
CSE702 Spring 2025 Week 4: Predictive Analytics
 
A predictive analytic model :

1. addresses a series of situations, each of which involves a set of outcomes .m , m , … , m1 2 ℓ

2. generates projected probabilities  for the respective outcomes.  And:p , p , … , p1 2 ℓ

3. also generates confidence intervals  for these a < p < b , a < p < b ,..., a < p < b[ 1 1 1] [ 2 2 2] [ ℓ ℓ ℓ]

probabilities.
 
In my usage, point 3 distinguishes "predictive analytics" from mere "analytics."  But what on earth does 
it mean to speak of a "95% probability interval" for one of your own projected probabilities?  An 
outcome  either happens or it doesn't.mi

 
The point comes more into focus if we imagine analyzing a physical coin.  Suppose the coin has a 
raised head and a slightly concave tail relative to its rim.  Then we may estimate the probability  of p

tails at .  Moreover, we want to be able to assert 95% confidence that the true physical probability  0.51 p̌

is between  and .  What does this mean?  Basically this:0.505 0.515

 
• Say that a "trial run"  flips the coin 1,000 times and records the proportion  of tails.r tr
• The assertion says that if we do 1,000 trial runs, then at least 950 of them will have 

.  0.505 ≤  t  ≤  0.515r

 
We've had to flip the coin a million times total to explain the concept. But what we did was not just 
estimate the coin, we tested and verified the claimed precision as well as accuracy of our estimate. 
That is to say, we did analytics of the prediction itself.  Thus: predictive analytics.
 
(By the way, note this article about dependence on how the coin faces initially.)
 
 
The point about confidence intervals becomes more concrete if we add a fourth point to the definition: A 
predictive analytic model
 

4. projects risk/reward quantities  associated to the outcomes .vi mi

 

Understood simply, the projected loss/value in the single situation is .  But with E v = p v[ ] ∑ℓ

i=1 i i

repeated situations  we can project in that dimension too.  If outcome  at each time , t = 1, … , T m1 t

which we can label , is the costly one, then the projected total loss is .  Or for total m1,t p v∑T

t=1 1,t 1,t

value/loss, we sum over both dimensions to get the expectation: .  p v∑T

t=1
∑

ℓt

i=1 i,t i,t

 
Then the confidence intervals around , or around all the projections , translate into confidence p1,t pi,t

intervals for these aggregate statistics.  It is not as simple as saying that they are weighted sums of 

 

 

https://www.newscientist.com/article/2397248-coin-flips-dont-truly-have-a-50-50-chance-of-being-heads-or-tails/


 and . Consider  in the case  of just two outcomes  and , which are a vi,t i,t b vi,t i,t E v[ ] ℓ = 2 m1 m2

exhaustive and mutually exclusive.   Further suppose , , and , . v = - v1 2 p = p = 0.51 2 a = a1 2 b = b1 2

If you expected the confidence interval to be , then surprise! that's .  If a v + a v ,  b v + b v[ 1 1 2 2 1 1 2 2] 0, 0[ ]

the true  is at the bottom  of its envelope, then we must have .  Note p̆1 a1 = 1 - = 1 - a = bp̌2 ( p̆1) ( 1) 2

that  and  must be true in general.  Then  b = 1 - a2 1 a = 1 - b2 1 a v + 1 - a v ,  b v + 1 - b v[ 1 1 ( 1) 2 1 1 ( 1) 2]

is true in general, and when  it becomes .  But now try the case v = - v2 1 2a - 1 v , 2b - 1 v[( 1 ) 1 ( 1 ) 1]

...  ℓ = 3

 

For the aggregates over , the simple sums  and  put the bottom of the t a v∑T

t=1 1,t 1,t a v∑T

t=1
∑

ℓt

i=1 i,t i,t

envelope far too low when the events for different  are independent. What's needed instead is to t

compute the variance  for each .  If the situations for different  are independent, then we get the vart t t

overall variance as  by the rule that variances of independent events add.  Taking the square var∑
 

t t

root then gives an overall standard deviation  around the estimate  for the expected value.  Then 𝜎 E

the "two-sigma error bars"  give (slightly more than) 95% confidence of bounding the E - 2𝜎, E + 2𝜎[ ]

true expected value.  
 
[Some footnotes: Again it may seem weird to distinguish an "expected expectation" from a "true 
expectation."  But when you are deciding whether to buy any financial instrument with risk, that's what 
you are hoping to equate---or put in a confidence range.  The usual convention in statistics is to use a 
hat  for a projected quantity, so we should start by saying that a predicive analytic model generates  

probability estimates  and so on.  This could get cumbersome, so instead I'm using an , , … ,p
1

p
2

p
ℓ

inverted hat  for a ground-truth quantity.  We will have to be careful not to get overconfident by  ̌

confusing model projections with true values.  
 
We haven't stated that the probabilities make  equal to  for each .  But if they c = p + ⋯ + pt 1,t ℓ ,tt 1 t

don't, we can postulate a "null event"  of value  and probability .  Furthermore, if we p0,t v = 00,t 1 - ct
define  to be the maximum of  over , then we can pad every situation  with  to have "dummy ℓ ℓt t t ℓ < ℓt

outcomes" , each of probability .  Thus we can pretend that  is always the same for m , … , mℓ+1 ℓt
0 ℓ

any situation .  Neither of these changes should affect either the projected variance  or its true t vart

counterpart .  Dividing by " " may not be meaningful even apart from the fact that the situations  ˇvart ℓ t

need not have the same number  of possible outcomes, but dividing by  to make averages out of ℓt T

the aggregates is always fine.]
 
 
In Chess
 
The situations  are chess positions with a given player to move.  We can think of  as meaning "game t t
turn."  Then:
 

 

 



• The  are the legal moves in the position.  m , … , m1 ℓ

• Each  has a value  given by one or more strong chess programs (called engines).  mi vi

• Traditionally  is in centipawn units: a possibly-negative integer of  of a pawn. When vi 1 / 100s

written to two decimal places we speak of "pawn units."  Thus cp and  pawns are the -150 -1.50

same, meaning that the value is figuratively a pawn-and-a-half disadvantage.
• The engine itself orders the moves  in nonincreasing order of value: m , … , m1 ℓ

.  Even though  and further values may equal , move  is called the v ≥ v ≥⋯≥ v1 2 ℓ v2 v1 m1

bestmove and is the one the engine will play in a game.  
 
Now suppose we have generated projected probabilities  for the choice of moves.  Then:p , … p1 ℓ

 
•  is the projected chance of making the computer's first move. Its variance is p1 p 1 - p .1( 1)

•  is the projection for making one of the top three moves.  Its variance is p =  p + p + p1 2 3

.  If , so that this adds to 100%, then the variance is zero.   p 1 - p( ) ℓ ≤ 3

•  is the projected probability of making a move that is either the first move or has p = pEV ∑
 

i:v =vi 1
i

equal-optimal value.  Again the variance is .p 1 - pEV( EV)

 
We may exclude positions with only one legal move as trivial.  About 8--10% of posiitons have tied-
optimal moves.  Just over half of those are with .00.  This can depend on how long v = v = … = 01 2

the engine is run in its Multi-PV mode and whether there is a turn-number cutoff to discard dead-drawn 
endgame positions.
 

•  is the projected position value after making the move.  The projected E v = p v[ ] ∑ℓ

i=1 i i

centipawn loss is where .  Note that E 𝛿  =  v - E v  =  E v - v  = p 𝛿  [ ] 1 [ ] [ 1 ] ∑
ℓ

i=1 i i 𝛿 = v - vi 1 i

we could sum the latter from .  i = 2

 
To compute the associated projected variance, we need to invoke the formula 
 

  Var X  =  E X - E X  =  E X  -  E X .( ) ( [ ])2 2 [ ]2

 
Incidentally, in the case of first-line match,  is the indicator function:  if  is played, else X X = 1 m1

.  Then .  So the variance is .  Now in the case of the X = 0 E X = E X = p[ ] 2
1 p - p = p 1 - p1

2
1 1( 1)

average centipawn loss,  is just .  There isn't any better way to compute it than E 𝛿
2 p v - v∑ℓ

i=1 i( 1 i)
2

.  (I'm not sure exactly what the convention on square brackets versus Var 𝛿  =  E 𝛿 - E 𝛿  ( ) 2 [ ]2

parens is supposed to be, but I use parens to mean "variance of" as a standalone quantity, whereas 
brackets mean the item inside gets expanded.)
 
Is the variance of the value itself the same?  Yes: The expectation of the value is , which E v - 𝛿[ 1 ]

equals .  Now using the first definition of variance, v - E 𝛿1 [ ]

 

 



 
E v - v - E 𝛿  =  E v - v + E 𝛿  =  E E 𝛿 - 𝛿  =  E 𝛿 - E 𝛿  =  Var 𝛿 .( i ( 1 [ ]))2 ( i 1 [ ])2 ( [ ] )2 ( [ ])2 ( )

 
One good conceptual point of using "deltas" comes from the scaling.  This uses the generalization that 
taking a difference  is the same as integrating the "unit metric"  from  to .  v - v1 i d𝜇 x = 1( ) x = vi x = v1

Now suppose we want to consider other metrics.  Suppose we say the incremental value of an extra 
centipawn ( ) value is at face value when the game is dead-even but tapers off the more one = 0.01

side has an advantage.  Then we want  and  for .  If it tapers off in "affine d𝜇 0 = 1( ) d𝜇 x < 1( ) x ≠ 0

linear proportion" to the absolute value of , then the metric we want isx

d𝜇 x  =  dx( )
1

1 + C|x|
 
for any fixed constant .  Now suppose for sake of convenience that  as well as  is positive (that is, C vi v1

the move  is a mistake but it doesn't cost all the advantage).  Then the scaled difference ismi

 

,d𝜇 x  =  dx =  1 + Cx  =  g v - g v∫
x=v1

x=vi

( ) ∫
x=v1

x=vi

1

1 + Cx

1

C
ln( )

x=v

x=v

1

i

( 1) ( i)

 

where  is the function .  The essence is that we can precompute all the "scaled g g x = 1 + Cx( )
1

C
ln( )

values"  ahead of time, and then  becomes the simple "scaled delta."  The v' = g v( ) 𝛿' = v' - v'1 i

definition of variance for scaled difference is then much the same as for unscaled difference, just with 
 in place of .  Note also that , so the "constant of integration" can be taken as zero.δ' 𝛿 g 0 = 0( )

 
If  then  too since  and the calculation is much the same.  If  but  (a v ≤ 01 v ≤ 0i v ≤ vi 1 v > 01 v < 0i

mistake that puts you suddenly at a disadvantage), then you have to break up the computation into two 
pieces, one from  down to  and then from  down to .  But actually, simply making  negative v1 0 0 vi g v( i)

when  is negative handles this case gracefully too.  vi

 
A final point is that this metric formulation immediately explains why the slope of average error is 
steeper on the negative side in the diagrams linked here.  The scaling represents the psychologically 
perceived magnitude of the error.  An average error  made when you are a pawn behind is greater in e

the diagram than an average error  when you are a pawn ahead.  But  goes through a thinner part of d e

the metric from  to , whereas  goes from  to  through the fattest part of the -1.00 -1.00 - e d +1.00 1 - d

metric.  The thin/fat difference makes the scalings  and  come out pretty much equal.  [In fact, my e' d'

code makes  follow the slopes of those lines directly, as a function of rating, rather than use the g x( )

particular logarithmic metric.]
 
Using expectation loss instead of (scaled) centipawn loss is a headache because the expectation 
values depend on rating all the time, but the mathematical procedure is similar.
 
 

 

 

https://rjlipton.com/2016/11/30/when-data-serves-turkey/


Aggregate Stats
 
Now we add these up and take averages over sets of -many positions.  We immediately get T
projections for our major raw metrics:
 

• Projected T1-Matches: .  As a percentage ("MMP" in my files): .p∑
T

t=1

1,t p
1

T
∑
T

t=1

1,t

• Projected EV-Matches: , average version p∑
T

t=1

EV,t p
1

T
∑
T

t=1

EV,t

• Average Centipawn Loss (ACPL, unscaled): .E 𝛿
1

T
∑
T

t=1

[ t]

• Average Scaled Difference (ASD): .E 𝛿'
1

T
∑
T

t=1

[ ]

 
If game turns were independent, the variances of the summed quantities would simply add over .  The t

variances of the averages wound then divide by .  But...but...  The resulting adjusted variances give T2

rise to adjusted sigmas  and adjusted -scores via the recipe:𝜎' z
 

z' =  
actual -  projected

𝜎'
 
[Show example from the model's code on the CSE machine metallica.]
 

What justifies calling this a " -score"?  A fraction of the form  or  is z
sample mean

population 𝜎

obs - sample mean

population 𝜎
called "Studentized" (after William Sealy Gosset, who used the pseudonym "Student" so as not to 
disturb sales of Guinness ale).  Note that in our case,  is a projected sigma---though the fact of its 𝜎'

being adjusted actually means that it has been figured over the large population of (presumably) non-
cheating players in the training sets of a lakh-plus games.  Likewise the projected values in the model 
are trained over that population.  So the fraction is legit.  But what makes it a z-score, also called 
standard score?  The answer is: proximity to a normal model using large enough data.
 
 
Central Limit Theorem and Its Assumptions
 
Any two normal distributions  and  can be mapped onto each other.N 𝜇 , 𝜎( 1 1) N 𝜇 , 𝜎( 2 2)

•  is standard.N 0, 1( )

•  approximates the distribution of flipping a fair coin 100 times.N 50, 5( )

 
Let's consider just the -match for the time being.  Binomial approximation.  Main thing to notice is T1

 

 

https://en.wikipedia.org/wiki/Studentization
https://statdictionary.com/basic_stat_terms/s/studentize/
https://en.wikipedia.org/wiki/Lakh
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Standard_score
https://digitalfirst.bfwpub.com/stats_applet/stats_applet_2_cltbinom.html


that even when  is skewed far away from , the distribution and the approximating bell curve are still p 0.5

symmetrical around .  The bell curve has the symmetry by definition.p
 
Central Limit Theorem: For any distribution  over a numeric domain, the mean  of  samples D dn n

drawn independently from the same  is distributed in a way that converges to  for some fixed D N 𝜇, 𝜎( )

 and , where . 𝜇 𝜎 𝜇 = E dd D← [ ]

 
In the context of chess, CLT  seems to say that whatever goes on distributionally inside players' heads, 
the distribution of the -match %, being a mean of an independent(??) sample, approaches the T1

normal distribution as the number  of samples used in the mean grows. The "Rule of 30" is a n

convention that  is usually good enough.n = 30

 
CLT presumes

• independent samples
• from the same (unknown) distribution 

 
Neither assumption holds in chess:
 

• Consecutive chess moves by a player in a game used to form the sample are not independent.  
Carlsen-Anand Double Blunder example: Anand missed his opportunity because he was fixated 
on moving his rightmost pawn down the board.

• The moves in a sample are all from different positions.  
 
Nevertheless, the distributions obtained are fairly close to normal.
[show spreadsheet examples]
 
 
Model Parameters and Virtual Players
 
The two main model parameters---both treated as completely free---are:

•  for sensitivity: how finely the player can react to small differences in the values of moves.s

•  for consistency: how well the player can avoid large mistakes.c
It has been a longstanding desire to have a third main and freely regressable parameter:

•  for habitual depth of thinking.  d
 

However, making  a free parameter causes numerically unstable results.  The same held true for a d

parameter  for "heave"---meaning the tendency to be eager in the sense of a ship riding over the h

water.  The idea is currently applied only in the form of a parameter  that governs the relative ev
probability of moves whose final values are equal, but whose values differed at lower depths of search.  
The program code allows treating  as a completely free parameter, but then the fitting method of ev
making it an unbiased estimator fails to "close" for individual players the way it does over large sets of 
training data.  So what I currently do instead is use the mapping  given by the training fit to set R ↦  ev

 

 

https://www.researchgate.net/post/What_is_the_rationale_behind_the_magic_number_30_in_statistics
https://www.chessgames.com/perl/chessgame?gid=1778864
https://www.youtube.com/watch?v=8aaAO79tHzs
https://www.youtube.com/watch?v=8v_OpuDWcgM


 as a function of  in the IPR workflow.  Then only  and  are freely fitted to any player's games.ev IRp s c

 
I call a parameter setting  a virtual player.  The IPR regression finds the closest virtual Y =  s, c, …( )

player to the given set of games.  (My 2013 paper with Tamal Biswas used  for virtual player or Z

"agent", but that letter might confuse with -score.)  z
 

Important fact: The virtual players obtained by regression for the seventy-three individual training 
sets of games by Elo 1025, 1050, ..., through Elo 2775, 2800, and 2825+, when plotted in the 2-
dimensional  plane, fall closely into a 1-dimensional curve (which should in turn be rectifiable s, c( )

as a straight line after the Sonas correction).  This not only smooths out into a continuous set of 
values  which I call the central fit, it gives individual (close-to-)linear regressions for the  s , c( R R) sR
and  values individually.  cR

 
The model also has various hyperparameters which are not (intended to be) player-specific.
 
 
The diagrams in my graphic about a hyper-parameter discussed in the next section not only show the 
individual lines of central fit values, but also how they "collapse" when that hyperparameter is set too 
aggressively.  These are the actual  and  values, not the ones smoothed by regression:sR cR
 

 

 

 

https://cse.buffalo.edu/~regan/chess/computer/ModelTradeoffs.png


 
The upshot is that other aspects of the model are tweaked so that the "Important Fact" holds true to 
best advantage.
 
Hyperparameters
 
The model's numerous hyperparameters fall into three main groups, of which only the first part of the 
first group needs to be thought of operationally.
 
Rating-dependent:

• Scaling parameters .  These fit the lines in the diagrams of average error as a a , b , a , bm m p p

function of rating and the overall evaluation  of the position:x

 

 

 



Here the line for evaluations  on the "m"inus side is , while that on the "p"lus side for x ≤ 0 a + b xm m

 is . Notice that the minus-side intercepts  are higher than the  values, considerably x > 0 a + b xp p am ap

so for lower-rated players.  I explored the asymmetry and a possible main reason for it in this article.  
Basically the point is that when , a large mental error may be mitigated by a fortunate escape to a x > 0

draw by perpetual check, whose  value will make the error no larger than the advantage  itself.  0.00 x

Whereas, the case  has no such safety net and the loss of value can be bottomless.  These x ≤ 0

parameters are used by the model to "flatten" the magnitude of error in positions of any value  to be x

 or  on average, independent of  (other than its sign).  am ap x
 

• Parameters  controlling the neighborhood of the value .  They stand for "under ", uz, vz, wz 0.00 0

"over ", and "width of ", respectively.  The last is unused---zeroed out.  They smooth the 0 0

difference between  and ; one can say they effectively make the regression lines in the am ap

above diagrams meet up at .  0.00

 
The code uses a mapping .  The 6-tuple is said to have rating basis .  R ↦ a , b , a , b , uz, vz( m m p p ) R

This is fine as long as  is given up-front.  When we want to estimate  for a set of games, we start R R

with an initial guess  and its associated 6-tuple.  Thereafter, when we update the estimate to , we R0 R'

then also need to update the 6-tuple.  This disturbs the previous fit, so we iterate again to make  and R''

update the tuple again, and so on...  In almost all cases this converges quickly, but occasionally the 
process races to negative infinity or yo-yos---the code stops after 20 iterations regardless.  Where 
things get even dicier is when you apply a data filter  that depends on ASD or some other use of F

scaled values and then change the rating basis.  The selection of data is left undisturbed unless and 
until you apply a re-filtering operation.  More about this later---continuing with hyperparameters for now.
 

• Scaling parameters  and .  Not used.  They fit the " " in the previously discussed cm cp C

logarithmic scaling formula, for  and , respectively.X ≤ 0 X > 0

• Expectation-loss logistic-curve parameters .  Used only for show.  These fit the la, lb, lk, lq

generalized logistic curve  in an effort to convert from  to the scoring A +  
K - A

1 + Qe-Bx
x

 

 

https://rjlipton.com/2016/01/21/a-chess-firewall-at-zero/
https://en.wikipedia.org/wiki/Generalised_logistic_function


expectation (for a player of a given rating  facing an opponent of the same rating).R

• The prediction-error parameter .    It is the same as the epsilon  in "error model 5" in this ft 𝜖

article and stands for "fallibility threshold" beyond which deviations can be ascribed to the player. 
 It keeps a fairly steady value between  and  until the rating goes above 2600, 0.04 0.05

whereupon it rises above  at 2800.  This shows the model's input values losing some of their 0.07

authority for the world's most elite players.  Extrapolating shows the model seriously losing 
resolution above Elo 3100 or so.  The parameter is used to calibrate a second kind of -score z
based on "deviance from the range of human predictability."  Operationally we can ignore this 
too.

 
Rating-Independent:

• The main one is the "gradient" .  It controls the influence of lower-depth move values.  It is v

currently set to a very conservative value .  Smaller values give more weight to "traps" and 0.035

lower-depth temptations.  Originally  was supposed to be the "variance" of a main depth-of-v

thinking parameter .  The latter is kept as a relic with the fixed value  but is otherwise d d = 20

unused.
• There is a cap  on evaluations and  on differences in value.  Both are set to 20.00 in pawn ec dc

units, i.e., 2,000 centipawns.  Most chess programs use 1000.00 as the value of checkmate.  So 
if you can play checkmate but blunder and allow the opponent to give checkmate instead, that 
would be  as a raw magnitude of error, which would overwhelm any other errors you -2000

made.  It gets capped instead at , as if blundering two queens.  The scaling then reduces the -20

magnitude a whole lot more.
• The parameter  is a "patch power" alternative to  which will be briefly discussed later.  pp ev

Currently not used.
• Various unnamed parameters in menu option  have values that can likewise be customized but 2

are best left fixed.  The most important one defines a fixed virtual depth scale in which the 
highest depth actually obtained in analysis is mapped to depth .  The mapping is independent 20

of the chess program, but its reality---along with the scaling---is why the model has to be built 
separately for each chess program used.

 
Tethered Parameters:

• The parameter called " " is tied to have the same value as the sensitivity parameter .  We can co s

ignore why and just think of .  s

• The parameter  is trained freely on large data, but treated as tethered to the other main ev

parameters  and  when regressing on small data---else fits do not converge.  s c
 
The net effect is treating  as another rating-dependent hyperparameter---thus we really get a ev
mapping .  The fact of this mapping is the only thing that really R ↦ a , b , a , b , uz, vz, e( m m p p v)

needs bearing in mind.
 
 
 

 

 

https://rjlipton.com/2019/11/29/predicating-predictivity/
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Unused Parameters and the Full General Terms
 
There are a whole bunch of other parameters that are unused, but whose potential usage may explain 
some choices that were made.  They are covered in a long comment in the IRall1file.cpp code that 
begins, "The $64,000 place where model parameters are reflected, aside from the possible (and 
deferred) impact of d and v on the weighting of depths."  As explained in the next set of notes, Tamal 
Biswas and I allowed for a fully general linearization of parameters multiplying the values  and , v1 vi

their (rating-dependent!) scalings  and , and the corresponding points-expectation values  and  v'1 v'i e1 ei
(which are also rating-dependent!) by the "objective term"
 

T  =  p ⋅ v  +  q ⋅ v  +  r ⋅ v'  +  s ⋅ v'  +  t ⋅ e  +  u ⋅ e1 1 i 1 i 1 i

 
(which is not to be confused with "T1-match").  To be sure, there is redundancy especially with the last 
two.  Results trying for full generality were not promising---too much numerical wonkiness---so the ones 
other than  are kept zeroed out.  Actually,  is tethered to always equal , so that  multiplies the s s -r s

scaled difference  which is just the scaled delta  of the -th best move.  To reduce clutter, the v' - v'1 i 𝛿i i

"eval handler" (main menu option 2) has default-enabled settings mulDiffs and invertParams that 
make  do this while keeping  in the display and that make  a divisor rather than multiplier.  s r = 0 s

Likewise, the lower-depth "swing values" are amalgamated into , , and their scaled analogues w1 wi

 and linearized with four other parameters to make the "subjective term"w' , w'1 i

 
.T  =  e ⋅w  +  f ⋅w  +  g ⋅w'  +  h ⋅w'2 1 i 1 i

 
Again,  is tethered to  so that it actually multiplies the "perceived inferiority" , though it h -g w' - w'1 i

stays as a multiplier.  Moreover, there is an option to make  a divisor of both  and .  But in fact, all s T1 T2

four of  are kept zeroed out, so there is effectively no freely-separate swing term (noSwing in e, f, g, h

the code).  There is also a third term  with parameters that come into play in the following cases:T3

 
•  ("to zero"): move  has value  but ;tz mi v = 0i v > 01

•  ("from zero"):  and ;fz v = 01 v < 0i

•  ("both zero"): ;bz v = v = 01 i

•  ("sign flip"):  but , i.e., move  converts advantage to disadvantage.sf v > 01 v < 0i mi

•  ("negative-eval case"): .ne v < 01

 
The above-described use of  and  seems to do a good-enough job of reflecting these cases, so uz vz

these last five parameters are also kept zeroed out---and likewise powers  and  (to go with , Ta
2 Tb

3 Tc
1

except there are also settings that could allow adding these terms before powering) are ignored.  The 
element of "swing" is handled in a tightly-clamped regime that has only the free parameter , ev

multiplying only cases where  (not necessarily both equal to 0.00), under a strict separation of v = vi 1

the projection mechanism from measuring actual results.
 

 

 




