
CSE702 Spring 2025 Week 4: Predictive Analytics
 
A predictive analytic model :

1. addresses a series of situations, each of which involves a set of outcomes .m , m , … , m1 2 ℓ

2. generates projected probabilities  for the respective outcomes.  And:p , p , … , p1 2 ℓ

3. also generates confidence intervals  for these a < p < b , a < p < b ,..., a < p < b[ 1 1 1] [ 2 2 2] [ ℓ ℓ ℓ]

probabilities.
 
In my usage, point 3 distinguishes "predictive analytics" from mere "analytics."  But what on earth does 
it mean to speak of a "95% probability interval" for one of your own projected probabilities?  An 
outcome  either happens or it doesn't.mi

 
The point comes more into focus if we imagine analyzing a physical coin.  Suppose the coin has a 
raised head and a slightly concave tail relative to its rim.  Then we may estimate the probability  of p

tails at .  Moreover, we want to be able to assert 95% confidence that the true physical probability  0.51 p̌

is between  and .  What does this mean?  Basically this:0.505 0.515

 
• Say that a "trial run"  flips the coin 1,000 times and records the proportion  of tails.r tr
• The assertion says that if we do 1,000 trial runs, then at least 950 of them will have 

.  0.505 ≤  t  ≤  0.515r

 
We've had to flip the coin a million times total to explain the concept. But what we did was not just 
estimate the coin, we tested and verified the claimed precision as well as accuracy of our estimate. 
That is to say, we did analytics of the prediction itself.  Thus: predictive analytics.
 
(By the way, note this article about dependence on how the coin faces initially.)
 
 
The point about confidence intervals becomes more concrete if we add a fourth point to the definition: A 
predictive analytic model
 

4. projects risk/reward quantities  associated to the outcomes .vi mi

 

Understood simply, the projected loss/value in the single situation is .  But with E v = p v[ ] ∑ℓ

i=1 i i

repeated situations  we can project in that dimension too.  If outcome  at each time , t = 1, … , T m1 t

which we can label , is the costly one, then the projected total loss is .  Or for total m1,t p v∑T

t=1 1,t 1,t

value/loss, we sum over both dimensions to get the expectation: .  p v∑T

t=1
∑

ℓt

i=1 i,t i,t

 
Then the confidence intervals around , or around all the projections , translate into confidence p1,t pi,t

intervals for these aggregate statistics.  It is not as simple as saying that they are weighted sums of 

 

 

https://www.newscientist.com/article/2397248-coin-flips-dont-truly-have-a-50-50-chance-of-being-heads-or-tails/


 and . Consider  in the case  of just two outcomes  and , which are a vi,t i,t b vi,t i,t E v[ ] ℓ = 2 m1 m2

exhaustive and mutually exclusive.   Further suppose , , and , . v = - v1 2 p = p = 0.51 2 a = a1 2 b = b1 2

If you expected the confidence interval to be , then surprise! that's .  If a v + a v ,  b v + b v[ 1 1 2 2 1 1 2 2] 0, 0[ ]

the true  is at the bottom  of its envelope, then we must have .  Note p̆1 a1 = 1 - = 1 - a = bp̌2 ( p̆1) ( 1) 2

that  and  must be true in general.  Then  b = 1 - a2 1 a = 1 - b2 1 a v + 1 - a v ,  b v + 1 - b v[ 1 1 ( 1) 2 1 1 ( 1) 2]

is true in general, and when  it becomes .  But now try the case v = - v2 1 2a - 1 v , 2b - 1 v[( 1 ) 1 ( 1 ) 1]

...  ℓ = 3

 

For the aggregates over , the simple sums  and  put the bottom of the t a v∑T

t=1 1,t 1,t a v∑T

t=1
∑

ℓt

i=1 i,t i,t

envelope far too low when the events for different  are independent. What's needed instead is to t

compute the variance  for each .  If the situations for different  are independent, then we get the vart t t

overall variance as  by the rule that variances of independent events add.  Taking the square var∑
 

t t

root then gives an overall standard deviation  around the estimate  for the expected value.  Then 𝜎 E

the "two-sigma error bars"  give (slightly more than) 95% confidence of bounding the E - 2𝜎, E + 2𝜎[ ]

true expected value.  
 
[Some footnotes: Again it may seem weird to distinguish an "expected expectation" from a "true 
expectation."  But when you are deciding whether to buy any financial instrument with risk, that's what 
you are hoping to equate---or put in a confidence range.  The usual convention in statistics is to use a 
hat  for a projected quantity, so we should start by saying that a predicive analytic model generates  

probability estimates  and so on.  This could get cumbersome, so instead I'm using an , , … ,p
1
p

2
p
ℓ

inverted hat  for a ground-truth quantity.  We will have to be careful not to get overconfident by  ̌

confusing model projections with true values.  
 
We haven't stated that the probabilities make  equal to  for each .  But if they c = p + ⋯ + pt 1,t ℓ ,tt 1 t

don't, we can postulate a "null event"  of value  and probability .  Furthermore, if we p0,t v = 00,t 1 - ct
define  to be the maximum of  over , then we can pad every situation  with  to have "dummy ℓ ℓt t t ℓ < ℓt

outcomes" , each of probability .  Thus we can pretend that  is always the same for m , … , mℓ+1 ℓt
0 ℓ

any situation .  Neither of these changes should affect either the projected variance  or its true t vart

counterpart .  Dividing by " " may not be meaningful even apart from the fact that the situations  ˇvart ℓ t

need not have the same number  of possible outcomes, but dividing by  to make averages out of ℓt T

the aggregates is always fine.]
 
 
In Chess
 
The situations  are chess positions with a given player to move.  We can think of  as meaning "game t t
turn."  Then:
 

 

 



• The  are the legal moves in the position.  m , … , m1 ℓ

• Each  has a value  given by one or more strong chess programs (called engines).  mi vi

• Traditionally  is in centipawn units: a possibly-negative integer of  of a pawn. When vi 1 / 100s

written to two decimal places we speak of "pawn units."  Thus cp and  pawns are the -150 -1.50

same, meaning that the value is figuratively a pawn-and-a-half disadvantage.
• The engine itself orders the moves  in nonincreasing order of value: m , … , m1 ℓ

.  Even though  and further values may equal , move  is called the v ≥ v ≥⋯≥ v1 2 ℓ v2 v1 m1

bestmove and is the one the engine will play in a game.  
 
Now suppose we have generated projected probabilities  for the choice of moves.  Then:p , … p1 ℓ

 
•  is the projected chance of making the computer's first move. Its variance is p1 p 1 - p .1( 1)

•  is the projection for making one of the top three moves.  Its variance is p =  p + p + p1 2 3

.  If , so that this adds to 100%, then the variance is zero.   p 1 - p( ) ℓ ≤ 3

•  is the projected probability of making a move that is either the first move or has p = pEV ∑
 

i:v =vi 1
i

equal-optimal value.  Again the variance is .p 1 - pEV( EV)

 
We may exclude positions with only one legal move as trivial.  About 8--10% of posiitons have tied-
optimal moves.  Just over half of those are with .00.  This can depend on how long v = v = … = 01 2

the engine is run in its Multi-PV mode and whether there is a turn-number cutoff to discard dead-drawn 
endgame positions.
 

•  is the projected position value after making the move.  The projected E v = p v[ ] ∑ℓ

i=1 i i

centipawn loss is where .  Note that E 𝛿  =  v - E v  =  E v - v  = p 𝛿  [ ] 1 [ ] [ 1 ] ∑
ℓ

i=1 i i 𝛿 = v - vi 1 i

we could sum the latter from .  i = 2

 
To compute the associated projected variance, we need to invoke the formula 
 

  Var X  =  E X - E X  =  E X  -  E X .( ) ( [ ])2 2 [ ]2

 
Incidentally, in the case of first-line match,  is the indicator function:  if  is played, else X X = 1 m1

.  Then .  So the variance is .  Now in the case of the X = 0 E X = E X = p[ ] 2
1 p - p = p 1 - p1

2
1 1( 1)

average centipawn loss,  is just .  There isn't any better way to compute it than E 𝛿
2 p v - v∑ℓ

i=1 i( 1 i)
2

.  (I'm not sure exactly what the convention on square brackets versus Var 𝛿  =  E 𝛿 - E 𝛿  ( ) 2 [ ]2

parens is supposed to be, but I use parens to mean "variance of" as a standalone quantity, whereas 
brackets mean the item inside gets expanded.)
 
Is the variance of the value itself the same?  Yes: The expectation of the value is , which E v - 𝛿[ 1 ]

equals .  Now using the first definition of variance, v - E 𝛿1 [ ]

 

 



 
E v - v - E 𝛿  =  E v - v + E 𝛿  =  E E 𝛿 - 𝛿  =  E 𝛿 - E 𝛿  =  Var 𝛿 .( i ( 1 [ ]))2 ( i 1 [ ])2 ( [ ] )2 ( [ ])2 ( )

 
One good conceptual point of using "deltas" comes from the scaling.  This uses the generalization that 
taking a difference  is the same as integrating the "unit metric"  from  to .  v - v1 i d𝜇 x = 1( ) x = vi x = v1

Now suppose we want to consider other metrics.  Suppose we say the incremental value of an extra 
centipawn ( ) value is at face value when the game is dead-even but tapers off the more one = 0.01

side has an advantage.  Then we want  and  for .  If it tapers off in "affine d𝜇 0 = 1( ) d𝜇 x < 1( ) x ≠ 0

linear proportion" to the absolute value of , then the metric we want isx

d𝜇 x  =  dx( )
1

1 + C|x|
 
for any fixed constant .  Now suppose for sake of convenience that  as well as  is positive (that is, C vi v1

the move  is a mistake but it doesn't cost all the advantage).  Then the scaled difference ismi

 

,d𝜇 x  =  dx =  1 + Cx  =  g v - g v∫
x=v1

x=vi

( ) ∫
x=v1

x=vi

1

1 + Cx

1

C
ln( )

x=v

x=v

1

i

( 1) ( i)

 

where  is the function .  The essence is that we can precompute all the "scaled g g x = 1 + Cx( )
1

C
ln( )

values"  ahead of time, and then  becomes the simple "scaled delta."  The v' = g v( ) 𝛿' = v' - v'1 i

definition of variance for scaled difference is then much the same as for unscaled difference, just with 
 in place of .  Note also that , so the "constant of integration" can be taken as zero.δ' 𝛿 g 0 = 0( )

 
If  then  too since  and the calculation is much the same.  If  but  (a v ≤ 01 v ≤ 0i v ≤ vi 1 v > 01 v < 0i

mistake that puts you suddenly at a disadvantage), then you have to break up the computation into two 
pieces, one from  down to  and then from  down to .  But actually, simply making  negative v1 0 0 vi g v( i)

when  is negative handles this case gracefully too.  vi

 
A final point is that this metric formulation immediately explains why the slope of average error is 
steeper on the negative side in the diagrams linked here.  The scaling represents the psychologically 
perceived magnitude of the error.  An average error  made when you are a pawn behind is greater in e

the diagram than an average error  when you are a pawn ahead.  But  goes through a thinner part of d e

the metric from  to , whereas  goes from  to  through the fattest part of the -1.00 -1.00 - e d +1.00 1 - d

metric.  The thin/fat difference makes the scalings  and  come out pretty much equal.  [In fact, my e' d'

code makes  follow the slopes of those lines directly, as a function of rating, rather than use the g x( )

particular logarithmic metric.]
 
Using expectation loss instead of (scaled) centipawn loss is a headache because the expectation 
values depend on rating all the time, but the mathematical procedure is similar.
 
 

 

 

https://rjlipton.com/2016/11/30/when-data-serves-turkey/


Aggregate Stats
 
Now we add these up and take averages over sets of -many positions.  We immediately get T
projections for our major raw metrics:
 

• Projected T1-Matches: .  As a percentage ("MMP" in my files): .p∑
T

t=1

1,t p
1

T
∑
T

t=1

1,t

• Projected EV-Matches: , average version p∑
T

t=1

EV,t p
1

T
∑
T

t=1

EV,t

• Average Centipawn Loss (ACPL, unscaled): .E 𝛿
1

T
∑
T

t=1

[ t]

• Average Scaled Difference (ASD): .E 𝛿'
1

T
∑
T

t=1

[ ]

 
If game turns were independent, the variances of the summed quantities would simply add over .  The t

variances of the averages wound then divide by .  But...but...  The resulting adjusted variances give T2

rise to adjusted sigmas  and adjusted -scores via the recipe:𝜎' z

 

z' =  
actual -  projected

𝜎'
 
 
[Demo the program---didn't quite get to this, will begin that way tomorrow.]
 

 

 


