
CSE702 Week 4A: Normality, Mapping, CLT, Screening Test
 
Show https://cse.buffalo.edu/~regan/Talks/CrossLabsOct2022.pdf
 
Show https://en.wikipedia.org/wiki/Normal_distribution
 
Any two normal distributions  and  can be mapped onto each other.N 𝜇 , 𝜎( 1 1) N 𝜇 , 𝜎( 2 2)

•  is standard.N 0, 1( )

•  approximates the distribution of flipping a fair coin 100 times.N 50, 5( )

 
Let's consider just the -match for the time being.T1

The Central Limit Theorem (CLT) says that whatever goes on distributionally inside players' heads, the 
distribution of the -match %, being a mean of an independent(??) sample, approaches the normal T1

distribution as the number  of samples used in the mean grows. The "Rule of 30" is a convention that n

 is usually good enough.n = 30

 
CLT presumes

• independent samples
• from the same (unknown) distribution 

 
Neither assumption holds in chess:
 

• Consecutive chess moves by a player in a game used to form the sample are not independent.  
Carlsen-Anand Double Blunder example: Anand missed his opportunity because he was fixated 
on moving his rightmost pawn down the board.

• The moves in a sample are all from different positions.  
 
Nevertheless, the distributions obtained are fairly close to normal.
[show examples]
 
Hence the screening scores of the form  can be treated as "nominal -scores."  value = 50 + 5z z
 
Main Question: Is it fair to use them for judgment, without using predictive analytics?
(My answer: No.  But things like this get done in the world at large.)
 
 
How the Screening Test Works
 
The main points are:
 

• The screening test is completely data-driven.  There is no "theory".
• It involves simple raw counting of features of games with regard to a chess engine (or engines) 

used as a benchmark.  It is "entirely objective" in my parlance.

 

 

https://cse.buffalo.edu/~regan/Talks/CrossLabsOct2022.pdf
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Central_limit_theorem
https://www.researchgate.net/post/What_is_the_rationale_behind_the_magic_number_30_in_statistics
https://www.youtube.com/watch?v=8v_OpuDWcgM


• However, it makes no attempt to distinguish "easy" chess positions from "difficult" ones.
– A player who makes his/her own games easier to play may incur artificially high screening 

scores.  (J.-R. Capablanca?   Anatoly Karpov?  Wesley So?)
 
Currently, my screening uses only two raw metrics: T1-match and ASD.  The ASD is computed in the 
rating-independent manner of my "When Data Serves Turkey" article, which is there shown to be 
imperfect---but a followup regression over ratings mitigates the imperfection.  Here is roughly the 
process I use:
 

1. For each rating "bucket"  in the training sets, compute the mean T1-match  and its standard R 𝜇R

deviation  among games by players in that bucket.𝜎R

2. Smooth things out by doing linear cubic (back to linear after the Sonas correction?) regressions, 
first  versus  to obtain values , then separately  versus  to obtain smoothed values 𝜇R R 𝜇

R
𝜎R R

.  Weight the regressions by the numbers of positions in each bucket.𝜎
R

3. Note that the regressions give mappings  and  continuously for any 𝜇 R =T1( ) 𝜇
R

𝜎 R =T1( ) 𝜎
R

rating , not just "bucketwise."R

4. Repeat steps 1--3 for ASD to obtain mappings  and .𝜇 RASD( ) 𝜎 RASD( )

5. Also do regressions to fit and compute a mapping the covariance between the T1 values 𝜌 R =( )

and ASD values at rating , normalized as their Pearson correlation.R

6. Travel ahead in time to pick a "magic number" .  I got  as usable for all kinds of n0 n = 1870

chess: Standard, Rapid, and Blitz.  Then travel back in time to whee you were.
7. Given an actual performance  for T1-match and  for ASD from  game positions, form the mm asd n

ersatz scores

    and    .z  =  T1

mm - 𝜇 R  

𝜎 R

T1( )

T1( )

n

n0

z  =  ASD

asd - 𝜇 R  

𝜎 R

ASD( )

ASD( )

n

n0

8. Finally, combine the two into one score using the generalized Fisher-Stouffer rule:

.z =  
z  +  zT1 ASD

2 +  2𝜌 R( )

9. Except, hide the fact that this is not really a -score---and not to be used as one for judgment z
purposes---by transporting it onto the scale of 100 flips of a fair coin: 

.ROI =  50 +  5z
 
A better way to do this is to make a single combination .  Even better, do  to C mm, asd( ) C mm, asd, n( )

return an absolute number that scales with the number  of positions.  Then you only have to do steps n

1--3 once, to obtain mappings the regressed mean value of  at rating  and the 𝜇 R =C( ) C R 𝜎 R =C( )

smoothed-out standard deviation of  as a function of .  Then just do C R

z =  
C mm, asd, n - 𝜇 R

𝜎 R

( ) C( )

C( )

and  as before.  Well, there are two reasons I've shied away from this:ROI = 50 + 5z
 

 

 

https://rjlipton.wpcomstaging.com/2016/11/30/when-data-serves-turkey/
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


• T1-match and ASD do not have common units.  Any combined score would seem to make an 
arbitrary decision in how to weight them.  Whereas, the above process maps them to normalized 
units ahead of time, so they are combined with equal weighting.

• I am essentially doing this anyway, using the combination function  the  in C mm, asd, n  =*( ) z

step 8.  Well, then I would have to compute  and  and finally combine them as 𝜇 RC* ( ) 𝜎 RC* ( )

above.  The final secret is that I computed the magic number  just so that this further n = 1870

step would give the identical answer to step 8.
 
Clear as mud?  Well, in fact this is not what I actually do either---I build a  that shortcuts the Fisher-C'

Stouffer rule with a close-but-fudged number for the correlation, then use  to make the resulting n0

fudged measure agree in variance as well as mean with the training data.  
 
 
Combining Z-Scores
 
One takeaway for possible future reference is the following formula for combining multiple -scores z

 with arbitrary nonnegative weights vector  and normalized (e.g. Pearson) z , … , z1 k w =  w , … , w( 1 k)

covariance matrix .  Note that the main diagonal has all-1s, since a -score is perfectly 𝜬  =  𝜌 z , zi,j ( i j) z

correlated with itself.  The combination formula is

.z =  
w z∑

 

i i i

w 𝜬wT

 
• When the weights are all equal, this is the sum of the -scores divided by the square root of the z

sum of the entries in the covariance matrix.
• When the weights are all equal and the -scores are independent, the off-diagonal elements are z

all zero, so you get Stouffer's Rule proper: the sum of the -scores divided by .z k

• When the weights are all equal and the -scores are perfectly correlated, then you get the sum z

divided by ---i.e., the average of the -scores.k z

• When the -scores are independent but the weights are not necessarily equal, the denominator z

becomes the square root of , which is the Euclidean norm of .  So you getw IwT w

.z =  
w z

||w||

∑
 

i i i

 
When  is a Euclidean unit vector, the denominator becomes 1, so you get the weighting of the w

-scores.  This does not, however, happen so simply when  is a linear combination summing to z w

1, i.e., an L1-norm unit vector.  If  can be complex, we might verge into quantum mechanics...  w
 
Too wit, suppose we have two independent -scores  with weight 2/3 and  with weight 1/3.  If z z1 z2

 were considered a unit vector, then these would combine to give .  w = 2 / 3, 1 / 3( ) z =  z  +  z
2

3 1
1

3 2

 

 



However,  is the same as two completely correlated -scores  of weight 1/3 each.  So the z1 z z' = z1 1

equal-weights rule applies and we get divided by the square root of the sum of the z =  z' + z' + z  1 1 2

covariance matrix , so we get
1 1 0

1 1 0

0 0 1

z =  .
2z + z1 2

5
 

which is not the same.  The Euclidean norm of  is , so this agrees with the w  =  / 34 / 9 +  1 / 9 5

formula in blue.  Conclusion: It is logical for Nature to be quantum, not classical!
 
My reference for the formula in magenta is a 2011 paper by Dmitry V. Zaykin: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135688/   Can anyone find a simpler reference, say in 
a machine-learning book?

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135688/

