CSE702 Spring 2025 Week 4: Predictive Analytics

A predictive analytic model :

- 1. addresses a series of *situations*, each of which involves a set of outcomes m_1, m_2, \ldots, m_ℓ .
- 2. generates projected probabilities p_1, p_2, \ldots, p_ℓ for the respective outcomes. And:
- 3. also generates confidence intervals $[a_1 < p_1 < b_1]$, $[a_2 < p_2 < b_2]$,..., $[a_\ell < p_\ell < b_\ell]$ for these probabilities.

In my usage, point 3 distinguishes "predictive analytics" from mere "analytics." But what on earth does it mean to speak of a "95% probability interval" for one of your own projected probabilities? An outcome m_i either happens or it doesn't.

The point comes more into focus if we imagine analyzing a physical coin. Suppose the coin has a raised head and a slightly concave tail relative to its rim. Then we may estimate the probability p of tails at 0.51. Moreover, we want to be able to assert 95% confidence that the true physical probability \check{p} is between 0.505 and 0.515. What does this *mean*? Basically this:

- Say that a "trial run" r flips the coin 1,000 times and records the proportion t_r of tails.
- The assertion says that if we do 1,000 trial runs, then at least 950 of them will have $0.505 \le t_r \le 0.515$.

We've had to flip the coin a million times total to explain the concept. But what we did was not just estimate the coin, we tested and verified the *claimed precision* as well as accuracy of our estimate. That is to say, we did analytics of the prediction itself. Thus: **predictive analytics**.

(By the way, note this article about dependence on how the coin faces initially.)

The point about confidence intervals becomes more concrete if we add a fourth point to the definition: *A predictive analytic model*

4. projects risk/reward quantities v_i associated to the outcomes m_i .

Understood simply, the projected loss/value in the single situation is $E[v] = \sum_{i=1}^{\ell} p_i v_i$. But with repeated situations t = 1, ..., T we can project in that dimension too. If outcome m_1 at each time t, which we can label $m_{1,t}$, is the costly one, then the projected total loss is $\sum_{t=1}^{T} p_{1,t} v_{1,t}$. Or for total value/loss, we sum over both dimensions to get the expectation: $\sum_{t=1}^{T} \sum_{i=1}^{\ell_t} p_{i,t} v_{i,t}$.

Then the confidence intervals around $p_{1,t}$, or around all the projections $p_{i,t}$, translate into confidence intervals for these **aggregate statistics**. It is **not** as simple as saying that they are weighted sums of

 $a_{i,t}v_{i,t}$ and $b_{i,t}v_{i,t}$. Consider E[v] in the case $\ell = 2$ of just two outcomes m_1 and m_2 , which are exhaustive and mutually exclusive. Further suppose $v_1 = -v_2$, $p_1 = p_2 = 0.5$, and $a_1 = a_2$, $b_1 = b_2$. If you expected the confidence interval to be $[a_1v_1 + a_2v_2, b_1v_1 + b_2v_2]$, then surprise! that's [0, 0]. If the true \check{p}_1 is at the bottom a_1 of its envelope, then we must have $\check{p}_2 = (1 - \check{p}_1) = (1 - a_1) = b_2$. Note that $b_2 = 1 - a_1$ and $a_2 = 1 - b_1$ must be true in general. Then $[a_1v_1 + (1 - a_1)v_2, b_1v_1 + (1 - b_1)v_2]$ is true in general, and when $v_2 = -v_1$ it becomes $[(2a_1 - 1)v_1, (2b_1 - 1)v_1]$. But now try the case $\ell = 3$...

For the aggregates over *t*, the simple sums $\sum_{t=1}^{T} a_{1,t} v_{1,t}$ and $\sum_{t=1}^{T} \sum_{i=1}^{\ell_t} a_{i,t} v_{i,t}$ put the bottom of the envelope far too low when the events for different *t* are **independent**. What's needed instead is to compute the **variance** var_t for each *t*. If the situations for different *t* are independent, then we get the overall variance as $\sum_t var_t$ by the rule that variances of independent events add. Taking the square root then gives an overall **standard deviation** σ around the estimate *E* for the expected value. Then the "two-sigma error bars" $[E - 2\sigma, E + 2\sigma]$ give (slightly more than) 95% confidence of bounding the true expected value.

[Some footnotes: Again it may seem weird to distinguish an "expected expectation" from a "true expectation." But when you are deciding whether to buy any financial instrument with risk, that's what you are hoping to equate---or put in a confidence range. The usual convention in statistics is to use a hat $\hat{}$ for a projected quantity, so we should start by saying that a predicive analytic model generates probability estimates $\hat{p}_1, \hat{p}_2, \ldots, \hat{p}_\ell$ and so on. This could get cumbersome, so instead I'm using an inverted hat $\hat{}$ for a ground-truth quantity. We will have to be careful not to get overconfident by confusing model projections with true values.

We haven't stated that the probabilities make $c_t = p_{1,t} + \cdots + p_{\ell_t,t}$ equal to 1 for each t. But if they don't, we can postulate a "null event" $p_{0,t}$ of value $v_{0,t} = 0$ and probability $1 - c_t$. Furthermore, if we define ℓ to be the maximum of ℓ_t over t, then we can pad every situation t with $\ell_t < \ell$ to have "dummy outcomes" $m_{\ell+1}, \ldots, m_{\ell_t}$, each of probability 0. Thus we can pretend that ℓ is always the same for any situation t. Neither of these changes should affect either the projected variance var_t or its true counterpart var_t . Dividing by " ℓ " may not be meaningful even apart from the fact that the situations t need not have the same number ℓ_t of possible outcomes, but dividing by T to make averages out of the aggregates is always fine.]

In Chess

The situations t are chess positions with a given player to move. We can think of t as meaning "game turn." Then:

- The m_1, \ldots, m_ℓ are the legal moves in the position.
- Each m_i has a value v_i given by one or more strong chess programs (called **engines**).
- Traditionally v_i is in **centipawn units**: a possibly-negative integer of 1/100s of a pawn. When written to two decimal places we speak of "pawn units." Thus -150cp and -1.50 pawns are the same, meaning that the value is figuratively a pawn-and-a-half disadvantage.
- The engine itself orders the moves m₁, ..., m_ℓ in nonincreasing order of value:
 v₁ ≥ v₂ ≥···≥ v_ℓ. Even though v₂ and further values may equal v₁, move m₁ is called the bestmove and is the one the engine will play in a game.

Now suppose we have generated projected probabilities $p_1, \ldots p_\ell$ for the choice of moves. Then:

- p_1 is the projected chance of making the computer's first move. Its variance is $p_1(1-p_1)$.
- $p = p_1 + p_2 + p_3$ is the projection for making one of the top three moves. Its variance is p(1-p). If $\ell \leq 3$, so that this adds to 100%, then the variance is zero.
- $p_{EV} = \sum_{i:v_i=v_1} p_i$ is the projected probability of making a move that is either the first move or has equal-optimal value. Again the variance is $p_{EV}(1 p_{EV})$.

We may exclude positions with only one legal move as trivial. About 8--10% of positions have tiedoptimal moves. Just over half of those are with $v_1 = v_2 = \ldots = 0.00$. This can depend on how long the engine is run in its Multi-PV mode and whether there is a turn-number cutoff to discard dead-drawn endgame positions.

• $E[v] = \sum_{i=1}^{\ell} p_i v_i$ is the projected position value after making the move. The projected centipawn loss is $E[\delta] = v_1 - E[v] = E[v_1 - v] = \sum_{i=1}^{\ell} p_i \delta_i$ where $\delta_i = v_1 - v_i$. Note that we could sum the latter from i = 2.

To compute the associated projected variance, we need to invoke the formula

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2.$$

Incidentally, in the case of first-line match, X is the indicator function: X = 1 if m_1 is played, else X = 0. Then $E[X] = E[X^2] = p_1$. So the variance is $p_1 - p_1^2 = p_1(1 - p_1)$. Now in the case of the average centipawn loss, $E[\delta^2]$ is just $\sum_{i=1}^{\ell} p_i(v_1 - v_i)^2$. There isn't any better way to compute it than $Var(\delta) = E[\delta^2] - E[\delta]^2$. (I'm not sure exactly what the convention on square brackets versus parens is supposed to be, but I use parens to mean "variance of" as a standalone quantity, whereas brackets mean the item inside gets expanded.)

Is the variance of the value itself the same? Yes: The expectation of the value is $E[v_1 - \delta]$, which equals $v_1 - E[\delta]$. Now using the first definition of variance,

$$E[(v_i - (v_1 - E[\delta]))^2] = E[(v_i - v_1 + E[\delta])^2] = E[(E[\delta] - \delta)^2] = E[(\delta - E[\delta])^2] = Var(\delta).$$

One good conceptual point of using "deltas" comes from the scaling. This uses the generalization that taking a difference $v_1 - v_i$ is the same as integrating the "unit metric" $d\mu(x) = 1$ from $x = v_i$ to $x = v_1$. Now suppose we want to consider other metrics. Suppose we say the incremental value of an extra centipawn (= 0.01) value is at face value when the game is dead-even but tapers off the more one side has an advantage. Then we want $d\mu(0) = 1$ and $d\mu(x) < 1$ for $x \neq 0$. If it tapers off in "affine linear proportion" to the absolute value of *x*, then the metric we want is

$$d\mu(x) = \frac{1}{1+C|x|}dx$$

for any fixed constant *C*. Now suppose for sake of convenience that v_i as well as v_1 is positive (that is, the move m_i is a mistake but it doesn't cost all the advantage). Then the scaled difference is

$$\int_{x=v_i}^{x=v_1} d\mu(x) = \int_{x=v_i}^{x=v_1} \frac{1}{1+Cx} dx = \frac{1}{C} \ln(1+Cx) \Big|_{x=v_i}^{x=v_1} = g(v_1) - g(v_i)$$

where g is the function $g(x) = \frac{1}{C} \ln(1 + Cx)$. The essence is that we can precompute all the "scaled values" v' = g(v) ahead of time, and then $\delta' = v'_1 - v'_i$ becomes the simple "scaled delta." The definition of variance for scaled difference is then much the same as for unscaled difference, just with δ' in place of δ . Note also that g(0) = 0, so the "constant of integration" can be taken as zero.

If $v_1 \le 0$ then $v_i \le 0$ too since $v_i \le v_1$ and the calculation is much the same. If $v_1 > 0$ but $v_i < 0$ (a mistake that puts you suddenly at a disadvantage), then you have to break up the computation into two pieces, one from v_1 down to 0 and then from 0 down to v_i . But actually, simply making $g(v_i)$ negative when v_i is negative handles this case gracefully too.

A final point is that this metric formulation immediately explains why the slope of average error is steeper on the negative side in the diagrams linked <u>here</u>. The scaling represents the psychologically perceived magnitude of the error. An average error *e* made when you are a pawn behind is greater in the diagram than an average error *d* when you are a pawn ahead. But *e* goes through a thinner part of the metric from -1.00 to -1.00 - e, whereas *d* goes from +1.00 to 1 - d through the fattest part of the metric. The thin/fat difference makes the scalings *e'* and *d'* come out pretty much equal. [In fact, my code makes g(x) follow the slopes of those lines directly, as a function of rating, rather than use the particular logarithmic metric.]

Using **expectation loss** instead of (scaled) centipawn loss is a headache because the expectation values depend on rating all the time, but the mathematical procedure is similar.

Aggregate Stats

Now we add these up and take averages over sets of T-many positions. We immediately get projections for our major raw metrics:

- Projected T1-Matches: $\sum_{t=1}^{T} p_{1,t}$. As a percentage ("MMP" in my files): $\frac{1}{T} \sum_{t=1}^{T} p_{1,t}$. Projected EV-Matches: $\sum_{t=1}^{T} p_{EV,t}$, average version $\frac{1}{T} \sum_{t=1}^{T} p_{EV,t}$
- Average Centipawn Loss (ACPL, unscaled): $\frac{1}{T} \sum_{t=1}^{T} E[\delta_t]$.
- Average Scaled Difference (ASD): $\frac{1}{T}\sum_{i=1}^{T} E[\delta']$.

If game turns were independent, the variances of the summed quantities would simply add over t. The variances of the averages wound then divide by T^2 . But...but... The resulting *adjusted variances* give rise to adjusted sigmas σ' and adjusted z-scores via the recipe:

$$z' = \frac{actual - projected}{\sigma'}$$

[Demo the program---didn't quite get to this, will begin that way tomorrow.]