
William J. Rapaport

Department of Computer Science and Engineering, Department of Philosophy, Department of Linguistics, and Center for Cognitive Science
University at Buffalo, The State University of New York
Buffalo, NY 14260-2000

rapaport@buffalo.edu
http://www.cse.buffalo.edu/~rapaport/

May 6, 2011

Abstract

Computationalism should be the view that cognition is computable; therefore, computationalism can be true even if (human) cognition is not the result of computations in the brain. Semiotic systems should be understood as systems that interpret signs; therefore, both humans and computers are semiotic systems. Minds can be considered as virtual machines implemented in certain semiotic systems, primarily the brain, but also AI computers. I take issue with James H. Fetzer’s arguments to the contrary.
1 Introduction

In this essay, I treat three topics: computationalism, semiotic systems, and cognition (the mind), offering what I feel is the proper treatment of computationalism, from which certain views about semiotic systems and minds follow (or, at least, with which they are consistent): First, computationalism should be understood as the view that cognition is computable. On this view, computationalism can be true even if (human) cognition is not the result of computations in the brain. Second, semiotic systems should be understood as systems that interpret signs; on this view, both humans and computers are semiotic systems. Finally, minds should be considered to be virtual machines implemented in certain semiotic systems: primarily brains, but also AI computers. After presenting these positions, I respond to James H. Fetzer’s arguments to the contrary.¹

2 The Proper Treatment of Computationalism

Computationalism is often characterized as the thesis that cognition is computation; it is a view whose popularity, if not its origins,² has been traced back to Hilary Putnam (1960 or 1961) and Jerry Fodor (1975) (see Horst 2009, Piccinini 2010). This is usually interpreted to mean that the mind, or the brain—whatever it is that exhibits cognition—computes, or is a computer. Consider these passages, more or less (but not entirely) randomly chosen:

- A Plan is any hierarchical process in the organism that can control the order in which a sequence of operations is to be performed. A Plan is, for an organism, essentially the same as a program for a computer.
 (Miller et al. 1960: 16.)³

¹Although I take full responsibility for this essay, I am also using it as an opportunity to publicize two arguments for the claim that computers are semiotic systems that were originally formulated by my former students Albert Goldfain and Lorenzo Incardona, to whom I am grateful for many discussions on the topics discussed here.

²Its origins can be traced back at least to Thomas Hobbes: “For REASON, in this sense [i.e., “as among the faculties of the mind”], is nothing but reckoning—that is, adding and subtracting—of the consequences of general names agreed upon for the marking and signifying of our thoughts…” (Hobbes 1651, Part I, Ch. 5, p. 46). (All italics in quotes are in the original, unless otherwise noted.)

³See the rest of their Ch. 1, “Images and Plans” for some caveats. E.g., their footnote 12 (p. 16) says: “comparing the sequence of operations executed by an organism and by a properly programmed computer is quite different from comparing computers with brains, or electrical relays with synapses.”
• [H]aving a propositional attitude is being in some computational relation to an internal representation. . . . Mental states are relations between organisms and internal representations, and causally interrelated mental states succeed one another according to computational principles which apply formally to the representations. (Fodor 1975: 198.)

• [C]ognition ought to be viewed as computation. [This] rests on the fact that computation is the only worked-out view of process that is both compatible with a materialist view of how a process is realized and that attributes the behavior of the process to the operation of rules upon representations. In other words, what makes it possible to view computation and cognition as processes of fundamentally the same type is the fact that both are physically realized and both are governed by rules and representations. . . . (Pylyshyn 1980: 111.)

• [C]ognition is a type of computation. (Pylyshyn 1985: xiii.)

• The basic idea of the computer model of the mind is that the mind is the program and the brain the hardware of a computational system. (Searle 1990: 21.)

• [T]he Computational Theory of Mind. . . . is. . . . the best theory of cognition that we’ve got. . . . (Fodor 2000: 1.)

• Tokens of mental processes are ‘computations’; that is, causal chains of (typically inferential) operations on mental representations. (Fodor 2008: 5–6.)

• The core idea of cognitive science is that our brains are a kind of computer. . . . Psychologists try to find out exactly what kinds of programs our brains use, and how our brains implement those programs. (Gopnik 2009: 43.)

• . . . a particular philosophical view that holds that the mind literally is a digital computer. . . . and that thought literally is a kind of computation. . . . will be called the “Computational Theory of Mind” (Horst 2009.)

• Computationalism is the view that the functional organization of the brain (or any other functionally equivalent system) is computational, or that neural states are computational states. (Piccinini 2010: 271.)

• These remarkable capacities of computers—to manipulate strings of digits and to store and execute programs—suggest a bold hypothesis. Perhaps
brains are computers, and perhaps minds are nothing but the programs running on neural computers. (Piccinini 2010: 277–278.)

That cognition is computation is an interesting claim, one well worth exploring, and it may even be true. But it is too strong: It is not the kind of claim that is usually made when one says that a certain behavior can be understood computationally (Rapaport 1998). There is a related claim that, because it is weaker, is more likely to be true and—more importantly—is equally relevant to computational theories of cognition, because it preserves the crucial insight that cognition is capable of being explained in terms of the mathematical theory of computation.

Before stating what I think is the proper version of the thesis of computationalism, let me clarify two terms: (1) I will use ‘cognition’ as a synonym for such terms as ‘thinking’, ‘intelligence’ (as in ‘AI’, not as in ‘IQ’), ‘mentality’, ‘understanding’, ‘intentionality’, etc. Cognition is whatever cognitive scientists study, including (in alphabetical order) believing (and, perhaps, knowing),

− consciousness, emotion, language, learning, memory, perception,
− planning, problem solving, reasoning, representation (including categories, concepts, and mental imagery), sensation, thought, etc.

(2) An “algorithm” (for an executor \(E \) to achieve a goal \(G \), where the “executor” is the agent—human or computer—that carries out (or executes, or implements, or “follows”) the algorithm) is, informally, a procedure (or “method”)—i.e., a set (usually, a sequence) of statements (or “steps”, usually “rules” or instructions) for \(E \) to achieve \(G \) (e.g., solving a (particular kind of) problem, answering a (particular kind of) question, or accomplishing some (particular kind of) task).

Several different mathematical, hence precise, formulations of this still vague notion have been proposed, the most famous of which is Alan Turing’s (1936) notion of (what is now called in his honor) a ‘Turing machine’. Because all of these precise, mathematical formulations are logically equivalent, the claim that the informal notion of “algorithm” is a Turing machine is now known as “Turing’s thesis” (or as “Church’s thesis” or the “Church-Turing thesis”, after Alonzo Church, whose “lambda calculus” was another one of the mathematical formulations).

Knowing might not be covered, insofar as it depends on the way the world is (knowing is often taken to be justified true belief) and thus would be independent of what goes on in the mind or brain. See §3.1, below.

Perception also depends on the way the world is; see §3.1.

Various of these features can be relaxed: One can imagine a procedure that has all these features of algorithms but that has no specific goal, e.g., “Compute \(2 + 2 \); then read Moby Dick.”, or one for which there is no executor, or one that yields output that is only approximately correct, etc. For alternative informal formulations of “algorithm”, see the Appendix.
Importantly, for present purposes, when someone says that a mathematical function (see note 40, below) or a certain phenomenon or behavior is “computable”, they mean that there is an algorithm that outputs the values of that function when given its legal inputs\(^7\) or that produces that phenomenon or behavior—i.e., that one could write a computer program that, when executed on a suitable computer, would enable that computer to perform (i.e., to output) the appropriate behavior.

Hence,

computationalism, properly understood, should be the thesis that cognition is computable.

i.e., that there is an algorithm (more likely, a family of algorithms) that computes cognitive functions.

I take the working assumption (or expectation, or hope) of computational cognitive science to be that all cognition is computable. And I take the basic research question of computational cognitive science to ask “How much of cognition is computable?” This formulation allows for the possibility that the hopes will be dashed—that some aspects of cognition might not be computable. In that event, the interesting question will be: Which aspects are not computable, and why?\(^8\)

Although several philosophers have offered “non-existence proofs” that cognition is not computable,\(^9\) none of these are so mathematically convincing that they have squelched all opposition. And, in any case, it is obvious that much of cognition is computable (see Johnson-Laird 1988, Edelman 2008b, Forbus 2010 for surveys). Philip N. Johnson-Laird (1988: 26–27) has expressed it well:

The goal of cognitive science is to explain how the mind works. Part of the power of the discipline resides in the theory of computability.

...Some processes in the nervous system seem to be computations....

Others...are physical processes that can be modeled in computer

\(^7\)The notion of “legal” inputs makes sense in a mathematical context, perhaps less so in a biological one (Goldfain, personal communication, 2011). By ‘legal’, I mean values in the domain of the function. So a partial function (i.e., one that is undefined on some set of values) would be such that those values on which it is undefined are “illegal”. Biologically, presumably, all values are “legal”, except that some of them are filtered out by our senses or produce unpredictable behavior.

\(^8\)Or, as Randall R. Dipert pointed out to me (personal communication, 2011), we might be able to understand only those aspects of cognition that are computable.

programs. But there may be aspects of mental life that cannot be modeled in this way.… There may even be aspects of the mind that lie outside scientific explanation.

However, I suspect that so much of cognition will eventually be shown to be computable that the residue, if any, will be negligible and ignorable.

This leads to the following “implementational implication”: If (or to the extent that) cognition is computable, then anything that implements cognitive computations would be (to that extent) cognitive. Informally, such an implementation would “really think”. As Newell, Shaw, & Simon (1958: 153) put it, “if we…put any particular program in a computer, we have in fact a machine that behaves in the way prescribed by the program”. The “particular program” they were referring to was one for “human problem solving”, so a computer thus programmed would indeed solve problems, i.e., exhibit a kind of cognition.

This implication is probably a more general point, not necessarily restricted to computationalism. Suppose, as some would have it, that cognition turns out to be fully understandable in terms of differential equations (Forbus 2010, §1, hints at this but does not endorse it) or dynamic systems (van Gelder 1995). Arguably, anything that implements cognitive differential equations or a cognitive dynamic system would be cognitive.

The more common view, that cognition is computation, is a “strong” view that the mind or brain is a computer. It claims that how the mind or brain does what it does is by computing. My view, that cognition is computable, is a weaker view that what the mind or brain does can be described in computational terms, but that how it does it is a matter for neuroscience to determine.10

Interestingly, some of the canonical statements of “strong” computationalism are ambiguous between the two versions. Consider some of Fodor’s early statements in his Language of Thought (1975):

…having a propositional attitude is being in some computational relation to an internal representation. (p. 198, Fodor’s emphasis.)

This could be interpreted as the weaker claim that the relation is computable. The passage continues:

The intended claim is that the sequence of events that causally determines the mental state of an organism will be describable as a sequence of steps in a derivation.… (p. 198, my emphases.)

10 The “strong” and “weak” views are, perhaps, close to, though a bit different from what Stuart C. Shapiro and I have called “computational psychology” and “computational philosophy”, respectively; see Shapiro 1992, Rapaport 2003a.
The use of ‘causally’ suggests the stronger—implementational—view, but the use of ‘describable as’ suggests the weaker view. There’s more:

More exactly: Mental states are relations between organisms and internal representations, and causally interrelated mental states succeed one another according to computational principles which apply formally to the representations. (p. 198, my boldface, Fodor’s italics.)

If ‘according to’ means merely that they behave in accordance with those computational principles, then this is consistent with my— weaker—view, but if it means that they execute those principles, then it sounds like the stronger view. Given Fodor’s other comments and the interpretations of other scholars, and in light of later statements such as the quote from 2008, above, I’m sure that Fodor always had the stronger view in mind. But the potentially ambiguous readings give a hint of the delicacy of interpretation.¹¹

That cognition is computable is a necessary—but not sufficient—condition for it to be computation. The crucial difference between cognition as being computable rather than as being computation is that, on the weaker view, the implementational implication holds even if humans don’t implement cognition computationally. In other words, it allows for the possibility that human cognition is computable but is not computed. For instance, Gualtiero Piccinini (2005, 2007) has argued that “spike trains” (sequences of “action potential”) in groups of neurons—which, presumably, implement human cognition—are not representable as strings of digits, hence not computational. But this does not imply that the functions whose outputs they produce are not computable, possibly by different mechanisms operating on different primitive elements in a different (perhaps

¹¹ Cf. also these passages from Newell, Shaw, & Simon 1958:

The theory [of human problem solving] postulates...[a] number of primitive information processes, which operate on the information in the memories. Each primitive process is a perfectly definite operation for which known physical mechanisms exist. (The mechanisms are not necessarily known to exist in the human brain, however—we are only concerned that the processes be described without ambiguity.) (p. 151, their emphasis.)

The parenthetical phrase can be given the “computable” reading. But I hear the stronger, “computational” reading in the next passage:

[O]ur theory of problem solving...shows specifically and in detail how the processes that occur in human problem solving can be compounded out of elementary information processes, and hence how they can be carried out by mechanisms. (p. 152)

I admit that the ‘can be’ weakens the “computational” reading to the “computable” reading.
non-biological) medium.12

And Makuuchi et al. (2009: 8362) say:

If the processing of PSG [phrase structure grammar] is fundamental to human language, the questions about how the brain implements this faculty arise. The left pars opercularis (LPO), a posterior part of Broca’s area, was found as a neural correlate of the processing of AnBn sequences in human studies by an artificial grammar learning paradigm comprised of visually presented syllables. . . . These 2 studies therefore strongly suggest that LPO is a candidate brain area for the processor of PSG (i.e., hierarchical structures).

This is consistent with computability without computation. However, Makuuchi et al. 2009: 8365 later say,

The present study clearly demonstrates that the syntactic computations involved in the processing of syntactically complex sentences is neuroanatomically separate from the non-syntactic VWM [verbal working memory], thus favoring the view that syntactic processes are independent of general VWM

That is, brain locations where real computation is needed in language processing are anatomically distinct from brain locations where computation is not needed. This suggests that the brain could be computational, contra Piccinini.

Similarly, David J. Lobina (2010, Lobina & García-Albea 2009) has argued that, although certain cognitive capabilities are recursive (another term for “computable”), they might not be implemented in the brain in a recursive fashion. After all, algorithms that are most efficiently expressed recursively are sometimes compiled into more-efficiently executable, iterative (non-recursive) code.

Often when we investigate some phenomenon (e.g., cognition, life, computation, flight), we begin by studying it as it occurs in nature, and then abstract away from what might be called ‘implementation details’ (Rapaport 1999, 2005b) to arrive at a more abstract or general version of the phenomenon, which we can then (re-)implement in a different medium. So, for instance flight as it occurs in birds has been reimplemented in airplanes; ‘flying’ now refers to the...

12Here, ‘function’ is to be taken in the mathematical sense explicated in note 40, rather than in the sense of an activity or purpose. On the computational theory, the brain performs certain “purposeful functions” by computing certain “mathematical functions”. Anti-computationalists say that the brain does not perform its “purposeful functions” by computing mathematical ones, but in some other way. Yet, I claim, those purposeful functions might be accomplished in a computational way. A computer programmed to compute those mathematical functions would thereby perform those purposeful functions.
more abstract concept that is multiply realized in birds and planes (cf. Ford & Hayes 1998; Rapaport 2000, §2.2; Forbus 2010, §2). And computation as done by humans in the late 19th through early 20th centuries was—after Turing’s analysis—reimplemented in machines; ‘computation’ now refers to the more abstract concept.14

The same, I suggest, may (eventually) hold true for ‘cognition’ (Rapaport 2000). (And, perhaps, for artificial “life”.) As Turing said,

The original question, ‘Can machines think?’ I believe to be too meaningless to deserve discussion. Nevertheless I believe that at the end of the century the use of words and general educated opinion will have altered so much that one will be able to speak of machines thinking without expecting to be contradicted. (Turing 1950: 442; my emphasis.)

“General educated opinion” changes when we abstract and generalize, and “the use of words” changes when we shift reference from a word’s initial application to the more abstract or general phenomenon. Similarly, Derek Jones (2010) proposes the following “metaphysical thesis”: “Underlying biological mechanisms are irrelevant to the study of behavior/systems as such. The proper object of study is the abstract system considered as a multiply realized high-level object.”

This issue is related to a dichotomy in cognitive science over its proper object of study: Do (or should) cognitive scientists study human cognition in particular, or (abstract) cognition in general? Computational psychologists lean towards the former; computational philosophers, toward the latter (see note 10). We see this, for example, in the shift within computational linguistics from developing algorithms for understanding natural language using “human language concepts” to developing them using statistical methods: Progress was made when it was realized that “you don’t have to do it like humans” (Lohr 2010, quoting Alfred Spector on the research methodology of Frederick Jelinek; for further discussion of this point, see Forbus 2010, §2).

14Turing’s development of (what would now be called) a computational theory of human computation seems to me to be pretty clearly the first AI program! Cf. my comments about operating systems, note 46.
3 Syntactic Semantics

Three principles underlie computationalism properly treated: internalism, syntacticism, and recursiveness. Together, these constitute a theory of “syntactic semantics” (Rapaport 1988, 2006).

3.1 Internalism

Cognitive agents have direct access only to internal representatives of external objects.

This thesis is related to theses called “methodological solipsism” (Fodor 1980, arguing against Putnam 1975)\(^{15}\) and “individualism” (Segal 1989, arguing against Burge 1986).\(^{16}\) It is essentially Kant’s point embodied in his distinction between noumenal things-in-themselves and their phenomenal appearances as filtered through our mental concepts and categories. Or, as expressed by a contemporary computational cognitive scientist, “My phenomenal world…[is] a neural fiction perpetrated by the senses” (Edelman 2008b: 426). Internalism is the inevitable consequence of the fact that “the output [of sensory transducers] is…the only contact the cognitive system ever has with the environment” (Pylyshyn 1985: 158).

As Ray Jackendoff (2002, §10.4) puts it, a cognitive agent understands the world by “pushing the world into the mind”. Or, as David Hume (1777, §12, part 1, p. 152) put it, “the existences which we consider, when we say, this house and that tree, are nothing but perceptions in the mind and fleeting copies or representations of other existences” (cf. Rapaport 2000, §5).

This can be seen clearly in two cases: (1) What I see is the result of a long process that begins outside my head with photons reflected off the physical object that I am looking at, and that ends with a qualitative mental image (what is sometimes called a “sense datum”; cf. Huemer 2011) produced by neuron firings in my brain. These are internal representatives of the external object. Moreover, there is a time delay; what I am consciously aware of at time \(t\) is my mental representative

\(^{15}\)“[S]o long as we are thinking of mental processes as purely computational, the bearing of environmental information upon such processes is exhausted by the formal character of whatever the oracles [“analogs to the senses”] write on the tape [of a Turing machine]. In particular, it doesn’t matter to such processes whether what the oracles write is true… . . . the formality condition…is tantamount to a sort of methodological solipsism.” (Fodor 1980: 65.)

\(^{16}\)“According to individualism about the mind, the mental natures of all a person’s or animal’s mental states (and events) are such that there is no necessary or deep individuative relation between the individual’s being in states of those kinds and the nature of the individual’s physical or social environments” (Burge 1986: 3–4).
of the external object as it was at some earlier time t^\prime: 17

Computation necessarily takes time and, because visual perception requires complex computations, ... there is an appreciable latency—on the order of 100 msec—between the time of the retinal stimulus and the time of the elicited perception...” (Changizi et al. 2008: 460.)

(2) Although my two eyes look at a single external object, they do so from different perspectives; consequently, they see different things. These two perceptions are combined by the brain’s visual system into a single, three-dimensional perception, which is “internal” (cf. Julesz 1971). Moreover, I can perceive the two images from my eyes simultaneously; I conclude from this that what I perceive is not what is “out there”: There is only one thing “out there”, but I perceive two things (cf. Hume 1739, Book I, part 4, §2, pp. 210–211; Ramachandran & Rogers-Ramachandran 2009). Similarly, the existence of saccades implies that “my subjective, phenomenal experience of a static scene” is internal (“irreal”, a “simulation of reality”) (Edelman 2008b: 410).

Consequently, both words and their meanings (including any external objects that serve as the referents of certain words) are represented internally in a single language of thought (LOT; see Fodor 1975). “Methodological solipsism”—the (controversial) position that access to the external world is unnecessary (Fodor 1980; cf. Rapaport 2000)—underlies representationalism:

If a system—creature, network router, robot, mind—cannot “reach out and touch” some situation in which it is interested, another strategy, deucedly clever, is available: it can instead exploit meaningful or representational structures in place of the situation itself, so as to allow it to behave appropriately with respect to that distal, currently inaccessible, state of affairs. (B.C. Smith 2010, §5a.)

For computers, the single, internal LOT might be an artificial neural network or some kind of knowledge-representation, reasoning, and acting system (such as

17I agree with Huemer 2011 that this implies that we do “not directly perceive anything... outside of” us (my emphasis).
18This is in addition to the time that it takes the reflected photons to reach my eye, thus beginning the computational process.
19Strict adherence to methodological solipsism would seem to require that LOT have syntax but no semantics. Fodor (2008: 16) suggests that it needs a purely referential semantics. I have proposed instead a Meinongian semantics for LOT, on the grounds that “non-existent” objects are best construed as internal mental entities; see Rapaport 1978, 1979, 1981, and, especially, 1985/1986.
SNePS; see Shapiro & Rapaport 1987); for humans, the single, internal LOT is a biological neural network.20

It is this last fact that allows us to respond to most of the objections to internalism (see, e.g., Huemer 2011 for a useful compendium of them). For example, consider the objection that an internal mental representative (call it a “sense datum”, “quale”, whatever) of, say, one of Wilfrid Sellars’s pink ice cubes is neither pink (because it does not reflect any light) nor cubic (because it is not a three-dimensional physical object). Suppose that we really are looking at an external, pink ice cube. Light reflects off the surface of the ice cube, enters my eye through the lens, and is initially processed by the rods and cones in my retina, which transduce the information contained in the photons into electrical and chemical signals that travel along a sequence of nerves, primarily the optic nerve, to my visual cortex. Eventually, I see the ice cube (or: I have a mental image of it). Exactly how that experience of seeing (that mental image) is produced is, of course, a version of the “hard” problem of consciousness (Chalmers 1996). But we do know that certain neuron firings that are the end result of the ice cube’s reflection of photons into my eyes are (or are correlated with) my visual experience of pink; others are (correlated with) my visual experience of cubicness. But now imagine a pink ice cube; presumably, the same or similar neurons are firing and are (correlated) with my mental image of pinkness and cubicness. In both cases, it is those neuron firings (or whatever it is that might be correlated with them) that constitute my internal representative. In \textit{neither} case is there anything internal that \textit{is} pink or cubic; in \textit{both} cases, there \textit{is} something that \textit{represents} pinkness or cubicness. (Cf. Shapiro 1993, Rapaport 2005b, Shapiro & Bona 2010.)

Perception, like knowledge, might not be a strictly (i.e., internal) cognitive phenomenon, depending as it does on the external world.21 When I see the ice cube, certain neuron firings are directly responsible for my visual experience, and I might think, “That’s a pink ice cube.” That thought is, presumably, also due to (or identical with) some (other) neuron firings. Finally, presumably, those two sets of neuron firings are somehow correlated or associated, either by the visual ones causing the conceptual ones or both of them being caused by the visual stimulation; in any case, they are somehow “bound” together.

20The “marks” or terms of this LOT (e.g., nodes of a semantic network; terms and predicates of a language; or their biological analogues, etc.) need not all be alike, either in “shape” or function. E.g., natural languages use a wide variety of letters, numerals, etc.; neurons include afferent, internal, and efferent ones (and the former do much of the internalization or “pushing”). (Albert Goldfain, personal communication.)

21Perception is input; so, if one wants to rule it out as an example of a cognitive phenomenon, then perhaps \textit{outputs} of cognitive processes (e.g., motor activity, or actions more generally) should also be ruled out. This would be one way to respond to Cleland 1993.
My experience of the pink ice cube and my thought (or thoughts) that it is
pink and cubic (or that there is a pink ice cube in front of me) occur purely
in my brain. They are, if you will, purely solipsistic. (They are not merely
methodologically solipsistic. Methodological solipsism is a research strategy: A
third-person observer’s theory of my cognitive processes that ignored the real ice
cube and paid attention only to my neuron firings would be methodologically
solipsistic.) Yet there are causal links between the neurological occurrences (my
mental experiences) and an entity in the real world, namely, the ice cube.

What about a cognitively programmed computer or robot? Suppose that
it has a vision system and that some sort of camera lens is facing a pink ice
cube. Light reflects off the surface of the ice cube, enters the computer’s
vision system through the lens, and is processed by the vision system (say,
in some descendent of the way that Marr 1982 described). Eventually, let’s
say, the computer constructs a representation of the pink ice cube in some
knowledge-representation language. When the computer sees (or “sees”) the ice
cube, it might think (or “think”), “That’s a pink ice cube.” That thought might also
be represented in the same knowledge-representation language (e.g., as is done in
the knowledge-representation, reasoning, and acting system SNePS). Finally, those
two representations are associated (Srihari & Rapaport 1989, 1990).

The computer’s “experience” of the pink ice cube and its thought (or
“thoughts”) that it is pink and cubic (or that there is a pink ice cube in front of
it) occur purely in its knowledge base. They are purely solipsistic. Yet there are
causal links between the computational representations and the ice cube in the
real world. There is no significant difference between the computer and the human.
Both can “ground” their “thoughts” of the pink ice cube in reality yet deal with their
representations of both the phrase ‘ice cube’ and the ice cube in the same, purely
syntactic, language of thought. Each can have a syntactic, yet semantic, relation
between its internal representations of the linguistic expression and the object that
it “means”, and each can have external semantic relations between those internal
representations and the real ice cube. However, neither can have direct perceptual
access to the real ice cube to see if it matches their representation:

Kant was rightly impressed by the thought that if we ask whether we
have a correct conception of the world, we cannot step entirely outside
our actual conceptions and theories so as to compare them with a world
that is not conceptualized at all, a bare “whatever there is.” (Williams
1998: 40.)

Of course, both can grasp the real ice cube.
3.2 Syntacticism

It follows that words, their meanings, and semantic relations between them are all syntactic.

Both ‘syntax’ and ‘semantics’ can mean different things. On one standard interpretation, ‘syntax’ is synonymous with ‘grammar’, and ‘semantics’ is synonymous with ‘meaning’. But more general and inclusive conceptions can be found in Charles Morris (1938: 6–7):

One may study the relations of signs to the objects to which the signs are applicable. . . . the study of this [relation] . . . will be called semantics. . . . the formal relation of signs to one another . . . will be named syntactics.

On the nature of semantics, we might compare Alfred Tarski’s (1944: 345) characterization: “Semantics is a discipline which, speaking loosely, deals with certain relations between expressions of a language and the objects . . . referred to by those expressions” (original italics). But, surely, translation from one language to another is also an example of semantic interpretation, though of a slightly different kind: Rather than semantics considered as relations between linguistic expressions and objects in the world, in translation it is considered as relations between linguistic expressions in one language and linguistic expressions in another language. In fact, all relationships between two domains can be seen as interpretations of one of the domains in terms of the other—as a mapping from one domain to another. A mapping process is an algorithm that converts, or translates, one domain to another (possibly the same one). The input domain is the syntactic domain; the output domain is the semantic domain. (I have argued elsewhere that implementation, or realization, of an “abstraction” in some “concrete” medium is also such a mapping, hence a semantic interpretation; see Rapaport 1999, 2005b; cf. Dresner 2010.)

And on the nature of syntax, consider this early definition from the Oxford English Dictionary: “Orderly or systematic arrangement of parts or elements; constitution (of body); a connected order or system of things.” In a study of the history of the concept, Roland Posner (1992: 37) says that syntax “is that branch of Semiotics that studies the formal aspects of signs, the relations between signs, and the combinations of signs”.

Generalizing only slightly, both syntax and semantics are concerned with relationships: syntax with relations among members of a single set (e.g., a set of signs, or marks, or neurons, etc.), and semantics with relations between
two sets (e.g., a set of signs, marks, neurons, etc., on the one hand, and their meanings, on the other). More generally, semantics can be viewed as the study of relations between any two sets whatsoever, including, of course, two sets of signs (as in the case of translation) or even a set and itself; in both of those cases, semantics becomes syntax. Note that a special case of this is found in an ordinary, monolingual dictionary, where we have relations between linguistic expressions in, say, English and (other) linguistic expressions also in English. That is, we have relations among linguistic expressions in English. But this is syntax! “Pushing” meanings into the same set as symbols for them allows semantics to be done syntactically: It turns semantic relations between two sets (a set of internal marks and a set of (external) meanings) into syntactic relations among the marks of a single (internal) LOT (Rapaport 2000, §§4,5; 2003a, §3.1; 2006, §“Thesis 1”). For example, both truth-table semantics and formal semantics are syntactic enterprises: Truth tables relate marks (strings) representing propositions to marks (e.g., letters ‘T’ and ‘F’) representing truth-values; formal semantics relates marks (strings) representing propositions to marks representing (e.g.) set-theoretical objects (cf. B.C. Smith 1982). The relations between neuron firings representing signs and neuron firings representing external meanings are also syntactic. Consequently, symbol-manipulating computers can do semantics by doing syntax. As Shimon Edelman (2008a: 188–189) puts it, “the meaning of an internal state (which may or may not be linked to an external state of affairs) for the system itself is most naturally defined in terms of that state’s relations to its other states”, i.e., syntactically.

This is the notion of semantics that underlies the Semantic Web, where “meaning” is given to (syntactic) information on the World Wide Web by associating such information (the “data” explicitly appearing in webpages, usually expressed in a natural language) with more information (“metadata” that only appears in the HTML source code for the webpage, expressed in a knowledge-representation language such as RDF). But it is not “more of the same” kind of information; rather, the additional information takes the form of annotations of the first kind of information. Thus, relations are set up between information on, say, Web pages and annotations of that information that serve as semantic interpretations of the former. As John Hebeler has put it, “[T]he computer doesn’t know anything more than it’s [i.e., the Web is] a bunch of bits. So semantics merely adds extra information to help you with the meaning of the information” (quoted in Ray 2010).
This is how data in computer programming are interpreted. Consider the following description from a standard textbook on data structures (my comments are interpolated as footnotes, not unlike the “semantic” metadata of the Semantic Web!):23

[T]he concept of information in computer science is similar to the concepts of point, line, and plane in geometry—they are all undefined terms about which statements can be made but which cannot be explained in terms of more elementary concepts.24 The basic unit of information is the bit, whose value asserts one of two mutually exclusive possibilities.25 Information itself has no meaning. Any meaning can be assigned to a particular bit pattern as long as it is done consistently. It is the interpretation of a bit pattern that gives it meaning.26 A method of interpreting a bit pattern is often called a data type. . . . It is by means of declarations27 that the programmer specifies how the contents of the computer memory are to be interpreted by the program. . . . We view data types as a method of interpreting the memory contents of a computer. (Tenenbaum & Augenstein 1981: 1, 6, 8.)28

23Barry Smith and Werner Ceusters (personal communication) prefer to call it the ‘Syntactic Web’!
24I.e., they are pure syntax—WJR.
25Although this is suggestive of semantic interpretation, it is really just syntax: A bit is either 0 or else it is 1 (or it is either high voltage or else it is low voltage; or it is magnetized or else it is not magnetized; and so on).—WJR.
26This certainly sounds like ordinary semantics, but the very next passage clearly indicates a syntactic approach.—WJR.
27Syntactic declarations—WJR.
28For more quotes along these lines from Tenenbaum & Augenstein 1981, see “Tenenbaum & Augenstein on Data, Information, & Semantics” [http://www.cse.buffalo.edu/~rapaport/563S05/data.html].
3.3 Recursiveness

Understanding is recursive: We understand one kind of thing in terms of another that is already understood; the base case is to understand something in terms of itself, which is syntactic understanding.

There are two ways to understand something: One can understand something in terms of something else, or one can understand something directly (Rapaport 1995). The first way, understanding one kind of thing in terms of another kind of thing, underlies metaphor, analogy, maps and grids (B. Smith 2001), and simulation (see §8, below). It is also what underlies the relation between syntax and semantics. In the stereotypical case of semantics, we interpret, or give meanings to, *linguistic expressions*. Thus, we understand language in terms of the world. We can also interpret, or give meanings to, other kinds of *things*. For example, we can try to understand the nature of certain neuron firings in our brains: Is some particular pattern of neuron firings correlated with, say, thinking of a unicorn or thinking that apples are red? If so, then we have interpreted, hence understood, those neuron firings. And we can not only understand language in terms of the world, or understand parts of the world in terms of other parts of the world, but we can also understand the world in terms of language about the world: This is what we do when we learn from reading. Understanding of this first kind is recursive: We understand one thing by understanding another.

This is “recursive”, because we are understanding one thing in terms of another that is *already understood*: We understand in terms of something understood.

But all recursion requires a base case in order to avoid an infinite regress. Consequently, the second way of understanding—understanding something directly—is to understand a domain in terms of itself, to get used to it. This is the fundamental kind—the base case—of understanding.

In general, we understand one domain—call it a *syntactic* domain (‘SYN₁’)—*indirectly by interpreting it* in terms of a (different) domain: a *semantic* domain (‘SEM₁’). This kind of understanding is “indirect”, because we understand SYN₁ by looking *elsewhere*, namely, at SEM₁. But for this process of interpretation to result in real understanding, SEM₁ must be *antecedently understood*. How? In the same way: by considering it as a *syntactic* domain (rename it ‘SYN₂’) interpreted in terms of *yet another semantic* domain, which also must be antecedently understood. And so on. But, in order not to make this sequence of interpretive processes go on *ad infinitum*, there must be a base case: a domain that is understood directly, i.e., in terms of itself (i.e., not “antecedently”). Such direct understanding is syntactic understanding; i.e., it is understanding in terms of the relations
among the marks of the system itself (Rapaport 1986). Syntactic understanding may be related to what Piccinini (2008: 214) calls “internal semantics”—the interpretation of an instruction in terms of “what its execution accomplishes within the computer”. And it may be related to the kind of understanding described in Eco 1988 (cf. Rapaport 2002), in which words and sentences are understood in terms of inferential (and other) relations that they have with “contextual” “encyclopedias” of other words and sentences—i.e., syntactically and holistically.29

4 Syntactic Semantics vs. Fetzer’s Thesis

Syntactic semantics implies that syntax suffices for semantic cognition; that (therefore) cognition is computable; and that (therefore) computers are capable of thinking.

In a series of papers, including Fetzer 2011, James H. Fetzer has claimed that syntax does not suffice for semantic cognition, that cognition is not computable, and that computers are not capable of thinking.

More precisely, Fetzer’s thesis is that computers differ from cognitive agents in three ways—statically (or symbolically), dynamically (or algorithmically), and affectively (or emotionally)—and that simulation is not “the real thing”.

In the rest of this paper, I will try to show why I think that Fetzer is mistaken on all these points.

29Shapiro (personal communication, 2011) suggests that, when we stop the recursion, we only think that we understand, as in the case of the sentence, “During the Renaissance, Bernini cast a bronze of a mastiff eating truffles” (Johnson-Laird, personal communication, 2003; cf. Johnson-Laird 1983: 225, Widdowson 2004). The claim is that many people can understand this sentence without being able to precisely define any of the principal words, as long as they have even a vague idea that, e.g., the Renaissance was some period in history, ‘Bernini’ is someone’s name, “casting a bronze” has something to do with sculpture, bronze is some kind of (perhaps yellowish) metal, a mastiff is some kind of animal (maybe a dog), and truffles are something edible (maybe a kind of mushroom, maybe a kind of chocolate candy).
5 Fetzer’s “Static” Difference

In the forward to his 2001 collection, *Computers and Cognition*, as well as in his presentation at the 2010 North American Conference on Computing and Philosophy, Fetzer argued that “Computers are mark-manipulating systems, minds are not” on the following grounds (Fetzer 2001: xiii, my boldface):

Premise 1:
Computers manipulate marks on the basis of their shapes, sizes, and relative locations.

Premise 2:

[a] These shapes, sizes, and relative locations exert causal influence upon computers

[b] but do not stand for anything for those systems.

Premise 3:
Minds operate by utilizing signs that stand for other things in some respect or other for them as sign-using (or “semiotic”) systems.

Conclusion 1: Computers are not semiotic (or sign-using) systems.

Conclusion 2: Computers are not the possessors of minds.

I disagree with all of the boldfaced phrases in Fetzer’s static-difference argument. Before saying why, note that here—and in his arguments to follow—Fetzer consistently uses declaratives that appear to describe current-day computers: They do not do certain things, are not affected in certain ways, or do not have certain properties. But he really should be using modals that specify what he believes computers cannot do, be affected by, or have. Consider premise (2b), that the marks that computers manipulate “do not” stand for anything for those computers. Note that Fetzer’s locution allows for the possibility that, although the marks do not stand for anything for the computer, they could do so. Insofar as they could, such machines might be capable of thinking. So, Fetzer should have made the stronger claim that they “could not stand for anything”. But then he’d be wrong, as I shall argue.
5.1 Mark Manipulation

I agree with Fetzer’s Static Premise 1: “computers manipulate marks on the basis of their shapes, sizes, and relative locations”. But they also manipulate marks on the basis of other, non-spatial relations of those marks to other marks, i.e., on the basis of their syntax in the wide sense in which I am using that term. Fetzer can safely add this to his theory.

I also agree that this manipulation (or processing) is not (necessarily) independent of the meanings of these marks. But my agreement follows, not from Fetzer’s notion of meaning, but from the principle of “syntacticism” (§3.2, above): If some of the marks represent (or are) meanings of some of the other marks, then mark manipulation on the basis of size, shape, location, and relations to other marks includes manipulation on the basis of meaning. However, this processing is independent of external reference.

More precisely, it is independent of the actual, external referents of the marks—the objects that the marks stand for—in this way: Any relationship between a mark and an external meaning of that mark is represented by an internal (hence syntactic) relation between that mark and another mark that is the internal representative of the external referent. The latter mark is the output of a sensory transducer; in Kantian terms, it is an internal phenomenon that represents an external noumenon. This is the upshot of internalism (§3.1).

In this way, such marks can stand for something for the computer. Computers are, indeed, “string-manipulating” systems (Fetzer 1998: 374). But they are more than “mere” string-manipulating systems, for meaning can arise from (appropriate) combinations of (appropriate) strings.

5.2 Computers and Semiotic Systems

5.2.1 Fetzer’s Argument that Computers Are Not Semiotic Systems

Fetzer’s static-difference argument claims that computers are not semiotic systems. In an earlier argument to the same conclusion, Fetzer (1998), following Peirce, says that a semiotic system consists of something \(S \) being a sign of something \(x \) for somebody \(z \), where thing \(x \) “grounds” sign \(S \) and stands in a relation of “interpretant (with respect to a context)” to sign-user \(z \); furthermore, sign \(S \) stands

30 Tim Crane (1990) also points out that shape alone is not sufficient for syntax (as he interprets Fodor (1980) as holding). But Crane uses ‘syntax’ in the narrow sense of “grammar”; he is correct that a sentence printed in all capital letters has a different shape from—but the same (grammatical) syntax as—the same sentence printed normally. But, as I use the term, although shape does not suffice for syntax, it is surely part of it.

31 The notion of “interpretant” will be clarified below.
in a “causation” relation with sign user z. This constitutes a “semiotic triangle” whose vertices are S, x, and z (Fetzer 1998: 384, Fig. 1).

This cries out for clarification: (1) What is the causation relation between sign user z and sign S? (Does one cause the other? Or is it merely that they are causally—i.e., physically—related?) (2) What is the grounding relation between sign S and the thing x that S stands for (i.e., that S is a sign of)? If sign S is grounded by what it stands for (x), then is the relation of being grounded by the same as the relation of standing for? (3) And, if sign S stands for thing x for sign user z, then perhaps this semiotic triangle should really be a semiotic “quadrilateral”, with four vertices: sign S, user z, thing x, and an interpretant I, where the four sides of the quadrilateral are: (i) user z “causes” sign S, (ii) thing x “grounds” sign S, (iii) interpretant I is “for” user z, and (iv) I stands for thing x. There is also a “diagonal” in this quadrilateral: I “facilitates” or “mediates” S. (A better way to think of it, however, is that the two sides and the diagonal that all intersect at I represent the four-place relation “interpretant I mediates sign S standing for object x for user z”; see Rapaport 1998: 410, Fig. 2.)

By contrast, according to Fetzer, a similar semiotic triangle for “input-output” systems, including computers, lacks a relationship between what plays the role of sign S and what plays the role of thing x. (It is only a 2-sided “triangle”; see Fetzer 1998: 384, Fig. 2.) More precisely, for such input-output systems, we have an input i (instead of a sign S), a computer C (instead of a sign user z), and an output o (instead of a thing x), where there is still a causation relation between computer C and input i, and an interpretant relation between C and output o, but—significantly—no grounding relation between input i and output o.

Again, we may raise some questions: First, the marks by means of which computers operate include more than merely the external input; there are usually stored marks representing what might be called “background knowledge” (or “prior knowledge”)—perhaps “(internal) context” would not be an inappropriate characterization: Where are these in this two-sided triangle? And what about the “stands for” relation? Surely, what the input marks stand for (and surely they stand for something) is not necessarily the output. Finally, what does it mean for a sign S or an input mark i to stand for something x (or o?) yet not be “grounded” by x?

Fetzer’s chief complaint about computers is not merely that they causally manipulate marks (premise 1) but that such causal manipulation is all that they can do. Hence, because such merely causal manipulation requires no mediation between input and output, computers are not semiotic systems. By contrast, semiosis does require such mediation; according to Peirce, it is a ternary relation:

I define a Sign as anything which is so determined by something else, called its Object, and so determines an effect upon a person,
which effect I call its Interpretant, that the latter is thereby mediately determined by the former. My insertion of “upon a person” is a sop to Cerberus, because I despair of making my own broader conception understood. (Peirce 1908: 80–81 [http://www.helsinki.fi/science/commens/terms/sign.html], accessed 5 May 2011.)

The fact that “upon a person” is a “sop to Cerberus” suggests that the effect need not be “upon a person”; it could, thus, be “upon a computer”. That is, the mark-user need not be human (cf. Eco 1979: 15: “It is possible to interpret Peirce’s definition in a non-anthropomorphic way . . .”).32

5.2.2 Peirce and Computation

Given Fetzer’s reliance on Peirce’s version of semiotics, it is worth noting that Peirce had some sympathy for—and certainly an active interest in—computation and, especially, its syntactic aspect:

The secret of all reasoning machines is after all very simple. It is that whatever relation among the objects reasoned about is destined to be the hinge of a ratiocination, that same general relation must be capable of being introduced between certain parts of the machine. . . . When we perform a reasoning in our unaided minds we do substantially the same thing, that is to say, we construct an image in our fancy under certain general conditions, and observe the result. (Peirce 1887: 168.)33

32I owe the observations in this paragraph to Incardona, personal communication, 2010.
33I am indebted to Incardona for directing me to this article by Peirce and to an interpretation by Kenneth Laine Ketner (1988, see esp. pp. 34, 46, 49). I have two problems with Ketner’s interpretation, however: (1) Ketner (p. 49) cites Peirce’s distinction between “corollarial” reasoning (reading off a conclusion of an argument from a diagram of the premises) and “theorematic” reasoning (in which the reasoner must creatively add something to the premises). But neither Peirce nor Ketner offer any arguments that theorematic reasoning cannot be reduced to corollarial reasoning. If corollarial reasoning can be interpreted as referring to ordinary arguments with all premises explicitly stated, and theorematic reasoning can be interpreted as referring to arguments (viz., enthymemes) where a missing premise has to be supplied by the reasoner as “background knowledge”, then I would argue that the latter can be reduced to the former (see Rapaport & Kibby 2010). However, there are other interpretations (see Dipert 1984, §4).

(2) Ketner seems to misunderstand the Church-Turing Thesis (pp. 51–52). He presents it as stating that computers can only do what they have been programmed to do (or “calculated to do”, to use Peirce’s phrase). But what it really asserts is that the informal notion of “algorithm” can be identified with the formal notions of Church’s lambda calculus or Turing machines. Ketner also seems to misunderstand the import of Turing’s proof of the existence of non-computable functions: He thinks that this shows “that mathematical method is not universally deterministic” (p. 57). But what it
There is even an anticipation of at least one of Turing’s insights (cf. Appendix, below):

[T]he capacity of a machine has absolute limitations; it has been contrived to do a certain thing, and it can do nothing else. For instance, the logical machines that have thus far been devised can deal with but a limited number of different letters. The unaided mind is also limited in this as in other respects; but the mind working with a pencil and plenty of paper has no such limitation. It presses on and on, and whatever limits can be assigned to its capacity to-day, may be over-stepped to-morrow. (Peirce 1887: 169, my italics.)

Furthermore, Peirce had views on the relation of syntax to semantics that are, arguably, sympathetic to mine:

Thus Peirce, in contrast to Searle, would not . . . allow any separation between syntax and semantics, in the following respect. He would claim that what Searle is terming “syntactic rules” partake of what Searle would consider semantic characteristics, and, generally, that such rules must so partake. However, if those rules were simple enough so that pure deduction, i.e., thinking of the first type of thirdness, was all that was required, then a machine could indeed duplicate such “routine operations” (Peirce, 1992d, p. 43). In this simple sense, for Peirce, a digital computer has “mind” or “understanding”. (Brown 2002: 20.)

Thus, I find Fetzer’s analysis vague and unconvincing at best. We need to bring some clarity to this. First, consider what Peirce actually says:

really shows is that Hilbert’s decision problem (viz., for any mathematical proposition P, is there an algorithm that decides whether P is a theorem?) must be answered in the negative. Unfortunately, in both cases, he cites a logic text co-authored by me as an authority (Schagrin et al. 1985: 304–305)! Granted, my co-authors and I justify a claim that “Computers can perform only what algorithms describe”—which sounds like “computers can only do what they have been programmed to do”—by citing Church’s Thesis, but our intent was to point out that, if a computer can perform a task, then that task can be described by an algorithm. Ketner’s sound-alike claim is usually taken to mean that computers can’t do anything other than what they were explicitly programmed to do (e.g., they can’t show creativity or initiative). But computers that can learn can certainly do things that they weren’t explicitly programmed to do; the Church-Turing thesis claims that anything that they can do—including those things that they learned how to do—must be computable in the technical sense of computable in the lambda calculus or by a Turing machine.

34 Dipert (1984: 59) suggests that Peirce might also have anticipated the Church-Turing Thesis.

35 Again, thanks to Incardona, whose forthcoming dissertation explores these themes (Incardona, forthcoming).

36 I focus on Peirce’s version of semiotics here, rather than, say, on Saussure’s version, because Peirce is whom Fetzer focuses on.
A sign, or *representamen*, is something which stands to somebody for something in some respect or capacity. It addresses somebody, that is, creates in the mind of that person an equivalent sign, or perhaps a more developed sign. That sign which it creates I call the *interpretant* of the first sign. The sign stands for something, its *object*. It stands for that object, not in all respects, but in reference to a sort of idea, which I have sometimes called the *ground* of the representamen. (Peirce (c. 1897), *A Fragment*, CP 2.228 [http://www.helsinki.fi/science/commens/terms/representamen.html], accessed 5 May 2011.)

By “semiosis” I mean... an action, or influence, which is, or involves, a coöperation of three subjects, such as a sign, its object, and its interpretant, this tri-relative influence not being in any way resolvable into actions between pairs.” (Peirce 1907, EP 2:411; CP 5.484, accessed 5 May 2011 from [http://www.helsinki.fi/science/commens/terms/semiosis.html].)

By ‘representamen’, Peirce means “sign”, but I think that we may also say ‘mark’. So, the Peircean situation consists of:

1. a mark (or sign, or representamen).

 A “mark” is, roughly, an uninterpreted sign—if that’s not an oxymoron: If a sign consists of a mark (signifier) plus an interpretation (signified), then it must be marks that are interpreted; after all, signs (presumably) wear their interpretations on their sleeves, so to speak. Although many semioticians think that it is anathema to try to separate a sign into its two components, that is precisely what “formality” is about in such disciplines as “formal logic”, “formal semantics”, and so on: Formality is the separation of mark from meaning; it is the focus on the *form* or shape of marks (cf. B.C. Smith 2010, §4b);

2. a mark user (or interpreter);\(^{37}\)

\(^{37}\)“[A] Sign has an Object and an Interpretant, the latter being that which the Sign produces in the Quasi-mind that is the Interpreter by determining the latter to a feeling, to an exertion, or to a Sign, which determination is the Interpretant.” (Peirce 1906, “Prolegomena to an Apology for Pragmaticism”, CP 4.536 [http://www.helsinki.fi/science/commens/terms/interpretant.html], accessed 5 May 2011.)
3. an object that the mark stands for (or is a sign of);

4. an interpretant in the mark-user’s mind, which is also a mark.

The interpretant is the mark-user’s idea (or concept, or mental representative) —but an idea or representative of what? Of the mark? Or of the object that the mark stands for? Peirce says that the interpretant’s immediate cause is the mark and its mediate cause is the object.\(^{38}\) Moreover, the interpretant is also a representamen, namely, a sign of the original sign.\(^{39}\)

But there is also another item: Presumably, there is a causal process that produces the interpretant in the mark-user’s mind. This might be an automatic or unconscious process, as when a mental image is produced as the end product of the process of visual perception. Or it might be a conscious process, as when the mark-user reads a word (a mark) and consciously figures out what the word might mean, resulting in an interpretant (as in “deliberate” contextual vocabulary acquisition; cf. Rapaport & Kibby 2007, 2010).

One standard term for this process (i.e., for this relation between mark and interpretant) is ‘interpretation’. The word ‘interpretation’, however, is ambiguous. In one sense, it is a functional\(^{40}\) relation from a mark to a thing that the mark “stands for” or “means”. In another sense, it is the end-product or output of such a functional relation. For present purposes, since we already have Peirce’s term ‘interpretant’ for the output, let us restrict ‘interpretation’ to refer to the process. However, some semioticians identify the ternary relation of Peircean semiosis with my binary relation of interpretation (Incardona, personal communication, 2010). Since two different mark-users could execute the same interpretation, I will continue to treat interpretation as a binary relation and use ‘semiosis’ for the ternary relation.

\(^{38}\)“That determination of which the immediate cause, or determinant, is the Sign, and of which the mediate cause is the Object may be termed the Interpretant…” (Peirce 1909, “Some Amazing Mazes, Fourth Curiosity”, CP 6.347 [http://www.helsinki.fi/science/commens/terms/interpretant.html], accessed 5 May 2011.)

\(^{39}\)“I call a representamen which is determined by another representamen, an interpretant of the latter” (Peirce 1903, Harvard Lectures on Pragmatism, CP 5.138 [http://www.helsinki.fi/science/commens/terms/interpretant.html], accessed 5 May 2011.)

\(^{40}\)Mathematically, a binary relation defined on the Cartesian product of two sets \(A\) and \(B\) (i.e., defined on \(A \times B\)) is a set of ordered pairs (“input-output” pairs), where the first member comes from \(A\) and the second from \(B\). A function is a binary relation \(f\) on \(A \times B\) (“from \(A\) to \(B\)”) such that any given member \(a\) of \(A\) is related by \(f\) to (at most) a unique \(b\) in \(B\). I.e., if \((a,b_1) \in f\) and \((a,b_2) \in f\) (where \(a \in A\) and \(b_1, b_2 \in B\)), then \(b_1 = b_2\). Conversely, if \(b_1 \neq b_2\), then \(f\) cannot map (or interpret) \(a\) as both \(b_1\) and \(b_2\) simultaneously. I.e., no two outputs have the same input. If the outputs are thought of as the meanings or “interpretations” (i.e., interpretants) of the inputs, then an interpretation function cannot allow for ambiguity.
With this by way of background, I will now present two arguments that computers are semiotic systems.41 Recall (§5.2.1) that Peirce’s view of semiotics does not require the mark-user to be human!

\subsection*{5.2.3 Incardona’s Argument that Computers Are Semiotic Systems}

1. Something is a semiotic system if and only if it carries out a process that mediates between a mark and an interpretant of that mark:

 The essential characteristic of a semiotic system is its ternary nature; it applies (i) a mediating or interpretive process to (ii) a mark, resulting in (iii) an interpretant of that mark (and indirectly of the mark’s object). A semiotic system interprets marks.42

 However, there must be a fourth component: After all, whose interpretant is it that belongs to a given mark? This is just another way of asking about “the” meaning of a word. What is “the” interpretation of ‘gold’? Is it what I think gold is? What experts think it is (Putnam 1975)? It is better to speak of “a” meaning “for” a word than “the” meaning “of” a word (Rapaport 2005a). Surely, there are many meanings for marks but, in semiosis, the only one that matters is that of (iv) the interpreter, i.e., the executor of the interpretive process (i, above) that mediates the mark (ii, above) and the (executor’s) interpretant (iii, above).

2. Algorithms describe processes43 that mediate between inputs and outputs:

 The output of an algorithm stands (by definition) in a functional relation to its input. So, the output of an algorithm is an interpretant of its input. This is not a mere causal (or stimulus-response, “behavioral”) correlation between input and output; in the case of computable functions (i.e., of a computable

41For further discussion of the relation of computers to semiotic systems, see Andersen 1992, who argues that “computer systems” are (merely) “sign-vehicles whose main function is to be perceived and interpreted by some group of users”; Nöth 2003, who argues that “none of the criteria of semiosis is completely absent from the world of machines”; and Nadin (2007, 2010), who seems to agree that “computers are semiotic machines”. Other sources are cited in McGee 2011.

42In Rapaport 2005b, I argue that implementation as semantic interpretation is also a ternary relation: Something is (1) a (concrete or abstract) implementation (i.e., a semantic “interpretant”) of (2) an abstraction in (3) a (concrete or abstract) medium.

43An algorithm is a static text (or an abstract, mathematical entity) that describes a dynamic process. That process can be thought of as the algorithm being executed.
interpretation process), there is a mediating process, namely, an algorithm. Consequently, the input-output relation is grounded—or mediated—by that algorithm, i.e., the mechanism that converts the input into the output, i.e., the interpretation.

3. Clearly, computers are algorithm machines.⁴⁴

That’s what computers do: They execute algorithms, converting inputs into outputs, i.e., interpreting the inputs as the outputs. But a computer is (usually) not a mere input-output system. The (typical) algorithm for converting the input into the output (i.e., for interpreting the input as the output) is not a mere table-lookup. Rather, there is internally stored data that can be used or consulted in the conversion process; this can be thought of as a “context of interpretation”. And there are numerous operations that must be performed on the input together with the stored data in order to produce the output, so it is a dynamic process. (Moreover, the stored data can be modified by the input, so that the system can “learn” and thereby change its interpretation of a given input.)

4. Therefore, computers are semiotic systems.

⁴⁴Related to the notion of a semiotic system is that of a symbol system, as described by Allen Newell and Herbert S. Simon (1976: 116):

A physical symbol system consists of [1] a set of entities, called symbols, which are physical patterns that can occur as components of another type of entity called an expression (or symbol structure). Thus, a symbol structure is composed of a number of instances (or tokens) of symbols related in some physical way (such as one token being next to another). At any instant of time the system will contain a collection of these symbol structures. Besides these structures, the system also contains [2] a collection of processes that operate on expressions to produce other expressions: processes of creation, modification, reproduction and destruction. A physical symbol system is a machine that produces through time an evolving collection of symbol structures. Such a system exists in a world of objects wider than just these symbolic expressions themselves. …[4] An expression designates an object if, given the expression, the system can either affect the object itself or behave in ways dependent on the object. … The system can interpret an expression if the expression designates a process and if, given the expression, the system can carry out the process.

In short, a physical symbol system is a computer.
5.2.4 Goldfain’s Argument from Mathematical Cognition

Does a calculator that computes greatest common divisors (GCDs) understand what it is doing? I think that almost everyone, including both Fetzer and I, would agree that it does not. But could a computer that computes GCDs understand what it is doing? I am certain that Fetzer would say ‘no’; but I—along with Albert Goldfain (2008, Shapiro et al. 2007)—say ‘yes’: Yes, it could, as long as it had enough background, or contextual, or supporting information: A computer with a full-blown theory of mathematics at, say, the level of an algebra student learning GCDs, together with the ability to explain its reasoning when answering a question, could understand GCDs as well as the student. (Perhaps better, if the student lacks the ability to fully explain his or her reasoning.)

Calculating becomes understanding if embedded in a larger framework linking the calculation to other concepts (not unlike the semantic contributions of Semantic Web annotations, which also serve as an embedding framework). So a computer could know, do, and understand mathematics, if suitably programmed with all the information required for knowing, doing, and understanding mathematics. A computer or a human who can calculate GCDs by executing an algorithm does not (necessarily) thereby understand GCDs. But a computer or a human who has been taught (or programmed) all the relevant mathematical definitions can understand GCDs. (For further discussion, see Rapaport 1988, 1990, 2006.)

Goldfain (personal communication) has offered the following argument that marks can stand for something for a computer:

1. The natural numbers that a cognitive agent refers to are denoted by a sequence of marks that are unique to the agent. These marks exemplify (or implement; Rapaport 1999, 2005b) a finite, initial segment of the natural-number structure (i.e., 0, 1, 2, 3, ..., up to some number n).

2. Such a finite, initial segment can be generated by a computational cognitive agent (e.g., a computer, suitably programmed) via perception and action in the world during an act of counting (e.g., using the programming language Lisp’s “gensym” function; for details, see Goldfain 2008). Thus, there would be a history of how these marks came to signify something for the agent (e.g., the computer).

3. These marks (e.g., $b4532$, $b182$, $b9000$, ...) have no meaning for another cognitive agent (e.g., a human user of the computer) who lacks access to their ordering.

4. Such private marks (called ‘numerons’ by cognitive scientists studying mathematical cognition) are associable with publicly meaningful marks.
For example, ‘$\text{b}4532$’ might denote the same number as the Hindu-Arabic numeral ‘1’, ‘$\text{b}182$’ might denote the same number as ‘2’, etc.

5. A computational cognitive agent (e.g., a computer) can do mathematics solely on the basis of its numerons. (See Goldfain 2008 for details; cf. Shapiro et al. 2007.)

6. Therefore, these marks stand for something for the computer (i.e., for the agent). (Moreover, we can check the mathematics, because of premise 4.)

7. Thus, such a computer would be a semiotic system.

5.2.5 An Argument from Embedding in the World

Besides being able to understand mathematics in this way, computers can also understand other, conventional activities. Fetzer (2008) gives the following example of something that a semiotic system can do but that, he claims, a computer cannot:

> A red light at an intersection...stands for applying the brakes and coming to a complete halt, only proceeding when the light turns green, for those who know “the rules of the road”. [My emphasis.]

As Fetzer conceives it, the crucial difference between a semiotic system and a computer is that the former, but not the latter, can use a mark as something that stands for something (else) for itself (cf. Fetzer 1998). In that case, we need to ask whether such a red light can stand for “applying the brakes”, etc., for a computer? It could, if the computer “knows the rules of the road”. But a computer can “know” those rules, in essentially the same way that humans do, if it has those rules stored (memorized) in a knowledge base (its mind).

But merely storing, and even being able to access and reason about, this information is not enough: IBM’s Jeopardy-winning Watson computer can do that, but no one would claim that such stored information is understood, i.e., stands for anything for Watson itself. At least one thing more is needed for a red light to stand for something for the computer itself: The computer must use those rules to drive a vehicle. But there are such computers (or computerized vehicles), namely, those

45“...in order to be able to refer separately to the general category of possible count tags and the subset of such tags which constitute the traditional count words[,] we call the former numerons: the latter numerlogs. Numerons are any distinct and arbitrary tags that a mind (human or nonhuman) uses in enumerating a set of objects. Numerlogs are the count words of a language.” (Gelman & Gallistel 1986: 76–77.)
that have successfully participated in the DARPA Grand Challenge autonomous vehicle competitions. (For a relevant discussion, see Parisien & Thagard 2008.) I conclude that (such) computers can be semiotic systems.

Some might argue that such embedding in a world is not computable. There are two reasons to think that it is. First, all of the autonomous vehicles must internally store the external input in order to compute with it. Thus, the syntactic-semantic principle of internalism explains how the embedding is computable. Second, the vehicles’ behaviors are the output of computable (indeed, computational) processes. (I discuss this further in §6.2.)

6 Fetzer’s “Dynamic” Difference

Fetzer also argues that “computers are governed by algorithms, but minds are not”, on the following grounds (Fetzer 2001: xv; my boldface and italics):

Premise 1:
Computers are governed by programs, which are causal models of algorithms.

Premise 2:
Algorithms are effective decision procedures for arriving at definite solutions to problems in a finite number of steps.

Premise 3:
Most human thought processes, including dreams, daydreams, and ordinary thinking, are not procedures for arriving at solutions to problems in a finite number of steps.

Conclusion 1:
Most human thought processes are not governed by programs as causal models of algorithms.

Conclusion 2: Minds are not computers.

Once again, I disagree with the boldfaced claims. The italicized claims are ones that are subtly misleading; below, I will explain why. I prefer not to speak as Fetzer does.

First, let me point to a “red herring”: Fetzer (2008) says that “if thinking is computing and computing is thinking and if computing is algorithmic, then thinking is algorithmic, but it isn’t” (my emphasis). The second conjunct is false;
fortunately (for Fetzer), it is also irrelevant: A computer executing a non-cognitive program (e.g., an operating system) is computing but is not thinking.\footnote{Of course, this depends on whether you hold that an operating system is a non-cognitive, computer program. Once upon a time, it was humans who operated computers. Arguably, operating systems, insofar as they do a task once reserved for humans, are doing a cognitive task. Alternatively, what the humans who operated computers were doing was a task requiring no “intelligence” at all. (These ideas were first suggested to me by Shoshana Hardt Loeb, ca. 1983.) Cf. my remark on Turing machines as AI programs, in note 14, above.}

6.1 Algorithms

Premise 2 is consistent with the way I characterized ‘algorithm’ in §2, above, so I am willing to accept it. Yet I think that algorithms, so understood, are the wrong entity for this discussion. Instead, we need to relax some of the constraints and to embrace a more general notion of “procedure” (Shapiro 2001).

In particular, procedures (as I wish to use the term here) are like algorithms, but they are not necessarily finite; they may continue executing until purposely halted by an outside circumstance (cf. Knuth’s (1973) notion of a (non-finite) “computational method”; see the Appendix). For instance, an automatic teller machine or an online airline reservation system should not halt unless turned off by an administrator (cf. Wegner 1997).

Also, procedures (as I am using the term) need not yield “correct” output. Consider a computer programmed for playing chess. Even IBM’s celebrated, world-champion Deep Blue will not win or draw every game, even though chess is a “game of perfect (finite) information” (like Tic Tac Toe) in which, mathematically, though not practically, it is knowable whether any given player, if playing perfectly, will win, lose, or draw, because the “game tree” (the tree of all possible moves and replies) can in principle be completely written down. But because of the practical limitations (the tree would take too much space and time to actually write down; cf. Zobrist 2000: 367), the computer chess program will occasionally give the “wrong” output. But it is not behaving any differently from the algorithmic way it would behave if it gave the correct answer. Sometimes, such programs are said to be based on “heuristics” instead of “algorithms”, where a heuristic for problem P is an algorithm for some problem P', where the solution to P' is ‘near enough’ to a solution to P (Rapaport 1998, §2; cf. Simon’s (1956) notion of “satisficing”).

In order for computational cognitive science’s working hypothesis to be correct, the algorithms that compute cognition will have to be procedures, as just characterized. (Cf. Kugel 2002 for a similar “relaxation” of the strict requirements of being an algorithm.)
6.2 Are Dreams Algorithms?

Fetzer (1998) argues that dreams are not algorithms and that ordinary, stream-of-consciousness thinking is not “algorithmic”. I am willing to agree, up to a point, with Fetzer’s Dynamic Premise 3: Some human thought processes may indeed not be algorithms. But that is not the real issue. The real issue is this: Could there be algorithms (or procedures) that produce dreams, stream-of-consciousness thinking, or other mental states or processes, including those that might not themselves be algorithms (or procedures)?

The difference between an entity being computable and being produced by a computable process (i.e., being the output of an algorithm) can be clarified by considering two ways in which images can be considered computable entities. An image could be implemented by an array of pixels; this is the normal way in which images are stored in—and processed by—computers. Such an image is a computable, discrete data structure reducible to arrays of 0s and 1s. Alternatively, an image could be produced by a computational process that drives a flat-bed plotter (Phillips 2011). Such an image is not a discrete entity—it is, in fact, continuous; it is not reducible to arrays of 0s and 1s. Similarly, dreams need not themselves be algorithms in order to be producible by algorithms. (The same could, perhaps, be said of pains and other qualia: They might not themselves be algorithmically describable states, but they might be the outputs of algorithmic(ally describable) processes.)

What are dreams? In fact, no one knows, though there are many rival theories. Without some scientific agreement on what dreams are, it is difficult to see how one might say that they are—or are not—algorithmic or producible algorithmically. But suppose, as at least one standard view has it, that dreams are our interpretations of random neuron firings during sleep (perhaps occurring during the transfer of memories from short- to long-term memory), interpreted as if they were due to external causes. Suppose also that non-dream neuron firings are computable. There are many reasons to think that they are; after all, the working assumption of computational cognitive science may have been challenged, but has not yet been refuted (pace Piccinini 2005, 2007 and those cited in note 9). In that case, the

47See discussion and citations in Edelman 2010: 3. Edelman says, “The phenomenal experience that arises from this dynamics [i.e., the dynamics of the anatomy and physiology of dreaming] is that of the dream self, situated in a dream world” (my italics). So Fetzer could be charitably interpreted as meaning, not that dreams (hence minds) are not computable, but that dream phenomenology is not computable, i.e., that the “hard problem” of consciousness is, indeed, hard. But this raises a host of other issues that go beyond the scope of this paper. For some relevant remarks, see Rapaport 2005b, §2.3.

48Remember, I am supposing that neuron firings are computable, not necessarily computational. Thus, Piccinini’s arguments that neuron firings are not computational are irrelevant.
neuron firings that constitute dreams would also be computable.

What about stream-of-consciousness thinking? That might be computable, too, by means of spreading activation in a semantic network, apparently randomly associating one thought to another.

In fact, computational cognitive scientists have proposed computational theories of both dreaming and stream-of-consciousness thinking! (See Mueller 1990, Edelman 2008b, Mann 2010.) It is not a matter of whether these scientists are right and Fetzer is wrong, or the other way around. Rather, the burden of proof is on Fetzer to say why he thinks that these proposed computational theories fail irreparably.

The important point is that whether a mental state or process is computable is at least an empirical question. Anti-computationalists must be wary of committing what many AI researchers think of as the Hubert Dreyfus fallacy: One philosopher’s idea of a non-computable task may be just another computer scientist’s research project. Put another way, what no one has yet written a computer program for is not thereby necessarily non-computable.

6.3 Are Minds Computers?

Fetzer’s Dynamic Conclusion 2 is another claim that must be handled carefully: Maybe minds are computers; maybe they aren’t. The more common formulation is that minds are programs and that brains are computers (cf. Searle 1990, Piccinini 2010). But I think there is a better way to express the relationship than either of these slogans: A mind is a virtual machine, computationally implemented in some medium.

Roughly, a virtual machine is a computational implementation of a real machine; the virtual machine is executed as a process running on another (real or virtual) machine. For instance, there is (or was, at the time of writing) an “app” for Android smartphones that implements (i.e., simulates, perhaps emulates; see §8) a Nintendo Game Boy. Game Boy videogames can be downloaded and played on this “virtual” Game Boy “machine”. (For a more complex example, of a virtual machine running on another virtual machine, see Rapaport 2005b, §3.3.)

Thus, the human mind is a virtual machine computationally implemented in the nervous system, and a robot mind would be a virtual machine computationally implemented in a computer. Such minds consist of states and processes produced by the behavior of the brain or computer that implements them. (For discussion of virtual machines and this point of view, see Rapaport 2005b, §3.2; Hofstadter 2007; Edelman 2008b; Pollock 2008.)
7 Fetzer’s “Affective” Difference

Fetzer also argues that “Mental thought transitions are affected by emotions, attitudes, and histories, but computers are not”, on the following grounds (Fetzer 2008, 2010; my boldface and italics):

Premise 1:
Computers are governed by programs, which are causal models of algorithms.

Premise 2:
Algorithms are effective decisions, which are not affected by emotions, attitudes, or histories.

Premise 3:
Mental thought transitions are affected by values of variables that do not affect computers.

Conclusion 1:
The processes controlling mental thought transitions are fundamentally different than those that control computer procedures.

Conclusion 2: Minds are not computers.

Once again, I disagree with the boldfaced claims and find the italicized claims subtly misleading, some for reasons already mentioned.

Before proceeding, it will be useful to rehearse (and critique) the definitions of some of Fetzer’s technical terms, especially because he uses some of them in slightly non-standard ways. On Fetzer’s view:

- The intension of expression $E = \text{def}$ the conditions that need to be satisfied for something to be an E.

 (This term is not usually limited to noun phrases in the way that Fetzer seems to (“to be an E”), but this is a minor point.)

- The extension of expression $E = \text{def}$ the class of all things that satisfy E’s intension.

 (A more standard definition would avoid defining ‘extension’ in terms of ‘intension’; rather, the extension of an expression would be the class of all (existing) things to which the expression E is applied by (native) speakers of the language.)
• The **denotation** of expression \(E \) for agent \(A \) = \(\text{def} \)
the subset of \(E \)’s extension that \(A \) comes into contact with.

(This notion may be useful, but 'denotation' is more often a mere synonym of 'extension' or 'referent'.)

• The **connotation** of expression \(E \) for agent \(A \) = \(\text{def} \)
\(A \)’s attitudes and emotions in response to \(A \)’s interaction with \(E \)’s denotation for \(A \).

(Again, a useful idea, but not the usual use of the term, which is more often a way of characterizing the other concepts that are closely related to \(E \) (perhaps in some agent \(A \)’s mind), or just the properties associated with (things called) \(E \).)

Fetzer then identifies the “meaning” of \(E \) for \(A \) as \(E \)’s denotation and connotation for \(A \).

Contra Fetzer’s Affective Premises 2 and 3, programs *can* be based on (idiosyncratic) emotions, attitudes, and histories: Karen Ehrlich and I (along with other students and colleagues) have developed and implemented a computational theory of contextual vocabulary acquisition (Ehrlich 1995; Rapaport & Ehrlich 2000; Rapaport 2003b, 2005a; Rapaport & Kibby 2007, 2010). Our system learns (or “acquires”) a meaning for an unfamiliar or unknown word from the word’s textual context integrated with the reader’s prior beliefs. These prior beliefs (more usually called ‘prior knowledge’ in the reading-education literature), in turn, can—and often do—include idiosyncratic “denotations” and “connotations” (in Fetzer’s senses), emotions, attitudes, and histories. In fact, contrary to what some reading educators assert (cf. Ames 1966, Dulin 1970), a meaning for a word cannot be determined solely from its textual context. The reader’s prior beliefs are essential (Rapaport 2003b, Rapaport & Kibby 2010). And, clearly, the meaning that one reader figures out or attributes to a word will differ from that of another reader to the extent that their prior beliefs differ.

Furthermore, several cognitive scientists have developed computational theories of affect and emotion, showing that emotions, attitudes, and histories *can* affect computers that model them (Herbert Simon (1967), Aaron Sloman (Sloman & Croucher 1981; Wright et al. 1996; Sloman 2004, 2009), Rosalind Picard (1997, and website), and Paul Thagard (2006), among others).

Once again, the burden of proof is on Fetzer.

49Both ‘denotation’ and ‘connotation’ in their modern uses were introduced by Mill 1843, the former being synonymous with ‘extension’ and the latter referring to implied properties of the item denoted.
8 Simulation

I close with a discussion of “the matter of simulation”. Fetzer argues that “Digital machines can nevertheless simulate thought processes and other diverse forms of human behavior”, on the following grounds (Fetzer 2001: xvii, 2008, 2010; my emphasis):

Premise 1: Computer programmers and those who design the systems that they control can increase their performance capabilities, making them better and better simulations.

Premise 2: Their performance capabilities may be closer and closer approximations to the performance capabilities of human beings without turning them into thinking things.

Premise 3: Indeed, the static, dynamic, and affective differences that distinguish computer performance from human performance preclude those systems from being thinking things.

Conclusion: Although the performance capabilities of digital machines can become better and better approximations of human behavior, they are still not thinking things.

As before, I disagree with the boldfaced claims. But, again, we must clarify Fetzer’s somewhat non-standard use of terms.

Computer scientists occasionally distinguish between a “simulation” and an “emulation”, though the terminology is not fixed. In the Encyclopedia of Computer Science, Paul F. Roth (1983) says that \(x \) simulates \(y \) means that \(x \) is a model of some real or imagined system \(y \), and we experiment with \(x \) in order to understand \(y \). (Compare our earlier discussion of understanding one thing in terms of another, §3.3.) Typically, \(x \) might be a computer program, and \(y \) might be some real-world situation. In an extreme case, \(x \) simulates \(y \) if and only if \(x \) and \(y \) have the same input-output behavior.

And in another article in the Encyclopedia of Computer Science, Stanley Habib (1983) says that \(x \) emulates \(y \) means that either: (a) computer \(x \) “interprets and executes” computer \(y \)’s “instruction set” by implementing \(y \)’s operation codes in \(x \)’s hardware—i.e., hardware \(y \) is implemented as a virtual machine on \(x \)—or (b) software feature \(x \) “simulates”(!) “hardware feature” \(y \), doing what \(y \) does exactly (so to speak) as \(y \) does it. Roughly, \(x \) emulates \(y \) if and only if \(x \) and \(y \) not only have the same input-output behavior, but also use the same algorithms and data structures.

36
This suggests that there is a continuum or spectrum, with “pure” simulation at one end (input-output-equivalent behavior), and “pure” emulation at the other end (behavior that is equivalent with respect to input-output, all algorithms in full detail, and all data structures). So, perhaps there is no real distinction between simulation and emulation except for the degree of faithfulness to what is being simulated or emulated.

In contrast, Fetzer uses a much simplified version of this for his terminology (Fetzer 1990, 2001, 2011):

- System x simulates system $y =_{\text{def}} x$ and y have the same input-output behavior.
- System x replicates system $y =_{\text{def}} x$ simulates y by the same or similar processes.
- System x emulates system $y =_{\text{def}} x$ replicates y, and x and y “are composed of the same kind of stuff”.

At least the latter two are non-standard definitions and raise many questions. For instance, how many processes must be “similar”, and how “similar” must they be, before we can say that one system replicates another? Or consider (1) a Turing machine (a single-purpose, or dedicated, computer) that computes GCDs and (2) a universal Turing machine (a multiple-purpose, or stored-program computer) that can be programmed to compute GCDs using exactly the same program as is encoded in the machine table of the former Turing machine. Does the latter emulate the former? Does the former emulate the latter? Do two copies of the former emulate each other? Nevertheless, Fetzer’s terminology makes some useful distinctions, and, here, I will use these terms as Fetzer does.

The English word ‘simulation’ (however defined) has a sense (a “connotation”?) of “imitation” or “unreal”: A simulation of a hurricane is not a real hurricane. A simulation of digestion is not real digestion. And I agree that a computer that simulates (in Fetzer’s sense) some process P is not necessarily “really” doing P. But what, exactly, is the difference? A computer simulation (or even a replication) of the daily operations of a bank is not thereby the daily operations of a (real) bank. But I can do my banking online; simulations can be used as if they were real, as long as the (syntactic) simulations have causal impact on me (Goldfain, personal communication, 2011). And although computer simulations of hurricanes don’t get real people wet (they are, after all, not emulations in Fetzer’s sense), they could get simulated people simulatedly wet (Shapiro & Rapaport 1991, Rapaport 2005b):
[A] simulated hurricane would feel very real, and indeed can prove fatal, to a person who happens to reside in the same simulation. (Edelman 2010: 3, fn. 3; my italics.)

The “person”, of course, would have to be a simulated person. And it well might be that the way that the simulated hurricane would “feel” to that simulated person would differ from the way that a real hurricane feels to a real person.50

Paul Harris [2000] found that even two-year-olds will tell you that if an imaginary teddy [bear] is drinking imaginary tea, then if he spills it the imaginary floor will require imaginary mopping-up. (Gopnik 2009: 29.)

This is a matter of the “scope” of the simulation: Are people within the scope of the hurricane simulation or not? If they are not, then the simulation won’t get them wet. If they are—i.e., if they are simulated, too—then it will.

It should also be noted that sometimes things like simulated hurricanes can do something analogous to getting real people wet: Children “can have real emotional reactions to entirely imaginary scenarios” (Gopnik 2009: 31), as, of course, can adults, as anyone who has wept at the movies can testify (cf. Schneider 2009).

But there are cases where a simulation is the real thing. For example:

- a scale model of a scale model of the Statue of Liberty is a scale model of the Statue of Liberty,
- a Xerox copy of a document is that document, at least for purposes of reading it and even for some legal purposes, and
- a PDF version of a document is that document.

More specifically, a computer that simulates an “informational process” is thereby actually doing that informational process, because a computer simulation of information is information:

- A computer simulation of a picture is a picture, hence the success of digital “photography”.
- A computer simulation of language is language. Indeed, as William A. Woods (2010: 605, my emphasis) says:

 [L]anguage is fundamentally computational. Computational linguistics has a more intimate relationship with computers than

50 On the meaningfulness of that comparison, see Strawson 2010: 218–219.
many other disciplines that use computers as a tool. When a computational biologist simulates population dynamics, no animals die.51 When a meteorologist simulates the weather, nothing gets wet.52 But computers really do parse sentences. Natural language question-answering systems really do answer questions.53 The actions of language are in the same space as computational activities, or alternatively, these particular computational activities are in the same space as language and communication.

- A computer simulation of mathematics is mathematics. As Edelman (2008b: 81) puts it (though not necessarily using the terms as Fetzer does):

 A simulation of a computation and the computation itself are equivalent: try to simulate the addition of 2 and 3, and the result will be just as good as if you “actually” carried out the addition—that is the nature of numbers.

- A computer simulation of reasoning is reasoning.

And, in general, a computer simulation of cognition is cognition. To continue the just-cited quote from Edelman (2008b: 81):

Therefore, if the mind is a computational entity, a simulation of the relevant computations would constitute its fully functional replica.

\section{Conclusion}

I conclude that Fetzer is mistaken on all counts: Computers are semiotic systems and can possess minds, mental processes are governed by algorithms (or, at least, “procedures”), and algorithms can be affected by emotions, attitudes, and individual histories. Moreover, computers that implement cognitive algorithms really do exhibit those cognitive behaviors—they really do think. And syntactic semantics explains how this is possible.

51But simulated animals simulatedly die!—WJR.

52But see my comment above about simulated hurricanes!—WJR.

53Cf. IBM’s Jeopardy-winning Watson.
Appendix: What Is an Algorithm?

Before anyone attempted to define ‘algorithm’, many algorithms were in use both by mathematicians (e.g., Euclid’s procedures for construction of geometric objects by compass and straightedge, Euclid’s algorithm for computing the greatest common divisor of two integers) as well as by ordinary people (e.g., the algorithms for simple arithmetic with Hindu-Arabic numerals). When David Hilbert investigated the foundations of mathematics, his followers began to try to make the notion of algorithm precise, beginning with discussions of “effectively calculable”, a phrase first used by Jacques Herbrand in 1931 (Gandy 1988: 68) and later taken up by Alonzo Church (1936) and Stephen Kleene (1952), but left largely undefined, at least in print.

J. Barkley Rosser (1939: 55) made an effort to clarify the contribution of the modifier “effective” (italics and enumeration mine):

“Effective method” is here used in the rather special sense of a method each step of which is [1] precisely predetermined and which is [2] certain to produce the answer [3] in a finite number of steps.

But what, exactly, does ‘precisely predetermined’ mean? And does ‘finite number of steps’ mean that the written statement of the algorithm has a finite number of instructions, or that, when executing them, only a finite number of tasks must be performed? (I.e., what gets counted: written steps or executed instructions? One written step—“for i := 1 to 100 do x := x + 1”—can result in 100 executed instructions.)

Much later, after Turing’s, Church’s, Gödel’s, and Post’s precise formulations and during the age of computers and computer programming, A.A. Markov, Stephen Kleene, and Donald Knuth also gave slightly less vague, though still informal, characterizations.

According to Markov (1954/1960: 1), an algorithm is a “computational process” satisfying three (informal) properties: (1) being “determined” (“carried out according to a precise prescription...leaving no possibility of arbitrary choice, and in the known sense generally understood”), (2) having “applicability” (“The possibility of starting from original given objects which can vary within known limits”), and (3) having “effectiveness” (“The tendency of the algorithm to obtain a certain result, finally obtained for appropriate original given objects”). These are a bit obscure: Being “determined” may be akin to Rosser’s “precisely predetermined”. But what about being “applicable”? Perhaps this simply means that an algorithm must not be limited to converting one, specific input to an output, but must be more general. And Markov’s notion of “effectiveness” seems restricted...
to only the second part of Rosser’s notion, namely, that of “producing the answer”. There is no mention of finiteness, unless that is implied by being computational.

In his undergraduate-level, logic textbook, Kleene (1967) elaborates on the notions of “effective” and “algorithm” that he left unspecified in his earlier, classic, graduate-level treatise on metamathematics. He continues to identify “effective procedure” with “algorithm” (Kleene 1967: 231), but now he offers a characterization of an algorithm as (1) a “procedure” (i.e., a ‘finite” “set of rules or instructions”) that (2) “in a finite number of steps” answers a question, where (3) each instruction can be “followed” “mechanically, like robots; no insight or ingenuity or invention is required”, (4) each instruction “tell[s] us what to do next”, and (5) the algorithm “enable[s] us to recognize when the steps come to an end” (Kleene 1967: 223).

Knuth (1973: 1–9) goes into considerably more detail, albeit still informally. He says that an algorithm is “a finite set of rules which gives a sequence of operations for solving a specific type of problem”, with “five important features” (Knuth 1973: 4):

1. “Finiteness. An algorithm must always terminate after a finite number of steps” (Knuth 1973: 4).

 Note the double finiteness: A finite number of rules in the text of the algorithm and a finite number of steps to be carried out. Moreover, algorithms must halt. (Halting is not guaranteed by finiteness; see point 5, below.) Interestingly, Knuth also says that an algorithm is a finite “computational method”, where a “computational method” is a “procedure” that only has the next four features (Knuth 1973: 4).

2. “Definiteness. Each step… must be precisely defined; the actions to be carried out must be rigorously and unambiguously specified…” (Knuth 1973: 5).

 This seems to be Knuth’s analogue of the “precision” that Rosser and Markov mention.

3. “Input. An algorithm has zero or more inputs” (Knuth 1973: 5).

 Curiously, only Knuth and Markov seem to mention this explicitly, with Markov’s “applicability” property suggesting that there must be at least one input. Why does Knuth say zero or more? Presumably, he wants to allow for the possibility of a program that simply outputs some information. On the
other hand, if algorithms are procedures for computing functions, and if functions are “regular” sets of input-output pairs (regular in the sense that the same input is always associated with the same output), then algorithms would always have to have input. Perhaps Knuth has in mind the possibility of the input being internally stored in the computer rather than having to be obtained from the external environment.

4. “Output. An algorithm has one or more outputs” (Knuth 1973: 5).

That there must be at least one output echoes Rosser’s property (2) (“certain to produce the answer”) and Markov’s notion (3) of “effectiveness” (“a certain result”). But Knuth characterizes outputs as “quantities which have a specified relation to the inputs” (Knuth 1973: 5); the “relation” would no doubt be the functional relation between inputs and outputs, but, if there is no input, what kind of a relation would the output be in? Very curious!

5. “Effectiveness. This means that all of the operations to be performed in the algorithm must be sufficiently basic that they can in principle be done exactly and in a finite length of time by a man [sic] using pencil and paper” (Knuth 1973: 6).

Note, first, how the term ‘effective’ has many different meanings among all these characterizations of “algorithm”, ranging from it being an unexplained term, through being synonymous with ‘algorithm’, to naming very particular—and very different—properties of algorithms.

Second, it is not clear how Knuth’s notion of effectiveness differs from his notion of definiteness; both seem to have to do with the preciseness of the operations.

Third, Knuth brings in another notion of finiteness: finiteness in time. Note that an instruction to carry out an infinite sequence of steps in a finite time could be accomplished by doing each step twice as fast as the previous step; or each step might only take a finite amount of time, but the number of steps required might take longer than the expected life of the universe (as in computing a perfect, non-losing strategy in chess; see §6.1, above). These may have interesting theoretical
implications (see the vast literature on hypercomputation),54 but
do not seem very practical. Knuth (1973: 7) observes that “we
want good algorithms in some loosely-defined aesthetic sense.
One criterion of goodness is the length of time taken to perform
the algorithm. . . .”

Finally, the “gold standard” of “a [hu]man using pencil and
deer” seems clearly to be an allusion to Turing’s (1936) analysis
(see §5.2.2, above).

We can summarize these informal observations as follows: An algorithm (for
executor E to accomplish goal G) is:

1. a procedure, i.e., a finite set (or sequence) of statements (or rules, or
instructions), such that each statement is:

(a) composed of a finite number of symbols (or marks) from a finite
alphabet
(b) and unambiguous for E—i.e.,
 i. E knows how to do it
 ii. E can do it
 iii. it can be done in a finite amount of time
 iv. and, after doing it, E knows what to do next—

2. which procedure takes a finite amount of time, i.e., halts,

3. and that ends with G accomplished

But the important thing to note is that the more one tries to make precise these
informal requirements for something to be an algorithm, the more one recapitulates
Turing’s motivation for the formulation of a Turing machine! Turing (1936, esp.
§9) describes in excruciating detail what the minimal requirements are for a human
to compute:

[T]he computation is carried out on one-dimensional paper, \textit{i.e.} on a
tape divided into squares. . . . [T]he number of symbols which may be
printed is finite. . . . The behaviour of the computer \textit[i.e., the human
who computes!—WJR] at any moment is determined by the symbols
which he [sic] is observing, and his “state of mind” at that moment.
. . . [T]here is a bound B to the number of symbols or squares which

54See [http://www.cse.buffalo.edu/~rapaport/584/hypercompn.html], accessed 6 May 2011, for a
partial bibliography.
the computer can observe at one moment. . . . [A]lso. . . . the number of states of mind which need be taken into account is finite. . . . [T]he operations performed by the computer. . . [are] split up into "simple operations" which are so elementary that it is not easy to imagine them further divided. Every such operation consists of some change of the physical system consisting of the computer and his tape. We know the state of the system if we know the sequence of symbols on the tape, which of these are observed by the computer. . . . and the state of mind of the computer. . . . [I]n a simple operation not more than one symbol is altered. . . . [T]he squares whose symbols are changed are always "observed" squares. . . . [T]he simple operations must include changes of distribution of observed squares. . . . [E]ach of the new observed squares is within L squares of an immediately previously observed square. . . . The most general single operation must therefore be taken to be one of the following: (A) A possible change (a) of symbol together with a possible change of state of mind. (B) A possible change (b) of observed squares, together with a possible change of mind. The operation actually performed is determined . . . by the state of mind of the computer and the observed symbols. In particular, they determine the state of mind of the computer after the operation is carried out. We may now construct a machine to do the work of this computer.” (Turing 1936: 249–251.)

The “machine”, of course, is what is now known as a “Turing machine”; it “does the work of this” human computer. Hence, my claim, above (note 14), that the Turing machine was the first AI program.

Acknowledgments

This essay is based on my oral reply (“Salvaging Computationalism: How Cognition Could Be Computing”) to two unpublished presentations by Fetzer: (1) “Can Computationalism Be Salvaged?”, 2009 International Association for Computing and Philosophy (Chicago), and (2) “Limits to Simulations of Thought and Action” session on “The Limits of Simulations of Human Actions” at the 2010 North American Computing and Philosophy conference (Carnegie-Mellon University). I am grateful to Fetzer for allowing me to quote from his slides and an unpublished manuscript; to our co-presenters at both meetings—Selmer Bringsjord and James H. Moor—for their commentaries; to our unique audiences at those meetings; and to Randall R. Dipert, Albert Goldfain, Lorenzo Incardona,
Kenneth W. Regan, Daniel R. Schlegel, Stuart C. Shapiro, and members of the SNePS Research Group for comments or assistance on previous drafts.

References

Eco, Umberto (1979), A Theory of Semiotics (Bloomington, IN: Indiana University Press).

Fodor, Jerry A. (1975), The Language of Thought (New York: Crowell).

48

