
CSE702 Spring 2025 Week 5: How the Model Works
 
The basic model uses only the move value numbers  given at the highest depth of search.  v , … , v1 ℓ

The only other values that determine model outputs on-the-fly are the main parameters , , and (the s c

restricted form  of) the gullibility parameter .  We can regard the mapping  ev h

 itself as a giant fixed hyperparameter.  Moreover, we use only the R ↦ a , b , a , b , uz, vz, e( m m p p v)

differences of the other values from .  Earlier we wrote  to denote a scaled difference, but from now v1 𝛿'

on we will just write  with the scaling understood.𝛿

 
The Base Model Equations
 
For  to , i = 1 ℓ
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and .  p + ⋯ + p = 11 ℓ

 
What a monstrosity---with three levels of exponentiation!  It does give us  equations in  unknowns.  ℓ ℓ

Let's sanity-check it first:
 

• The values , , and  are all nonnegative, so  is nonnegative.  𝛿i s c
𝛿

s

i
c

• Thus  to that power is at least .  (Note that the fraction  itself can be  or .)e 1
𝛿

s

i
> 1 < 1

• Therefore  is raised to a power at least , so  for each .p1 1 p ≤ pi 1 i

• If , so that the first  moves are equal-optimal, then .  Likewise, if  then 𝛿 = 0i i p = pi 1 𝛿 = 𝛿i j

.  (We will shortly observe this to be majorly empirically false; patching it is the job of  p = pi j ev
and the use of lower-depth values generally.)

• If , then .𝛿 > 𝛿j i p < pj i

• Increasing the value of the exponent lowers the value of , which generally drives up the pi

probability  of finding the (or an) optimal move.p1

• The  parameter divides out the centipawn units of .  Thus the fraction is dimensionless, which s 𝛿i

legitimizes raising it to an arbitrary power .c
• Lower  is better---and the effect is most notable when  and  are both small.  Thus  models s 𝛿i s s

sensitivity to small differences in value.
• Higher  is better---and for fixed , has greatest impact when  is large.  It thus drives down the c s 𝛿i

probability of a large mistake.  Hence the name "consistency."
• A discovery that a move  is better or worse than previously thought (making  smaller or mk 𝛿k

bigger) can impact the value of  for move  but not its ordinal ranking relative to any move  pi mi mj

other than  itself.  It does so only indirectly---through the constraint that the probabilities sum mk

to .1

 

 



 
 
Log-Linear Digression
 
On pain of doing a "bait-and-switch", let's look at a simpler model equation that also has these 
properties:

.p  =  p ei 1

-
𝛿

s

i
c

 
Here  is multiplied by the utility term rather than raised to its power.  The exponent is non-positive, so p1

the multiplier is .  Again, lower  and higher  are better in terms of reducing the probabilities  of ≤ 1 s c pi

mistakes and hence raising .  Regarding the last property, here a change in the value of  does not p1 mk

affect the ratio , thus giving a larger degree of the "independence from irrelevant alternatives" p / pi j

property (IIA).  
 
This model is called "Shares" in the code and is the basic log-linear multinomial logit model in this 
context.  The generic derivation is:
 

p  =  𝛼 + 𝛽vlog i i

 
where the " " can be or to any base because the  and  coefficients can absorb any fixed log ln 𝛼 𝛽

constant factor.  So:
.p = e ei

𝛼 𝛽vi

 
Using  means normalizing these values:p + ⋯ + p = 11 ℓ
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Since the  terms dropped out, we equivalently can start by taking differences:e𝛼

 
,p - p  =  𝛽 v - v  =  𝛽𝛿ln 1 ln i ( 1 i) i

so
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In place of the single fittable coefficient  we have  (which is just  if we hold ) and , 𝛽 s 1 / 𝛽 c = 1 c

replacing  with .  Again the solution of the exact values comes by normalizing:𝛽𝛿i 𝛿 / s( i )c

 

 

https://en.wikipedia.org/wiki/Independence_of_irrelevant_alternatives
https://en.wikipedia.org/wiki/Multinomial_logistic_regression#As_a_set_of_independent_binary_regressions
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The initial  comes because .  In particular,  would be literally a logistic curve  if  1 𝛿 = 01 p1
1

1 + e-𝛽x
ℓ = 2

(ignoring that we actually have some nonlinearity via  that is not covered here), and the case  c ℓ > 2
explains the name "multinomial logit" model.  The whole vector of probabilities can be written as 

. =  softmaxp
-𝛿

s

i
c

 
The denominator  is positive, so  is well defined, and we get the equation  Q 𝛼 = Qln( ) p = ei

- 𝛼+𝛽𝛿( i)

back again.  Thus  did not completely disappear---it just absorbed the requirement that the 𝛼

probabilities sum to .  Moreover, we can unpack  (again, scaled values are intended here), 1 𝛿 = v - vi 1 i

so , and then multiply top and bottom by  to recover the original form stated in terms -𝛿 = v - vi i 1 e-𝛽v1

of the (scaled) move values themselves.
 
Nature evidently works this way: this kind of probability distribution involving exponents was developed 
by machine learning theorists in the 1970s statistical physicists in the 1870s, in particular Ludwig 
Boltzmann and Josiah Gibbs.  In the physics context,  is the partition function.  In thermodynamics, Q

the parameter  has units of "inverse temperature"; in chess, the units are "inverse centipawns."  𝛽

 
Chess, however, does not work this way---even when  is incorporated.  I actually discovered the failure c
way back in 2008, in the wake of some small-scale Matlab code written by Steve Uurtamo and some 
others in a seminar I ran that spring.  I had some other intuitions that led me to believe that a ratio, not 
difference, of logs was needed on the left-hand side.
 
 
What Works: The Double-Log-Linear Model
 
The equation that works---markedly better albeit not perfectly---in chess is the double-log model
 

 =   𝛼 +  𝛽v  ln ln
1

pi
i

 
(With double logs, I want to make absolutely sure that the outer one is not on a negative number, so I 
insist on writing  instead of , and so on.)1 / plog( ) - plog
 

 

 

https://en.wikipedia.org/wiki/Generalised_logistic_function
https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Gibbs_measure
https://rjlipton.com/2018/10/18/london-calling/
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Exponentiating both sides again and temporarily substituting  givesr = ei

𝛽𝛿i
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Raising the dimensionless  to the power  again gives the entire model equation that I deployed 𝛽𝛿i c
from 2011 thru 2019:

p   =  pi ( 1)e

𝛿

s

i

c

 
together with  (and together with a post-hoc "fudge" of probabilities for equal-value p + ⋯ + p = 11 ℓ

moves).  This has a completely mad-looking triple exponential on the right-hand side.  I actually 
experimented with ways to substitute a gentler "curve" to use in place of  in the exponent part, and e ⋯( )

you can find a gaggle of other "curve"s implemented in the C++ program, but none has worked better 
than exponential.  (It is actually called "invexp" for inverse exponential in the code, because the log-
linear derivation gave it a negative sign.)  You might wonder why the model equation can't simply be

p   =   pi ( 1)
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c

 

without the  in the middle.  The flaw is that this does not enforce , because  can be less e p ≤ pi 1
𝛿

s

i
c

than ---indeed, it can be zero.  The upshots now are:1
 

• Every option  has a "share"  that depends only on its utility value  (once ---that is, ---mi e 𝛽u( i)
c

ui 𝛽 s

and  are globally fitted), but now it is in the exponent of .  Hence I call it a "power share".   c p1

There isn't a simple sum  of shares---it's more complicated.  No softmax.Q

 

 



• The values of other moves again influence the probability only through the condition that the 
probabilities sum to .1

• Each probability  is now a power of the best-move probability .  pi p1

 
 
Three Principles and Their Violations
 
Here are three main principles that govern the design of the model to generate  from data:p
 

1. The probability of a move depends on its value in relation to the values of other moves.  In 
particular, if a move has significantly higher value than others, it is much more likely to be found 
by a human player as well as by machines.

2. Besides the norm of training on separate data from (validation and) testing, it is good to base 
predictions on different kinds of data from that measured for assessment.  I call this "separating 
performance measurement from prediction."

3. Weaker players are weaker not so much because they inherently prefer weaker moves, but 
because they are more likely to be "diverted by shiny objects."

 
Principle 1 is enough for good results.  But it leaves the model with two properties that are empirically 
false:
 

• Moves that are tied in value---especially those tied for best with the first move---have equal 
probability.

• The best move always has the highest probability, even for weaker players.
 

[The running demo used throughout included results on tied-optimal moves.]
 
Thus the first principle's implication that  is overwhelmingly falsified.  I did an ad-v = v  ⟹  p = pi 1 i 1

hoc patch by making the hyperparameter  with original fixed value 0.58, coming from the limited data pp

I had using the Rybka 3 chess program at the time of this 2012 GLL blog article, such that any case of 
 would adjust the originally-equal projected probabilities to make .  Three equal-v = vi i+1 p = 0.58pi+1 i

value moves gave  and so on, hence the name stood for "patch power."  p = 0.58p = 0.58 pi+2 i+1
2

i

Later use of versions of the Houdini, Komodo, and Stockfish engines crept  up to its current value pp

0.616.  That is incidentally close to the (reciprocal of the) "golden ratio" , which r = 0.61803398...

satisfies .  But I also found rating dependence, hence my resort to ideas described next, r + r = 12

ultimately roughly handled by the  parameter.ev

 
 
Second Principle: Separating Prediction From Performance Assessment
 
In many sporting areas, the same data is used for prediction and performance assessment.  For 
instance in running foot races, the main data is your race times---previous and current, it's the same 

 

 

https://en.wikipedia.org/wiki/Rybka#Versions
https://rjlipton.wpcomstaging.com/2012/03/30/when-is-a-law-natural/


data.  Projections take the form of extrapolating from scores in the (recent) past.  I had recognized the 
second principle as a desideratum in a talk I gave in 2009, but it took the whole decade to tame the 
vicissitudes of implementing it.  Here are two ways to embody it:
 

(a) Use a "panel" of programs to generate the move projections , but measure actual T1 and pi

ASD (etc.) against a given strong program.  The "panel" programs need not be as strong---the 
closer they are to "human play", the better.

(b) Use lower-depth values for the predictions, but use only the highest-depth values to judge 
quality of the results.

 
Option (a) brings up the idea of model averaging.  This can always be done by running separate 
instances of the model (for different chess programs) and then averaging their outputs.  I had hoped to 
save considerable effort by combining inputs---ideally by putting their evaluation functions on a 
common scale governed by the notion of points expectation ("win probability").  Alas, as we've seen:
 

• The points expectation scale is rating-dependent.
• Chess programs can---and do---post-process their evaluations in various ways that frustrate 

bringing them onto a common scale.
 
The latter point makes the task become one of building a model of the particular program.  A final 
operational issue: In principle, the model built exclusively with Stockfish 11 still can be applied to test 
conformance to Komodo 13---or to the latest Stockfish 17.  But that would require a separate validation 
run and possible -score adjustment for each pair of source and target.  It is easiest in practice to keep z
the source and target the same.
 
Option (b) remains on the table.  The unequal actual frequencies of equal-value moves clued me into 
the use of lower-depth values.  Tamal Biswas discovered in his thesis work that the overall effect of 
lower-depth values was far greater than I'd suspected.  This is detailed in this 2015 GLL blog article.  
This led to a full articulation of (b) as a separation principle:
 

• Use the values  over earlier depths  of search for prediction.vi,d d

• Use only the top-depth values  for assessment. vi

 
Biswas and I tried various ways of using the lower-depth values in all cases, not just when the final 
values were tied.  
 

1. The most general and ambitious idea was to make a third player-specific skill parameter  for d

"habitual depth of thinking."  It came with a fourth parameter  for the "variance" of this depth.  v

The plausibility of  growing with rating was shown by the GIF animation in the 2015 article, d
showing the depth at which a player's major mistakes are seen by the engine.  Yes, it is possible 
to judge your chess rating by looking only at positions where you screw up!  (For the most part, 
though, mistakes are already refuted by the computer at low depth.)

 

 

 

https://cse.buffalo.edu/~regan/Talks/SkillPredictionCheating.pdf
https://rjlipton.com/2015/10/06/depth-of-satisficing/


However, the minimization landscape for the resulting model became a moonscape of bad local minima 
causing the regression descent to go haywire.  [FYI: minimizing a polynomial  is NP-hard p x , … , x( 1 n)

even when the minimum is zero, and certain forms of this are NP-hard even when  is linear---this is p
taught in CSE491/596.]  
 

2. Our second attempt involved creating a second "subjective [loss of] utility" term  to go with the 𝜌

"objective loss" term  and manage only a third parameter  (for nautical "heave") in an 𝛿 h
extended equation like so:

 

. -    =    ln ln
1

pi
ln ln

1

p1

𝛿 v ,v  + h⋅𝜌 ---v ---

s

( 1 i) ( i,d )
c

 
This is framed in such a way that whether  or  intuitively tells whether the objective or h < 1 h > 1

subjective values have higher influence on behavior.  I expected  to be under .  Instead we found it h 0.5

most often over .  This still seemed fine as when we assembled the final model just before his 1.5

dissertation defense in late July 2016, we got some tremendous three-parameter  fits---which I put in 
my Aug. 2016 talk at the Indian Statistical Institute on my visit to Kolkata.  It was on the plane home that 
I first tripped across unsustainable instability for fits of individual players.  I told the story in this Election 
Day 2016 post and plumbed the issue in full the following May after Cynthia Rudin (who graduated from 
UB in the 1990s and visited as a Distinguished Speaker as mentioned here, also here) convinced me it 
was unfixable.  [These old talks and blog posts are FYI; I don't necessarily want you to get down in the 
old modeling weeds, but feel welcome if you're curious, and some possible project ideas might use 
them further.]
 
It took over two more years to craft a tightly-controlled approach to this and a third principle that stays 
reliably stable---usually (we have already seen a couple cases in my spreadsheets where the  s
parameter "crashes to nearly zero", but the outputs even then remain usable).  [OK, those words with 
"already seen" were from last year, but we saw it happen live in today's demo.  Plus you can find more 
cases in the newly-posted spreadsheets.  It is fortunate---maybe even strange---that the model retains 
its coherence even when  is tiny and  is small to match it.]s c

 
 
Third Principle: What Causes Weaker Players to Play Weaker Moves?
 
Common belief is that weaker players prefer weaker moves.  In a brusque sense, that amounts to 
denying that the axiom

u  >  u   ⟹  p  >  pi j i j

 
holds at weaker rating levels (or at all).  One project idea that would really get into said weeds would be 
to expand the simple kind of bulk evidence I give in support of this axiom in my August 2019 "Predicting 
Chess and Horses" article.]   Instead, the use of lower-depth values embodies this principle:
 

• Weaker players are more likely to be diverted by shiny objects.

 

 

https://cse.buffalo.edu/~regan/Talks/LessonsFromChessModelNoPauses.pdf
https://rjlipton.wpcomstaging.com/2016/11/08/unskewing-the-election/
https://rjlipton.wpcomstaging.com/2016/11/08/unskewing-the-election/
https://rjlipton.wpcomstaging.com/2017/05/23/stopped-watches-and-data-analytics/
https://rjlipton.wpcomstaging.com/2016/10/29/absolute-firsts/
https://rjlipton.wpcomstaging.com/2023/06/08/human-extinction/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/


 
I often feel this myself when I am playing: As soon as I learn an attractive new fact about a move, I 
have an impluse to play it right away---without necessarily going back to other moves I've considered to 
see if it is really better.  Or even if it's really safe to play.  This strikes me as also related to the thesis of 
the book Nudge by Richard Thaler and Cass Sunstein.
 
The implementation has a term like  but does not allow a separate variable  to multiply it---instead, its 𝜌 h

relative influence is globally controlled by the  hyperparameter mentioned above.  Since it applies only v

to the maximum depth, it is more of a "gradient" down on its lower side than a "variance."  The 
parameter  is allowed only to further resolve moves of equal-optimal value, and even it is a separate ev
regressed parameter only over the large training sets.  The implementation is demonstrably sub-optimal 
as far as prediction goes, but:
 

• It does give highest probability to an inferior move 10--20% of the time.  That is, it often predicts 
players of a given rating will fall into (little) traps.

• It gives 2--3 percentage points higher predictivity overall, which seems to sharpen -scores of z

(cheating) players by  or so.0.5
• The final model is highly numerically stable and passes the internal prediction accuracy checks 

developed here and exhibited in graphs just recently here.
• It finally reflects---in some form---all of the large-scale phenomena I know in chess play.

 
[The demo from Isle of Wight 2025 included showing that on several hundred positions faced by sub-
1550 players---positions with at least 5 moves within 0.20 of the best move---those players still favored 
the computer's best move with a clear plurality over any other move.  A case on larger data with even 
weaker players and positions with ten close-to-optimal moves is detailed in my pivotal 2019 "Predicting 
Chess and Horses" article.   This shows my grounds for believing that a large number of sub-1550 
rated players, voting on moves while isolated from each other, could compete in a competition like 
1999's Kasparov Versus the World.  One other point is, let's say a weak player has a 5% chance of 
making a losing blunder on any move.  Over 30 or so moves of a game, that player will probably trip on 
such a case and lose the game.  But if 1,000 such players are voting on any move, 5% = 50 of them 
will screw up but be rescued in the vote by the 950 who don't---and plurality over 950 will be alm,ost as 
clear as over 1,000.  It would take a lot of resources to conduct such an experiment, however.]
  
Two Other Features
 
There are two other highly technical features worth mentioning.  One is that the model does not use a 
fixed depth of analysis---nor does the screening stage.  There are bounding depths  and d  <  d1 2

bounding counts  of positions searched (called nodes) so that the rule for running analysis is: c  <  c1 2

 
• Search at least to depth  and for at least  nodes.  When  nodes are done, finish the d1 c1 c1

current depth  of search.  But if you finish depth  before passing  nodes, stop there; while if d d2 c1

you pass  nodes at any time, abort and stop with a patched-up partial rendition of the current c2

search level , even if .d d >  d1

 

 

https://www.amazon.com/Nudge-Final-Richard-H-Thaler/dp/014313700X/
https://rjlipton.wpcomstaging.com/2019/11/29/predicating-predictivity/
https://rjlipton.wpcomstaging.com/2024/02/11/stop-cheating-again/
https://rjlipton.com/2019/08/15/predicting-chess-and-horses/
https://rjlipton.com/2019/08/15/predicting-chess-and-horses/
https://cse.buffalo.edu/~regan/chess/K-W/


 
This removes any dependence on processor speed.  Moreover, if only one CPU core is used, the whole 
search is often reproducible.  
 

• Screening in Single-PV mode with Stockfish versions uses  and ,  million d = 201 d = 302 c =  51

nodes and  million.  Komodo and Komodo Dragon versions use  or  and c = 502 d = 181 19

 or  million nodes.c = 31 4

• Full analysis in Multi-PV mode uses  and  (even for Komodo) but  d = 201 d = 302 c = 2001

million nodes and  million nodes.c = 9002

 
The main point is that this allows searching to higher depths in relatively simple positions, especially 
endgames with few pieces on the board.  
 
The second wrinkle furthers this motivation: The real depths  are mapped onto the virtual d … d0

interval .  (The bottom depth  is not depth 1 even though Stockfish versions display it---the d  ...  200 d0

reason for that and my handling of a further notorious issue with 0.00 values of chess programs are 
described here.)  A side benefit is that the engine values---which can jerk up and down between depths 
as you can readily see---are usefully smoothed out.  This makes "depth 20" a stationary concept in my 
current implementations. 
 
Moreover, the entire code is linearized.  Many program elements are coded as potentially being linear 
combinations of themselves and other elements.  This is most immediately visible in the way weights of 
terms in the main loss function (menu option [17]) can be freely fiddled with.  It is the regime of 
Schrödinger's Cat.  This has paid some benefits in code uniformity and simplicity, for instance in how I 
implemented the Efron bootstrap technique: the code does sampling-with-replacement as randomly-
assigned integer weights on each position in the sample.
 
Okaaayyy...from now on we will accept the wisdom of the modeling decisions---unless we see more 
ideas besides the Sonas correction for improving the model.  On to applying it...
 
 
[The demos showed an overall moderate under-preformance, from 1725 down to about 1500, on the 
positions with at least 5 close-to-optimal moves.  Those positions had higher "unscaled evaluation 
entropy", 2.94 versus the overall 2.49.  They also had a moderate increase in average thinking time, 
183 rather than the overall 153 seconds used per move.  When we switched to a sample of positions 
that saw at least 300 seconds of thinking time, the performance on those positions plummeted to under 
1100.  Whereas, when we ran positions where the player used at most 8 seconds, the performance 
zoomed over 2800---by these under-2000 players!]  
 

 

 

https://rjlipton.wpcomstaging.com/2016/01/21/a-chess-firewall-at-zero/
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)



