
(“ p if q”). 

Or consider Euclid’s Elements; it was originally written in “how to” form: To 
construct an equilateral triangle (using only compass and straightedge), follow this 
algorithm [Toussaint, 1993].10  (Compare: To compute the value of this function 
(using only the operations of a Turing-machine, or: using only recursive functions), 
follow this algorithm.)11     But today it is expressed in “what is” form:   The 
triangle that is constructed (using only compass and straightedge) by following that 
algorithm is equilateral: “When Hilbert gave a modern axiomatization of geometry 
at the beginning of the present century, he asserted the bald existence of the line. 
Euclid, however, also asserted that it can be constructed” [Goodman, 1987, §4]. 
Note that the declarative version of a geometry theorem can be considered to be a 
formal proof of the correctness of the procedural version. This is closely related to 
the notion of program verification. 

But even if procedural language can be intertranslated with declarative 
language, the two are distinct. And surely CS is concerned with procedures! There 
is a related issue in philosophy concerning the difference between knowing that 
something is the case (knowing that a declarative proposition is true) and knowing 
how to do something (knowing a procedure for doing it).  This, in turn, may be 
related to Knuth’s view of programming as teaching a computer (perhaps a form 
of knowing-that), to be contrasted with the view of a machine-learning algorithm 

 
10 http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0086:book=1:type=Prop:number=1 
11 For  further  discussion  of  “to  accomplish  goal  G,  do  procedure  P”,  see [Rapaport, 2015].
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that allows a computer to learn on its own by being trained. The former can easily 
gain declarative “knowledge” of what it is doing so that it can be programmed to 
explain what it is doing; the latter not so easily. 

 
13.4   CS Is Computational Thinking 

 
A popular way to describe CS is as a “way of thinking”, that “algorithmic thinking” 
(about anything!) is what makes CS unique: 

 

CS is the new “new math,” and people are beginning to realize that CS, 
like math, is unique in the sense that many other disciplines will have 
to adopt that way of thinking. It offers a sort of conceptual framework 
for other disciplines, and that’s fairly new. . . . Any student interested 
in science and technology needs to learn to think algorithmically. 
That’s the next big thing. 
—Bernard Chazelle, interviewed in [Anthes, 2006] 

 

Jeannette Wing’s notion of “computational thinking” [Wing, 2006, echoing 
[Papert, 1980]] is thinking in such a way that a problem’s solution “can effectively 
be  carried  out  by  an  information-processing  agent”  [Wing, 2010]  (see  also 
[Guzdial, 2011]). Here, it is important not to limit such “agents” to computers, but 
to include humans! It may offer compromises on several controversies: It avoids 
the procedural-declarative controversy, by including both concepts, as well as 
others. Her definition of CS as “the study of computation—what can be computed 
and how to compute it” is nice, too, because the first conjunct clearly includes the 
theory of computation and complexity theory (‘can’ can include “can in principle” 
as well as “can efficiently”), and the second conjunct can be interpreted to include 
both software programming as well as hardware engineering. ‘Study’ is nice, too: 
It avoids the science-engineering controversy. 

“[T]o think computationally [is] to use abstraction, modularity, hierarchy, and 
so forth in understanding and solving problems” [Scott and Bundy, 2015, p. 37]— 
indeed, computational thinking involves all of those methods cited in §13.2 for 
handling complexity!   Five years before Perlis defined CS as the science of 
computers, he emphasized what is now called computational thinking: 

 

[T]he purpose of . . . [a] first course in programming . . . is not to 
teach people how to program a specific computer, nor is it to teach 
some new languages. The purpose of a course in programming is to 
teach people how to construct and analyze processes. . . . 

A course in programming . . . , if it is taught properly, is concerned 
with  abstraction:   the  abstraction of  constructing,  analyzing,  and 
describing processes. . . .
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This, to me, is the whole importance of a course in programming. 
It is a simulation.  The point is not to teach the students how to use 
ALGOL, or how to program the 704. These are of little direct value. 
The point is to make the students construct complex processes out of 
simpler ones (and this is always present in programming) in the hope 
that the basic concepts and abilities will rub off. A properly designed 
programming course will develop these abilities better than any other 
course. [Perlis, 1962, pp. 209–210, my italics] 

 
Here   is   another   characterization  of   CS,   one   that   also   characterizes 

computational thinking: 
 

Computer science is in significant measure all about analyzing 
problems, breaking them down into manageable parts, finding 
solutions, and integrating the results. The skills needed for this kind 
of thinking apply to more than computer programming.  They offer 
a kind of disciplined mind-set that is applicable to a broad range 
of design and implementation problems.  These skills are helpful in 
engineering, scientific research, business, and even politics!12 Even if 
a student does not go on to a career in computer science or a related 
subject, these skills are likely to prove useful in any endeavor in which 
analytical thinking is valuable. [Cerf, 2016, p. 7] 

 
But Denning finds fault with the notion of “computational thinking”, primarily 

on the grounds that it is too narrow: 
 

Computation is present in nature even when scientists are not 
observing it or thinking about it.  Computation is more fundamental 
than computational thinking.  For this reason alone, computational 
thinking seems like an inadequate characterization of computer 
science. [Denning, 2009, p. 30] 

 Note that, by ‘computation’, Denning means Turing-machine computation. For his 
arguments about why it is “present in nature”, see the discussion in §7, above. 

(For more on computational thinking, see the homepage for the Center for 
Computational Thinking, http://www.cs.cmu.edu/∼CompThink/.) 

 
12 And even the humanities [Ruff, 2016]—WJR footnote.
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13.5   CS Is AI 
 

[Computer science] is the science of how machines can be made to 
carry out intellectual processes. [McCarthy, 1963, p. 1, my italics] 

 

The goal of computer science is to endow these information processing 
devices with as much intelligent behavior as possible. 
[Hartmanis, 1993, p. 5, my italics] (cf. [Hartmanis, 1995, p. 10]) 

 
Computational Intelligence is the manifest destiny of computer 
science, the goal, the destination, the final frontier.13 

[Feigenbaum, 2003, p. 39] 
 

These aren’t exactly definitions of CS, but they could be turned into ones:  CS 
is the study of (choose one):  (a) how to get computers to do what humans can 
do; (b) how to make computers (at least) as “intelligent” as humans; (c) how to 
understand (human) cognition computationally. 

The history of computers supports this:  It is a history that began with how 
to get machines to do some human thinking (certain mathematical calculations, 
in particular), then more and more.  Indeed, the Turing machine, as a model of 
computation, was motivated by how humans compute: [Turing, 1936, §9] analyzes 
how humans compute, and then designs a computer program that does the same 
thing.  But the branch of CS that analyzes how humans perform a task and then 
designs computer programs to do the same thing is AI. So, the Turing machine was 
the first AI program! 

But, as I will suggest in §14.1, defining CS as AI is probably best understood 
as a special case of its fundamental task: determining what tasks are computable. 

 

 
13.6   CS Is Magic 

 
Any sufficiently advanced technology is indistinguishable from magic. 
—Arthur C. Clarke, http://en.wikipedia.org/wiki/Clarke’s three laws 

 
Could it be that the advanced technology of CS is not only indistinguishable from 
magic, but really is magic? Not magic as in tricks, but magic as in Merlin or Harry 
Potter? 

 

Computer science is very empowering.   It’s kind of like knowing 
magic: you learn the right stuff and how to say it, and out comes an 
answer that solves a real problem. That’s so cool. 
—Euakarn (Som) Liengtiraphan, quoted in [Hauser, 2017, p. 16] 

 
13 “Understanding the activities of an animal or human mind in algorithmic terms seems to be 

about the greatest challenge offered to computer science by nature” [Wiedermann, 1999, p. 1].
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Brooks makes an even stronger claim than Clarke: 
 

The programmer, like the poet, works only slightly removed from pure 
thought-stuff. He [sic] builds castles in the air, creating by the exertion 
of the imagination . . . .  Yet the program construct, unlike the poet’s 
words [or the magician’s spells?], is real in the sense that it moves and 
works, producing visible outputs separate from the construct itself. . . . 
The magic of myth and legend has come true in our time. One 
types the correct incantation on a keyboard, and a display screen 
comes to life, showing things that never were nor could be. 
[Brooks, 1975, pp. 7–8, my emphases]. 

 
Of course, the main difference between “the magic of myth and legend” and how 
computers work is that the former lacks (or at least fails to specify) any causal 
connection between incantation and result, whereas computation is quite clear 
about the connection: Recall our emphasis on algorithms (and see the discussion 
in §14.1.1.2, below). 

What is “magic”?  One anthropologist defines magic as the human “use of 
symbols to control forces in nature” [Stevens, 1996, p. 721]. Clearly, programming 
involves exactly that kind of use of symbols [Rapaport, 2015]. 

How  is  magic  supposed to  work?    The  anthropologist James  G.  Frazer 
[Frazer, 1915] “had suggested that primitive people imagine magical impulses 
traveling over distance through ‘a kind of invisible ether.’ ” [Stevens, 1996, p. 722]. 
That sounds like a description of electromagnetic waves:  Think of electrical 
currents running from a keyboard to a CPU, information traveling across the 
Internet, or text messaging. 

According to another anthropologist, Bronisłow Malinowsky, 
 

The magical act involves three components:  the formula, the rite, 
and  the  condition  of  the  performer.    The  rite  consists  of  three 
essential features: the dramatic expression of emotion through gesture 
and physical attitude,  the use of  objects and substances that are 
imbued with power by spoken words, and, most important, the words 
themselves. [Stevens, 1996, p. 722, citing Malinowski] 

 
A “wizard”, gesturing with a “wand”, performs a “spell” consisting of a formula 
expressed in the words of an arcane language; the spell has real-world effects, 
imbuing objects with power. 

Abstracting away from “the dramatic expression of emotion”, use of a 
computer involves gestures, perhaps not with a wand, but with a mouse, a trackpad, 
or a touchscreen: The computer itself can be thought of as “imbued with power”
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when we issue, perhaps not a spell, but a command, either spoken or typed. And 
the words (of a programming language, or even English; think:  Siri) used by 
the programmer or user are surely important, so the “rite” criterion is satisfied. 
Computer programs can be thought of as formulas, and only those programmers 
who know how to use appropriate programming languages, or those users who 
have accounts on a computer, might be considered to be in the right “condition”. 

 
Since classical times sophisticated forms of mysticism that relied on 
written notations and formulas have been called hermetic magic, after 
Hermes Trismegistus, Greek variant of the Egyptian Thoth, regarded 
as the god or principle of wisdom and the originator of writing. 
[Stevens, 1996, p. 721] 

 
Clearly,   computer  programming  relies  on  written  notations  and  formulas. 
(Of course, it’s not clear whether it’s “mysticism”!) 

 
[A symbol] can take on the qualities of the thing it represents, and it 
can take the place of its referent; indeed, as is evident in religion and 
magic, the symbol can become the thing it represents, and in so doing, 
the symbol takes on the power of its referent. 
[Stevens, 1996, p. 724, my italics] 

 
We see this happening in computers when we treat icons on a desktop (such 
icons are symbols) or the screen output of a WYSIWYG word processor (such 
as a page of a Microsoft Word document) as if they were the very things they 
represent.  Perhaps more significantly, we see this in the case of those computer 
simulations in which the simulation of something really is that (kind of) thing: 
In online banking, the computational simulation of transferring funds between 
accounts is the transferring of funds; (simulated) signatures on online Word or 
PDF documents carry legal weight; in AI, computationally simulated cognition 
(arguably) is cognition.  (See [Rapaport, 2012, §8] for further discussion.)  And 
an NRC report (cited by [Samuelson et al., 1994, p. 2324, notes 44 & 46; 2325, 
note 47]) talks about user interfaces as “illusions”: 

 
Unlike physical objects, the virtual objects created in software are not 
constrained to obey the laws of physics. . . . In the desktop metaphor, 
for example, the electronic version of file folders can expand, contract, 
or reorganize their contents on demand, quite unlike their physical 
counterparts. [Samuelson et al., 1994, p. 2334] 

 
Isn’t that magic?
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[Newell, 1980, p. 156] says some things about the nature of physical symbol 
systems (i.e., computers) that have “magical” overtones.  The symbols of such a 
system “stand for some entity”, i.e.: 

 
An entity X designates an entity Y relative to a process P, if, when P 
takes X as input, its behavior depends on Y. 

 
Here, I take it that what Newell means is that P’s behavior really depends on Y 
instead of on X, even though X (not Y) is P’s input.  But that seems to be the 
essence of magic; it is “action at a distance:  The process behaves as if inputs, 
remote from those it in fact has, effect it” [Newell, 1980, §4.1]. Process P behaves 
as it does because of a symbolic “spell” cast at a distance from P itself. 

So, perhaps computers are not just metaphorically magic (as Arthur C. Clarke 
might have said); they are magic! 

 
 

14    So, What  Is Computer Science? 
 

Our exploration of the various answers suggests that there is no simple, one- 
sentence answer to our question. Any attempt at one is no better than the celebrated 
descriptions of an elephant by the blind men:  Many, if not most or all, such 
attempts wind up describing the entire subject, but focusing on only one aspect of 
it. Recall Newell, Perlis, & Simon’s and Knuth’s distinct but logically equivalent 
definitions. 

CS is the scientific study of a family of topics surrounding both abstract (or 
theoretical) and concrete (or practical computing)—a “portmanteau” discipline 
[Carroll, 1871]. 

Charles  Darwin  said  that  “all  true  classification  . . .   [is]  genealogical” 
[Darwin, 1872,  Ch. 14,  §“Classification”, p.  437].    CS’s genealogy involves 
two  historical  traditions:   (1)  the  study  of  algorithms  and  the  foundations 
of mathematics (from ancient Babylonian mathematics [Knuth, 1972], through 
Euclid’s geometry, to inquiries into the nature of logic, leading ultimately to 
the Turing machine) and (2) the attempts to design and construct a calculating 
machine (from the Antikythera Mechanism of ancient Greece; through Pascal’s 
and Leibniz’s calculators and Babbage’s machines; to the ENIAC, iPhone, and 
beyond).  So, modern CS is the result of a marriage between (or merger of) the 
engineering problem of building better and better automatic calculating devices 
with the mathematical (hence, scientific) problem of understanding the nature of 
algorithmic computation.  And that implies that modern CS, to the extent that it 
is a single discipline, has both engineering and science in its DNA. Hence its 
portmanteau nature.
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The topics studied in contemporary CS roughly align along a spectrum ranging 
from the mathematical theory of computing, at one end, to the engineering of 
physical computers, at the other, as we saw in §3.2.  Newell, Perlis, & Simon 
were looking at this spectrum from one end; Knuth was looking at it from the 
other end.   The topics share a family resemblance (and perhaps nothing more 
than that, except for their underlying DNA), not only to each other, but also 
to other disciplines (including mathematics, electrical engineering, information 
theory,  communication,  etc.),  and  they  overlap  with  issues  discussed in  the 
cognitive sciences, philosophy (including ethics), sociology, education, the arts, 
and business. 

 

 
14.1   Five Central Questions of CS 

 
In this section, I want to suggest that there are five central questions of CS. The 
single most central question is: 

 
1. A. What can be computed? 

 
But to answer that, we also need to ask: 
 

1. B. How can it be computed? 
 
Several other questions follow logically from that central one: 

 
2. What can be computed efficiently, and 
how? 

 
3. What can be computed practically, and 
how? 

 
4. What can be computed physically, and 
how? 

 
5. What should be computed, and how? 

 
Let’s consider each of these in a bit more detail. 
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14.1.1   Computability 
 

14.1.1.1 What  Is  Computable?   “What can be computed?” (or:   “What is 
computable?”) is the central question, because all other questions presuppose 
it. The  fundamental task  of  any  computer scientist—whether at  the  purely 
mathematical or theoretical end of the spectrum, or at the purely practical or 
engineering end—is to determine whether there is a computational solution to a 
given problem, and, if so, how to implement it. But those implementation questions 
are covered by the rest of the questions on our list, and only make sense after the 
first question has been answered. (Alternatively, they facilitate answering that first 
question; in any case, they serve the goal of answering it.) 

Question 1 includes the question of computability vs. non-computability.  It 
is the question that Church, Turing, Gö del, and others were originally concerned 
with—Which mathematical functions are computable?—and whose answer has 
been given as the Church-Turing Computability Thesis: A function is computable 
if and only if it is computable by a Turing machine (or any formalism logically 
equivalent to a Turing machine, such as Church’s lambda calculus or Gö del’s 
general recursive functions).   It is important to note that not all functions are 
computable. If they were, then computability would not be an interesting notion. 
(A standard example of a non-computable function is the Halting Problem.) 

Various branches of CS are concerned with identifying which problems can be 
expressed by computable functions. So, a corollary of the Computability Thesis is 
that a task is computable if and only if it can be expressed as a computable function. 

Here are some examples: 
•	 Is  cognition  computable?    The  central  question  of  AI  is  whether  the 

functions that describe cognitive processes are computable.  (This is one 
reason why I prefer to call AI “computational cognition” [Rapaport, 1995], 
[Rapaport, 2003].) Given the advances that have been made in AI to date, 
it seems clear that at least some aspects of cognition are computable, so a 
slightly more precise question is:  How much of cognition is computable? 
[Rapaport, 2012, §2, pp. 34–35]. 

•	 Consider Shannon’s 1950 paper on chess: The principal question is:  Can 
we mathematically analyze chess?  In particular, can we computationally 
analyze it (suggesting that computational analysis is a branch or kind of 
mathematical analysis)—i.e., can we analyze it procedurally? I.e., can we 
play chess rationally? 

•	 Is the weather computable? See [Hayes, 2007]. 
•	 Is fingerprint identification computable? See [Srihari, 2010]. 
•	 Is final-exam-scheduling computable? Faculty members in my department 

recently debated whether it was possible to write a computer program that 
would schedule final exams with no time conflicts and in rooms that were 
of the proper size for the class.    Some thought that this was a trivial 
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problem; others thought that there was no such algorithm (on the (perhaps 
dubious!) grounds that no one in the university administration had ever been 
able to produce such a schedule); in fact, this problem is NP-complete 
(http://www.cs.toronto.edu/∼bor/373s13/L14.pdf) 

 
This aspect of question 1 is close to Forsythe’s famous one: 

 
The question “What can be automated?” is one of the most inspiring 
philosophical and practical questions of contemporary civilization. 
[Forsythe, 1968, p. 1025] 

 
Although similar in intent, Forsythe’s question can be understood in a slightly 
different way: Presumably, a process can be automated—i.e., done automatically, 
by a machine, without human intervention—if it can be expressed as an algorithm. 
That  is,  computable implies  automatable.    But  automatable does  not  imply 
computable: Witness the invention of the direct dialing system in telephony, which 
automated the task of the human operator. Yes, direct dialing is computable, but it 
wasn’t a computer that did this automation.14 

 
 

14.1.1.2   How  Is  It  Computable?   The  “how”  question  is  also  important: 
CS cannot be satisfied with a mere existence statement to the effect that a problem 
is computable; it also requires a constructive answer in the form of an algorithm 
that explicitly shows how it is computable. 

In a Calvin and Hobbes cartoon,15 Calvin discovers that if you input one thing 
(bread) into a toaster, a different thing (toast) is output.  Hobbes wonders what 
happened to the input. It didn’t disappear, of course, nor did it “magically” turn 
into the output: 

 
Everything going  on  in  the  software  [of  a  computer] has  to  be 
physically supported by something going on in the hardware. 
Otherwise the computer couldn’t do what it does from the software 
perspective—it doesn’t work by magic. But usually we don’t have 
to know how the hardware works—only the engineer and the 
repairman do.  We can act as though the computer just carries out 
the software instructions, period. For all we care, as long as it 
works, it might as well be magic.  
[Jackendoff, 2012, p. 99, original italics, my boldface] 

 
Rather, the toaster did something to the bread (heated it).  That intervening 

process is the analogue of an algorithm for the bread-to-toast function.  Finding 
“intervening processes” requires algorithmic thinking, and results in algorithms 
that specify the transformational relations between input and output.   (Where 
behaviorism focused only on inputs and outputs, cognitive psychology focused 
on the intervening algorithms [Miller et al., 1960].) 

 
14 “Strowger Switch”, https://en.wikipedia.org/wiki/Strowger switch 
15 http://www.gocomics.com/calvinandhobbes/2016/03/09, originally published 12 March 1986.
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So, just as, for any x, there can be a philosophy of x, so we can ask, given some 
x, whether there is a computational theory of x. Finding a computational solution 
to a problem requires “computational thinking”, i.e., algorithmic (or procedural) 
thinking (see §13.4, above). 

Computational thinking includes what I call the four Great Insights of CS 
(http://www.cse.buffalo.edu/∼rapaport/computation.html): 

 
1. The representational insight: 

Only 2 nouns are needed to represent information 
(‘0’, ‘1’). 

 
2. The processing insight: 

Only 3 verbs are needed to process information 
(move(left or right), print(0 or 1), halt) 

 
3. The structural insight: 

Only 3 grammar rules are needed to combine actions 
(sequence, selection, repetition) 

 
4. The “closure” insight: 

Nothing else is needed. 
(This is the import of the Church-Turing Computability Thesis.)16 

 
Computational thinking involves both synthesis and analysis: 

 
Synthesis:  Given a problem P, 

 
1. express P as a mathematical function FP 

(or a collection of interacting functions;   
i.e.,  give an input-output specification of P); 

2. try to find an algorithm AFP  for computing FP 

(i.e., for transforming the input to the output;  
then try to find an efficient and practical version of AFP ); 

3. implement AFP  on a physical computer. 
 

Note the similarity of synthetic computational thinking to David Marr’s 
analysis   of   information   processing   [Marr, 1982]   (see   discussion   in 
[Rapaport, 2015]). 

 
16 The exact number of nouns, verbs, or grammar rules depends on the formalism.  E.g., some 

presentations add ‘read’ or ‘erase’ as verbs, or use recursion as the single rule of grammar, etc. 
The point is that there is a very minimal set and that nothing else is needed. Of course, more nouns, 
verbs, or grammar rules allow for greater ease of expression.
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Analysis: 
Given a real-world process P 
(physical, biological, psychological, social, economic, etc.), 
try to find a computational process AP  that models (describes, simulates, 
explains, etc.) P. 

 
Note that, once found, AP  can be re-implemented; this is why computers can (be 
said to) think! [Rapaport, 2000] 

 
 

14.1.2   Efficient Computability 
 

Question 2 is the question studied by the branch of computer science known as 
computational complexity theory. Given an algorithm, one question is how much 
time it will take to be executed and how much space (memory) it will need. A more 
general question is this: Given the set of computable functions, which of them can 
be computed in, so to speak, less time than the age of the universe or less space 
than the size of the universe. The principal distinction is whether a function is in 
the class called P (in which case, it is “efficiently” computable) or in the class NP 
(in which case it is not efficiently computable but it is efficiently “verifiable”):17 

 
Even children can multiply two primes, but the reverse operation— 
splitting a large number into two primes—taxes even the most 
powerful computers. The numbers used in asymmetric encryption are 
typically hundreds of digits long. Finding the prime factors of such a 
large number is like trying to unmix the colors in a can of paint, . . . 
“Mixing paint is trivial. Separating paint isn’t.” [Folger, 2016, p. 52] 

 
Almost all practical algorithms are in P.  By contrast, one important algorithm 
that is in NP is the Boolean Satisfiability Problem: Given a molecular proposition 
of propositional logic with n atomic propositions,  under what assignment of 
truth-values  to  those  atomic  propositions  is  the  molecular  proposition  true 
(or  “satisfied”)?    Whether  P = NP  is  one  of  the  major  open  questions  in 
mathematics and CS; most computer scientists both hope and believe that P = NP 
[Fortnow, 2013]. 

 
17 Technically, P is the class of functions computable in “Polynomial time”, and NP is the class of 

functions computable in “Non-deterministic Polynomial time”.
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14.1.3   Practical  Computability 
 

Question 3 is considered both by complexity theorists as well as by more 
practically-oriented software engineers.  Given a computable function in P (or, 
for that matter, in NP) what are some practically efficient methods of actually 
computing it? E.g., under certain circumstances, some sorting algorithms are more 
efficient in a practical sense (e.g., faster) than others. Even a computable function 
that is in NP might be practically computable in special cases. And some functions 
might only be practically computable “indirectly” via a “heuristic”: A heuristic 
for problem p can be defined as an algorithm for some problem p’,  where the 
solution to p’ is “good enough” as a solution to p [Rapaport, 1998, p. 406]. Being 
“good enough” is, of course, a subjective notion;  [Oommen and Rueda, 2005, 
p. 1] call the “good enough” solution “a sub-optimal solution that, hopefully, is 
arbitrarily close to the optimal.”  The idea is related to Simon’s notion of 
bounded rationality:  We might not be able to solve a problem p because of 
limitations in space, time, or knowledge, but we might be able to solve a 
different problem p’	algorithmically within the required spatio-temporal-epistemic 
limits.  And if the algorithmic solution to p’		gets us closer to a solution to p, 
then it is a heuristic solution to p.   But it is still an algorithm.  (For more on 
heuristics, see [Romanycia and Pelletier, 1985], [Chow, 2015].) A classic case of 
this is the Traveling Salesperson Problem, an NP-problem for which software like 
Google Maps solves special cases for us every day (even if their solutions are only 
“satisficing” ones [Simon, 1996a]). 

 

 
14.1.4   Physical Computability 

 
But since the only (or the best) way to decide whether a computable function 
really does what it  claims to  do is  to  execute it  on a  computer,  computers 
become an  integral part  of  CS.  Question 4  brings in  both  empirical (hence 
scientific) and engineering considerations. Even a practically efficient algorithm 
for computing some function might run up against physical limitations. Here is one 
example: Even if, eventually, computational linguists devise practically efficient 
algorithms for  natural-language “competence” (understanding and generation; 
[Shapiro, 1989], [Shapiro and Rapaport, 1991]), it remains the case that humans 
have a finite life span, so the infinite capabilities of natural-language competence 
are not really required (a Turing machine isn’t needed; a push-down automaton 
might suffice). This is also the question that issues in the design and construction 
of real computers (“computer engineering”) are concerned with. And it is where 
investigations into alternative physical implementations of computing (quantum, 
optical, DNA, etc.) come in.
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14.1.5   Ethical Computability 
 

Bruce Arden, elaborating Forsythe’s question, said that “the basic question [is] . . . 
what can and should be automated” [Arden, 1980, p. 29, my italics]. Question 5 
brings in ethical considerations [Tedre, 2015, pp. 167–168]. Actually, the question 
is slightly ambiguous.  It could simply refer to questions of practical efficiency: 
Given a sorting problem, which sorting algorithm should be used; i.e., which one is 
the “best” or “most practical” or “most efficient” in the actual circumstances? But 
this sense of ‘should’ does not really differentiate this question from question 3. 

It is the ethical interpretation that makes this question interesting: Suppose that 
there is a practical and efficient algorithm for making certain decisions (e.g., as in 
the case of autonomous vehicles). There is still the question of whether we should 
use those algorithms to actually make decisions for us.  Or let us suppose that 
the goal of AI—a computational theory of cognition—is practically and efficiently 
computable by physically plausible computers. One can and should still raise the 
question whether such “artificial intelligences” should be created, and whether 
we (their creators) have any ethical or moral obligations towards them, and vice 
versa! [Delvaux, 2016] And there is the question of implicit biases that might be 
(intentionally or unintentionally) built into some machine-learning algorithms. 

 

 
14.2   Wing’s Five Questions 

 
It may prove useful to compare my five questions with [Wing, 2008]’s “Five Deep 
Questions in Computing”: 

 
1. P = NP ? 

 
2. What is computable? 

 
3. What is intelligence? 

 
4. What is information? 

 
5. (How) can we build complex systems simply? 

 
All but the last, it seems to me, concern scientific (abstract, mathematical) issues: If 
we consider Wing’s second question to be the same as our central one, then her first 
question can be rephrased as our “What is efficiently computable?”, and her third 
can be rephrased as “How much of (human) cognition is computable?” (a special 
case of our central question). Her fourth question can then be seen as asking an 
ontological question about the nature of what it is that is computed (an aspect of 
our central question): numbers (0s and 1s)? symbols (‘0’s and ‘1’s)? information 
in some sense (and, if so, in which sense)?
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Wing’s last question is ambiguous between two readings of ‘build’:  On a 
software reading, it can be viewed in an abstract (scientific, mathematical) way 
as asking a question about the structural nature of software (the issues concerning 
the proper use of the “goto” statement [Dijkstra, 1968] and structural programming 
would fall under this category). As such, it concerns the grammar rules; it is then 
an aspect of our central question. But it can also be viewed on a hardware reading 
as asking an engineering question: How should we—literally—build computers? 

Interpreted in this way, Wing’s five questions can be boiled down to two: 
•	What is computation such that only some things can be computed? 

(And what can be computed (efficiently), and how?) 
•	 (How) can we build physical devices to perform these computations? 

 
The first is equivalent to our questions 1–3, the second to our question 4.  And, 
in this case, we see once again the two parts of the discipline: the scientific (or 
mathematical, or abstract) and the engineering (or concrete). 

It is interesting and important to note that none of Wing’s questions correspond 
to the ethical question 5. 

 
 

15    Conclusion 
 

To sum up, computer science is the (scientific, or STEM) study of: 
 

•	what problems can be solved, 
•	what tasks can be accomplished, and 
•	what features of the world can be understood . . . 

 
. . . computationally, i.e., using a language with only: 

 
•	2 nouns (‘0’, ‘1’), 
•	3 verbs (‘move’, ‘print’, ‘halt’), 
•	3 grammar rules (sequence, selection, repetition; or just recursion), and 
•	nothing else, 

 
and then to provide algorithms to show how this can be done: 

 
•	efficiently, 
•	practically, 
•	physically, and 
•	 ethically.
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I said that our survey suggests that there is no simple, one-sentence answer to 
the question: What is computer science? My definition above is hardly a simple 
sentence. 

But our opening quotation—from an interview with a computational 
musician—comes closer, so I will end where I began: 

 
The Holy Grail of computer science is to capture the messy complexity 
of the natural world and express it algorithmically. 
— Teresa Marrin Nakra, quoted in [Davidson, 2006, p. 66, my italics]. 
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Bö hm, C. and Jacopini, G. (1966).  Flow diagrams, Turing machines and languages with only two 
formation rules. Communications of the ACM, 9(5):366–371. 

Boorstin, D. (1983). The Discoverers. Random House, New York. Ch. 49: ”The Microscope of Nature”. 

Brooks, Jr., F.P. (1996). The computer scientist as toolsmith II. Communications of the ACM, 
39(3):61–68. 

Brooks, Jr., Frederick P. (1975).   The Mythical Man-Month.   Addison-Wesley, Reading, MA. 

Carroll, L. (1871). Through the Looking-Glass. http://www.gutenberg.org/files/12/12-h/12-h.htm. 
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