
CSE702 Spring 2025 Week 5: How the Model Works

The basic model uses only the move value numbers given at the highest depth of search. v , … , v1 ℓ

The only other values that determine model outputs on-the-fly are the main parameters , , and (the s c

restricted form of) the gullibility parameter . We can regard the mapping ev h

 itself as a giant fixed hyperparameter. Moreover, we use only the R ↦ a , b , a , b , uz, vz, e(m m p p v)

differences of the other values from . Earlier we wrote to denote a scaled difference, but from now v1 𝛿'

on we will just write with the scaling understood.𝛿

The Base Model Equations

For to , i = 1 ℓ

p = pi
e
1

𝛿

s

i
c

and . p + ⋯ + p = 11 ℓ

What a monstrosity---with three levels of exponentiation! It does give us equations in unknowns. ℓ ℓ

Let's sanity-check it first:

• The values , , and are all nonnegative, so is nonnegative. 𝛿i s c
𝛿

s

i
c

• Thus to that power is at least . (Note that the fraction itself can be or .)e 1
𝛿

s

i
> 1 < 1

• Therefore is raised to a power at least , so for each .p1 1 p ≤ pi 1 i

• If , so that the first moves are equal-optimal, then . Likewise, if then 𝛿 = 0i i p = pi 1 𝛿 = 𝛿i j

. (We will shortly observe this to be majorly empirically false; patching it is the job of p = pi j ev
and the use of lower-depth values generally.)

• If , then .𝛿 > 𝛿j i p < pj i

• Increasing the value of the exponent lowers the value of , which generally drives up the pi

probability of finding the (or an) optimal move.p1

• The parameter divides out the centipawn units of . Thus the fraction is dimensionless, which s 𝛿i

legitimizes raising it to an arbitrary power .c
• Lower is better---and the effect is most notable when and are both small. Thus models s 𝛿i s s

sensitivity to small differences in value.
• Higher is better---and for fixed , has greatest impact when is large. It thus drives down the c s 𝛿i

probability of a large mistake. Hence the name "consistency."
• A discovery that a move is better or worse than previously thought (making smaller or mk 𝛿k

bigger) can impact the value of for move but not its ordinal ranking relative to any move pi mi mj

other than itself. It does so only indirectly---through the constraint that the probabilities sum mk

to .1

Log-Linear Digression

On pain of doing a "bait-and-switch", let's look at a simpler model equation that also has these
properties:

.p = p ei 1

-
𝛿

s

i
c

Here is multiplied by the utility term rather than raised to its power. The exponent is non-positive, so p1

the multiplier is . Again, lower and higher are better in terms of reducing the probabilities of ≤ 1 s c pi

mistakes and hence raising . Regarding the last property, here a change in the value of does not p1 mk

affect the ratio , thus giving a larger degree of the "independence from irrelevant alternatives" p / pi j

property (IIA).

This model is called "Shares" in the code and is the basic log-linear multinomial logit model in this
context. The generic derivation is:

p = 𝛼 + 𝛽vlog i i

where the " " can be or to any base because the and coefficients can absorb any fixed log ln 𝛼 𝛽

constant factor. So:
.p = e ei

𝛼 𝛽vi

Using means normalizing these values:p + ⋯ + p = 11 ℓ

.p = = i

e e

e e + ⋯ + e e

𝛼 𝛽vi

𝛼 𝛽v1 𝛼 𝛽vℓ

e

e + ⋯ + e

𝛽vi

𝛽v1 𝛽vℓ

Since the terms dropped out, we equivalently can start by taking differences:e𝛼

,p - p = 𝛽 v - v = 𝛽𝛿ln 1 ln i (1 i) i

so

, so e = = ep - pln 1 ln i
p

p

1

i

𝛽𝛿i = e
p

p

i

1

-𝛽𝛿i

so
.p = p ei 1

-𝛽𝛿i

In place of the single fittable coefficient we have (which is just if we hold) and , 𝛽 s 1 / 𝛽 c = 1 c

replacing with . Again the solution of the exact values comes by normalizing:𝛽𝛿i 𝛿 / s(i)c

https://en.wikipedia.org/wiki/Independence_of_irrelevant_alternatives
https://en.wikipedia.org/wiki/Multinomial_logistic_regression#As_a_set_of_independent_binary_regressions

p = i

e

1 + e + ⋯ + e

-
𝛿

s

i
c

-
𝛿

s

2
c

-
𝛿

s

ℓ

c

The initial comes because . In particular, would be literally a logistic curve if 1 𝛿 = 01 p1
1

1 + e-𝛽x
ℓ = 2

(ignoring that we actually have some nonlinearity via that is not covered here), and the case c ℓ > 2
explains the name "multinomial logit" model. The whole vector of probabilities can be written as

. = softmaxp
-𝛿

s

i
c

The denominator is positive, so is well defined, and we get the equation Q 𝛼 = Qln() p = ei

- 𝛼+𝛽𝛿(i)

back again. Thus did not completely disappear---it just absorbed the requirement that the 𝛼

probabilities sum to . Moreover, we can unpack (again, scaled values are intended here), 1 𝛿 = v - vi 1 i

so , and then multiply top and bottom by to recover the original form stated in terms -𝛿 = v - vi i 1 e-𝛽v1

of the (scaled) move values themselves.

Nature evidently works this way: this kind of probability distribution involving exponents was developed
by machine learning theorists in the 1970s statistical physicists in the 1870s, in particular Ludwig
Boltzmann and Josiah Gibbs. In the physics context, is the partition function. In thermodynamics, Q

the parameter has units of "inverse temperature"; in chess, the units are "inverse centipawns." 𝛽

Chess, however, does not work this way---even when is incorporated. I actually discovered the failure c
way back in 2008, in the wake of some small-scale Matlab code written by Steve Uurtamo and some
others in a seminar I ran that spring. I had some other intuitions that led me to believe that a ratio, not
difference, of logs was needed on the left-hand side.

What Works: The Double-Log-Linear Model

The equation that works---markedly better albeit not perfectly---in chess is the double-log model

 = 𝛼 + 𝛽v ln ln
1

pi
i

(With double logs, I want to make absolutely sure that the outer one is not on a negative number, so I
insist on writing instead of , and so on.)1 / plog() - plog

https://en.wikipedia.org/wiki/Generalised_logistic_function
https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Gibbs_measure
https://rjlipton.com/2018/10/18/london-calling/

. - = 𝛽𝛿 ln ln
1

pi
ln ln

1

p1
i

This becomes:

, = e
1 / p

1 / p

ln(i)

ln(1)
𝛽𝛿i

so

. = eln
1

pi
ln

1

p1

𝛽𝛿i

Exponentiating both sides again and temporarily substituting givesr = ei

𝛽𝛿i

, = e =
1

pi

ri ln
1

p1 1

p1

r

so

.p = p = pi
r
1
i 𝛽𝛿

1
exp(i)

Raising the dimensionless to the power again gives the entire model equation that I deployed 𝛽𝛿i c
from 2011 thru 2019:

p = pi (1)e

𝛿

s

i

c

together with (and together with a post-hoc "fudge" of probabilities for equal-value p + ⋯ + p = 11 ℓ

moves). This has a completely mad-looking triple exponential on the right-hand side. I actually
experimented with ways to substitute a gentler "curve" to use in place of in the exponent part, and e ⋯()

you can find a gaggle of other "curve"s implemented in the C++ program, but none has worked better
than exponential. (It is actually called "invexp" for inverse exponential in the code, because the log-
linear derivation gave it a negative sign.) You might wonder why the model equation can't simply be

p = pi (1)

𝛿

s

i
c

without the in the middle. The flaw is that this does not enforce , because can be less e p ≤ pi 1
𝛿

s

i
c

than ---indeed, it can be zero. The upshots now are:1

• Every option has a "share" that depends only on its utility value (once ---that is, ---mi e 𝛽u(i)
c

ui 𝛽 s

and are globally fitted), but now it is in the exponent of . Hence I call it a "power share". c p1

There isn't a simple sum of shares---it's more complicated. No softmax.Q

• The values of other moves again influence the probability only through the condition that the
probabilities sum to .1

• Each probability is now a power of the best-move probability . pi p1

Three Principles and Their Violations

Here are three main principles that govern the design of the model to generate from data:p

1. The probability of a move depends on its value in relation to the values of other moves. In
particular, if a move has significantly higher value than others, it is much more likely to be found
by a human player as well as by machines.

2. Besides the norm of training on separate data from (validation and) testing, it is good to base
predictions on different kinds of data from that measured for assessment. I call this "separating
performance measurement from prediction."

3. Weaker players are weaker not so much because they inherently prefer weaker moves, but
because they are more likely to be "diverted by shiny objects."

Principle 1 is enough for good results. But it leaves the model with two properties that are empirically
false:

• Moves that are tied in value---especially those tied for best with the first move---have equal
probability.

• The best move always has the highest probability, even for weaker players.

[The running demo used throughout included results on tied-optimal moves.]

Thus the first principle's implication that is overwhelmingly falsified. I did an ad-v = v ⟹ p = pi 1 i 1

hoc patch by making the hyperparameter with original fixed value 0.58, coming from the limited data pp

I had using the Rybka 3 chess program at the time of this 2012 GLL blog article, such that any case of
 would adjust the originally-equal projected probabilities to make . Three equal-v = vi i+1 p = 0.58pi+1 i

value moves gave and so on, hence the name stood for "patch power." p = 0.58p = 0.58 pi+2 i+1
2

i

Later use of versions of the Houdini, Komodo, and Stockfish engines crept up to its current value pp

0.616. That is incidentally close to the (reciprocal of the) "golden ratio" , which r = 0.61803398...

satisfies . But I also found rating dependence, hence my resort to ideas described next, r + r = 12

ultimately roughly handled by the parameter.ev

Second Principle: Separating Prediction From Performance Assessment

In many sporting areas, the same data is used for prediction and performance assessment. For
instance in running foot races, the main data is your race times---previous and current, it's the same

https://en.wikipedia.org/wiki/Rybka#Versions
https://rjlipton.wpcomstaging.com/2012/03/30/when-is-a-law-natural/

data. Projections take the form of extrapolating from scores in the (recent) past. I had recognized the
second principle as a desideratum in a talk I gave in 2009, but it took the whole decade to tame the
vicissitudes of implementing it. Here are two ways to embody it:

(a) Use a "panel" of programs to generate the move projections , but measure actual T1 and pi

ASD (etc.) against a given strong program. The "panel" programs need not be as strong---the
closer they are to "human play", the better.

(b) Use lower-depth values for the predictions, but use only the highest-depth values to judge
quality of the results.

Option (a) brings up the idea of model averaging. This can always be done by running separate
instances of the model (for different chess programs) and then averaging their outputs. I had hoped to
save considerable effort by combining inputs---ideally by putting their evaluation functions on a
common scale governed by the notion of points expectation ("win probability"). Alas, as we've seen:

• The points expectation scale is rating-dependent.
• Chess programs can---and do---post-process their evaluations in various ways that frustrate

bringing them onto a common scale.

The latter point makes the task become one of building a model of the particular program. A final
operational issue: In principle, the model built exclusively with Stockfish 11 still can be applied to test
conformance to Komodo 13---or to the latest Stockfish 17. But that would require a separate validation
run and possible -score adjustment for each pair of source and target. It is easiest in practice to keep z
the source and target the same.

Option (b) remains on the table. The unequal actual frequencies of equal-value moves clued me into
the use of lower-depth values. Tamal Biswas discovered in his thesis work that the overall effect of
lower-depth values was far greater than I'd suspected. This is detailed in this 2015 GLL blog article.
This led to a full articulation of (b) as a separation principle:

• Use the values over earlier depths of search for prediction.vi,d d

• Use only the top-depth values for assessment. vi

Biswas and I tried various ways of using the lower-depth values in all cases, not just when the final
values were tied.

1. The most general and ambitious idea was to make a third player-specific skill parameter for d

"habitual depth of thinking." It came with a fourth parameter for the "variance" of this depth. v

The plausibility of growing with rating was shown by the GIF animation in the 2015 article, d
showing the depth at which a player's major mistakes are seen by the engine. Yes, it is possible
to judge your chess rating by looking only at positions where you screw up! (For the most part,
though, mistakes are already refuted by the computer at low depth.)

https://cse.buffalo.edu/~regan/Talks/SkillPredictionCheating.pdf
https://rjlipton.com/2015/10/06/depth-of-satisficing/

However, the minimization landscape for the resulting model became a moonscape of bad local minima
causing the regression descent to go haywire. [FYI: minimizing a polynomial is NP-hard p x , … , x(1 n)

even when the minimum is zero, and certain forms of this are NP-hard even when is linear---this is p
taught in CSE491/596.]

2. Our second attempt involved creating a second "subjective [loss of] utility" term to go with the 𝜌

"objective loss" term and manage only a third parameter (for nautical "heave") in an 𝛿 h
extended equation like so:

. - = ln ln
1

pi
ln ln

1

p1

𝛿 v ,v + h⋅𝜌 ---v ---

s

(1 i) (i,d)
c

This is framed in such a way that whether or intuitively tells whether the objective or h < 1 h > 1

subjective values have higher influence on behavior. I expected to be under . Instead we found it h 0.5

most often over . This still seemed fine as when we assembled the final model just before his 1.5

dissertation defense in late July 2016, we got some tremendous three-parameter fits---which I put in
my Aug. 2016 talk at the Indian Statistical Institute on my visit to Kolkata. It was on the plane home that
I first tripped across unsustainable instability for fits of individual players. I told the story in this Election
Day 2016 post and plumbed the issue in full the following May after Cynthia Rudin (who graduated from
UB in the 1990s and visited as a Distinguished Speaker as mentioned here, also here) convinced me it
was unfixable. [These old talks and blog posts are FYI; I don't necessarily want you to get down in the
old modeling weeds, but feel welcome if you're curious, and some possible project ideas might use
them further.]

It took over two more years to craft a tightly-controlled approach to this and a third principle that stays
reliably stable---usually (we have already seen a couple cases in my spreadsheets where the s
parameter "crashes to nearly zero", but the outputs even then remain usable). [OK, those words with
"already seen" were from last year, but we saw it happen live in today's demo. Plus you can find more
cases in the newly-posted spreadsheets. It is fortunate---maybe even strange---that the model retains
its coherence even when is tiny and is small to match it.]s c

Third Principle: What Causes Weaker Players to Play Weaker Moves?

Common belief is that weaker players prefer weaker moves. In a brusque sense, that amounts to
denying that the axiom

u > u ⟹ p > pi j i j

holds at weaker rating levels (or at all). One project idea that would really get into said weeds would be
to expand the simple kind of bulk evidence I give in support of this axiom in my August 2019 "Predicting
Chess and Horses" article.] Instead, the use of lower-depth values embodies this principle:

• Weaker players are more likely to be diverted by shiny objects.

https://cse.buffalo.edu/~regan/Talks/LessonsFromChessModelNoPauses.pdf
https://rjlipton.wpcomstaging.com/2016/11/08/unskewing-the-election/
https://rjlipton.wpcomstaging.com/2016/11/08/unskewing-the-election/
https://rjlipton.wpcomstaging.com/2017/05/23/stopped-watches-and-data-analytics/
https://rjlipton.wpcomstaging.com/2016/10/29/absolute-firsts/
https://rjlipton.wpcomstaging.com/2023/06/08/human-extinction/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/

I often feel this myself when I am playing: As soon as I learn an attractive new fact about a move, I
have an impluse to play it right away---without necessarily going back to other moves I've considered to
see if it is really better. Or even if it's really safe to play. This strikes me as also related to the thesis of
the book Nudge by Richard Thaler and Cass Sunstein.

The implementation has a term like but does not allow a separate variable to multiply it---instead, its 𝜌 h

relative influence is globally controlled by the hyperparameter mentioned above. Since it applies only v

to the maximum depth, it is more of a "gradient" down on its lower side than a "variance." The
parameter is allowed only to further resolve moves of equal-optimal value, and even it is a separate ev
regressed parameter only over the large training sets. The implementation is demonstrably sub-optimal
as far as prediction goes, but:

• It does give highest probability to an inferior move 10--20% of the time. That is, it often predicts
players of a given rating will fall into (little) traps.

• It gives 2--3 percentage points higher predictivity overall, which seems to sharpen -scores of z

(cheating) players by or so.0.5
• The final model is highly numerically stable and passes the internal prediction accuracy checks

developed here and exhibited in graphs just recently here.
• It finally reflects---in some form---all of the large-scale phenomena I know in chess play.

[The demo from Isle of Wight 2025 included showing that on several hundred positions faced by sub-
1550 players---positions with at least 5 moves within 0.20 of the best move---those players still favored
the computer's best move with a clear plurality over any other move. A case on larger data with even
weaker players and positions with ten close-to-optimal moves is detailed in my pivotal 2019 "Predicting
Chess and Horses" article. This shows my grounds for believing that a large number of sub-1550
rated players, voting on moves while isolated from each other, could compete in a competition like
1999's Kasparov Versus the World. One other point is, let's say a weak player has a 5% chance of
making a losing blunder on any move. Over 30 or so moves of a game, that player will probably trip on
such a case and lose the game. But if 1,000 such players are voting on any move, 5% = 50 of them
will screw up but be rescued in the vote by the 950 who don't---and plurality over 950 will be alm,ost as
clear as over 1,000. It would take a lot of resources to conduct such an experiment, however.]

Two Other Features

There are two other highly technical features worth mentioning. One is that the model does not use a
fixed depth of analysis---nor does the screening stage. There are bounding depths and d < d1 2

bounding counts of positions searched (called nodes) so that the rule for running analysis is: c < c1 2

• Search at least to depth and for at least nodes. When nodes are done, finish the d1 c1 c1

current depth of search. But if you finish depth before passing nodes, stop there; while if d d2 c1

you pass nodes at any time, abort and stop with a patched-up partial rendition of the current c2

search level , even if .d d > d1

https://www.amazon.com/Nudge-Final-Richard-H-Thaler/dp/014313700X/
https://rjlipton.wpcomstaging.com/2019/11/29/predicating-predictivity/
https://rjlipton.wpcomstaging.com/2024/02/11/stop-cheating-again/
https://rjlipton.com/2019/08/15/predicting-chess-and-horses/
https://rjlipton.com/2019/08/15/predicting-chess-and-horses/
https://cse.buffalo.edu/~regan/chess/K-W/

This removes any dependence on processor speed. Moreover, if only one CPU core is used, the whole
search is often reproducible.

• Screening in Single-PV mode with Stockfish versions uses and , million d = 201 d = 302 c = 51

nodes and million. Komodo and Komodo Dragon versions use or and c = 502 d = 181 19

 or million nodes.c = 31 4

• Full analysis in Multi-PV mode uses and (even for Komodo) but d = 201 d = 302 c = 2001

million nodes and million nodes.c = 9002

The main point is that this allows searching to higher depths in relatively simple positions, especially
endgames with few pieces on the board.

The second wrinkle furthers this motivation: The real depths are mapped onto the virtual d … d0

interval . (The bottom depth is not depth 1 even though Stockfish versions display it---the d ... 200 d0

reason for that and my handling of a further notorious issue with 0.00 values of chess programs are
described here.) A side benefit is that the engine values---which can jerk up and down between depths
as you can readily see---are usefully smoothed out. This makes "depth 20" a stationary concept in my
current implementations.

Moreover, the entire code is linearized. Many program elements are coded as potentially being linear
combinations of themselves and other elements. This is most immediately visible in the way weights of
terms in the main loss function (menu option [17]) can be freely fiddled with. It is the regime of
Schrödinger's Cat. This has paid some benefits in code uniformity and simplicity, for instance in how I
implemented the Efron bootstrap technique: the code does sampling-with-replacement as randomly-
assigned integer weights on each position in the sample.

Okaaayyy...from now on we will accept the wisdom of the modeling decisions---unless we see more
ideas besides the Sonas correction for improving the model. On to applying it...

[The demos showed an overall moderate under-preformance, from 1725 down to about 1500, on the
positions with at least 5 close-to-optimal moves. Those positions had higher "unscaled evaluation
entropy", 2.94 versus the overall 2.49. They also had a moderate increase in average thinking time,
183 rather than the overall 153 seconds used per move. When we switched to a sample of positions
that saw at least 300 seconds of thinking time, the performance on those positions plummeted to under
1100. Whereas, when we ran positions where the player used at most 8 seconds, the performance
zoomed over 2800---by these under-2000 players!]

https://rjlipton.wpcomstaging.com/2016/01/21/a-chess-firewall-at-zero/
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

