
CSE702 Week 5B (Thu 2/29): Model Structure and Principles, continued

Now we come to the equations that model the principle that the probability of a move depends upon its

value in relation to the values of alternative choices. This principle undergirds pretty much any utility-

based prediction model. We first show how this is done in the vast majority of cases via a log-linear

model, but that this approach fails in chess---at least in the straightforward implementations coded thus

far. Whereas, a loglog-linear model works to a surprisingly and suddenly good degree for equations

with only two main parameters. Does this have the force of physical law?

The Core Predictive Component

At last we come to the parts of the model that generate its projected probabilities. If we let

m , m , … , m1 2 ℓ

denote the -many legal moves in the order that the chess program lists them at its highest depth, then ℓ
we want to compute the corresponding probability vector with= p , p , … , pp (1 2 ℓ)

p = Y s, c, … plays mi Pr[() i]

for to . (I have settled on the convention of numbering moves from 1.) Because this definition is i = 1 ℓ
stated in terms of a virtual player, it is mathematically well-defined. The efficacy of the model comes

from how well the given represents an actual human subject.Y s, c, …()

The aspect of the model being minimalist is that for any position depends only on:p t

• the main parameters used to define the virtual player whose actions are projected Y s, c, …()
(note that the reference rating is determined from being given);R Y

• any hyperparameters that are either completely fixed before training or are dependent on the

main ones; and

• the values of each legal move at each search depth recorded by the engine---in a table such as

the above (in AIF format).

Here are three main principles that govern the design of the model to generate from these data:p

1. The probability of a move depends on its value in relation to the values of other moves.

2. Separate performance measurement from prediction.

3. Weaker players are weaker not so much because they inherently prefer weaker moves, but

because they are more likely to be "diverted by shiny objects."

I regard Property 1 as organic to any model based on a utility/risk/reward function . In our case, f u(i)
 is the loss (in ASD or points expectation) from choosing the move . It tops out at if is an ui mi 0 mi

optimal move (as judged by the engine or engines whose high-depth values are filling the model) and is

negative otherwise. It actually does not matter if we flip the sign of or add a fixed value to it or apply ui

any other linear transformation to the values, so long as we do so consistently for all moves in a

position and all positions in our datasets, because we will have the coefficients for a linear

transformation inside our model.

Diversion: Log-Linear Model

The most prominent utility-based models are log-linear, meaning they have the form

.= � + �uln 1
pi i

Notes: I prefer ensuring that logarithms have nonnegative values whenever possible and reserve " " log
for base , so I avoid writing here. Because the left-hand side is dimensionless, is 2 plog(i) �
dimensionless while has units of "inverse utility." In our case, the utility units are centipawns (whether �
scaled down as "Pawns in Equal Positions" or not), so has units of inverse centipawns---whatever �
that is. The parameter is much the same as " " written as a divisor, so that it expresses the idea of s �
sensitivity in natural centipawn units---how much of a difference in assessed value you are sensitive to.

Keeping things abstract for the moment, the log-linear model is solved via:

, so , and .= e
1

pi
�+�ui p = ei

- �+�u(i) p = 1∑
i i

We can write . Note that the term with canceled out. If p = p = p = p ei 1
p

p
i

1
1
e e

e e

-� -�ui

-� -�u1
1

� u -u(1 i) �

we fix , then this simplifies further tou = 01

. p = p ei 1
-�ui

Here and should have the same sign---that is, if we code the utility dropoffs to be positive rather � ui

than negative, then will be positive. This is so that . If , so that the choice has � p ≤ pi 1 u = 0i mi

equal utility to the first choice , then . The probabilities all come out sorted by the values of m1 p = pi 1

the moves. Now we can use to solve this:p = 1∑
i i

, 1 = p 1 + e + … + e1
-�u2 -�uℓ

so

.p =1
1

1 + e + … + e-�u2 -�uℓ

Note that if , meaning there are only two legal moves, this is exactly a logistic curve. Thus we can ℓ = 2
say the solution is a generalized logistic curve. The solution for then becomesi > 1

p =i
e

1 + e + … + e

-�ui

-�u2 -�uℓ

Even without assuming , we get the solution for all as:u = 01 i ≥ 1

.p =i
e

e + e + … + e

-�ui

-�u1 -�u2 -�uℓ

This is exactly the softmax function. The denominator is positive, so is well defined, Q � = Qln()

and we get the original equation back again. Thus did not completely disappear---it p = ei
- �+�u(i) �

just absorbed the requirement that the probabilities sum to . My way of interpreting this:1

• Every option has a "share" (of the "pot") that depends only on its utility value (once mi e-�ui Q ui

 is globally fitted). The probability is determined by how large is.� pi Q
• The values of other moves influence the probability only through the condition that the

probabilities sum to .1
• Each probability is a multiple of the best-move probability . The multiple is a ratio of the pi p1

share of and the share of . When , so that the share of is taken as then the pi pi u = 01 p1 1.0,
multiple is just the share of . pi

• If you model instead, you get the same end result.- = � + �uln 1
pi

ln 1
p1 i

This kind of probability distribution involving exponents was developed by machine learning theorists in

the 1970s physicists in the 1870s, in particular Ludwig Boltzmann and Josiah Gibbs. In the physics

context, is the partition function. In thermodynamics, the parameter has units of "inverse Q �
temperature"; in chess, we've already seen that the units are "inverse centipawns." That is to say, my s

parameter is just , and its presence in the model is de rigeur. Dividing out the units of centipawns is a
1
�

matter of ontological necessity. The parameter piggybacks on the observation that is c �ui

dimensionless, so is kosher for any power . �u(i)c c

In quantum circuits , the utilities are replaced by values of a polynomial where is the C P y , … , y(1 h) h
number of binary nondeterministic gates in the circuit. My 2018 paper on quantum circuits with Amlan

Chakrabarti and my PhD graduate Chaowen Guan broadened earlier representations of these

polynomials; I'm currently trying to develop a thesis that algebraic-geometric invariants of act as P

https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Gibbs_measure
https://en.wikipedia.org/wiki/Gibbs_measure
https://dblp.org/rec/journals/tcos/ReganCG18.html
https://dblp.org/rec/journals/tcos/ReganCG18.html

complexity measures that may explain our 30-year engineering difficulty in operating such circuits

physically. But I digress...to cut to the chase:

• The log-linear model is ordained both in machine learning and in physics.

• Yet it fails in chess---even if you incorporate .c

I actually discovered the failure way back in 2008, in the wake of some small-scale Matlab code written

by Steve Uurtamo and some others in a seminar I ran that spring. I had some other intuitions that led

me to believe that a ratio, not difference, of logs was needed on the left-hand side.

What Works: The Double-Log-Linear Model

The equation that works---markedly better albeit not perfectly---in chess is:

.- = � + �uln ln 1
pi

ln ln 1
p1 i

This becomes:

, = e
1 / p

1 / p

ln(i)

ln(1)
�+�u(i)

so

.= eln 1
pi

ln 1
p1

�+�u(i)

Exponentiating both sides again and temporarily substituting givesx = e �+�u(i)

,= e =1
pi

x ln
1
p1 1

p1

x

so

.p = p = pi
x
1

�+�u
1
exp(i)

In fact, because we started with a difference of two double-logs, it is reasonable to suppose . � = 0
Substituting the ASD for , for , and raising the dimensionless to the power �' m , m(1 i) ui 1 / s � �ui c
again gives the entire model equation that I deployed from 2011 thru 2019:

p = pi (1)e

�' m ,m

s

(1 i)
c

together with . This has a completely mad-looking triple exponential on the right-p + ⋯ + p = 11 ℓ

hand side. I actually experimented with ways to substitute a gentler "curve" to use in place of in e ⋯()

https://rjlipton.wpcomstaging.com/2018/10/18/london-calling/
https://rjlipton.wpcomstaging.com/2018/10/18/london-calling/

the exponent part, and you can find a gaggle of other "curve"s implemented in the C++ program, but

none has worked better than exponential. (It is actually called "invexp" for inverse exponential in the

code, because some other interpretation gives it a negative sign.) You might wonder why the model

equation can't simply be

p = pi (1)

�' m ,m

s

(1 i)
c

without the in the middle. The flaw is that this does not enforce , because can be e p ≤ pi 1
�' m ,m

s

(1 i)
c

less than ---indeed, it can be zero. The upshots now are:1

• Every option has a "share" that depends only on its utility value (once ---that is, ---mi e �u(i)c ui � s
and are globally fitted), but now it is in the exponent of . Hence I call it a "power share". c p1
There isn't a simple sum of shares---it's more complicated. No softmax.Q

• The values of other moves again influence the probability only through the condition that the

probabilities sum to .1
• Each probability is now a power of the best-move probability . pi p1

This is enough for good results. But it leaves the model with the property that the engine's first move

always has the highest projected probability. This leads into the initial contrast of my 2019 "Predicting

Chess and Horses" article. It also makes the model use only the highest-depth values for the moves,

so as to form the utility values in the equation �' m , m(1 i)

- =ln ln 1
pi

ln ln 1
p1

�' m ,m

s

(1 i)
c

for generating the projections, when those same values are used to assess performance. I had

recognized the second principle as a desideratum in a talk I gave in 2009, but it took the whole decade

to tame the vicissitudes of implementing it.

Second Principle: Separating Prediction From Performance Assessment

In many sporting areas, the same data is used for prediction and performance assessment. For

instance in running foot races, the main data is your race times---previous and current, it's the same

data. Projections take the form of extrapolating from scores in the (recent) past.

All forms of the model above make the same top-depth values of moves used both for judging quality

and for predictive utility. It follows from the equations in particular that for any moves :m , mi j

if then .u = ui j p = pi j

https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
https://cse.buffalo.edu/~regan/Talks/SkillPredictionCheating.pdf
https://cse.buffalo.edu/~regan/Talks/SkillPredictionCheating.pdf

In particular, if the chess program lists out two moves of equal optimal value in the order , then it m , m1 2

should make no difference which one is played, no? They are moves of equal value, "peas in a pod" as

far as the data and equations are concerned.

Yet the same game data (then in 2009--2011 from the Rybka 3 program, until it was DQ-ed for

plagiarism in late 2011) quickly showed that in such cases, the move was being played a massive m1

58% of the time. This is detailed in my GLL article https://rjlipton.wpcomstaging.com/2012/03/30/when-

is-a-law-natural/ I considered randomizing the listing order in such tied cases, but that was an ostrich

reaction to a better predicition opportunity. Instead, I put in an ad-hoc, post--hoc fudge of the final

probabilities to reflect this phenomenon.

I later verified the stable-sorting hunch stated in the article, and Tamal Biswas helped me expand this

phenomenon into full efforts to realize this separation principle:

• Use the values over earlier depths of search for prediction.vi,d d
• Use only the top-depth values for assessment.ui

That is to say, the values of the move in such cases are generally lower at earlier stages of the m2

search than those of . We can find many examples in the provided AIF data in /projects/regan/m1

Chess/CSE712/AIF/, as ties for top value happen typically 8--10% of the time for chess programs.

Biswas and I tried various ways of using the lower-depth values in all cases, not just when the final

values were tied. Trying to make a fully regressable parameter for a player's "habitual depth of d
search" created a moonscape of bad local minima causing the regression descent to go haywire. [FYI:

minimizing a polynomial is NP-hard even when the minimum is zero, and certain forms of p x , … , x(1 n)
this are NP-hard even when is linear---this is taught in CSE491/596.] Our more-controlled attempt p
involved creating a second "subjective [loss of] utility" term to go with the "objective loss" term and � �'
manage a third parameter (for nautical "heave") in an extended equation like so:h

.- =ln ln 1
pi

ln ln 1
p1

�' u ,u + h⋅� ---v ---

s

(1 i) (i,d)
c

This is framed in such a way that whether or intuitively tells whether the objective or h < 1 h > 1
subjective values have higher influence on behavior. I expected to be under . Instead we found it h 0.5
most often over . This still seemed fine as when we assembled the final model just before his 1.5
dissertation defense in late July 2016, we got some tremendous three-parameter fits---which I put in

my Aug. 2016 talk at the Indian Statistical Institute on my visit to Kolkata. It was on the plane home

that I first tripped across unsustainable instability for fits of individual players. I told the story in this

Election Day 2016 post and plumbed the issue in full the following May after Cynthia Rudin (who

graduated from UB in the 1990s and visited as a Distinguished Speaker as mentioned here, also here)

convinced me it was unfixable. [These old talks and blog posts are FYI; I don't necessarily want you to

get down in the old modeling weeds, but feel welcome if you're curious, and some possible project

ideas might use them further.]

https://rjlipton.wpcomstaging.com/2012/03/30/when-is-a-law-natural/
https://rjlipton.wpcomstaging.com/2012/03/30/when-is-a-law-natural/
https://rjlipton.wpcomstaging.com/2012/03/30/when-is-a-law-natural/
https://rjlipton.wpcomstaging.com/2012/03/30/when-is-a-law-natural/
https://cse.buffalo.edu/~regan/Talks/LessonsFromChessModelNoPauses.pdf
https://cse.buffalo.edu/~regan/Talks/LessonsFromChessModelNoPauses.pdf
https://rjlipton.wpcomstaging.com/2016/11/08/unskewing-the-election/
https://rjlipton.wpcomstaging.com/2016/11/08/unskewing-the-election/
https://rjlipton.wpcomstaging.com/2017/05/23/stopped-watches-and-data-analytics/
https://rjlipton.wpcomstaging.com/2017/05/23/stopped-watches-and-data-analytics/
https://rjlipton.wpcomstaging.com/2016/10/29/absolute-firsts/
https://rjlipton.wpcomstaging.com/2016/10/29/absolute-firsts/
https://rjlipton.wpcomstaging.com/2023/06/08/human-extinction/
https://rjlipton.wpcomstaging.com/2023/06/08/human-extinction/

It took over two more years to craft a tightly-controlled approach to this and a third principle that stays

reliably stable---usually (we have already seen a couple cases in my spreadsheets where the s
parameter "crashes to nearly zero", but the outputs even then remain usable).

Third Principle: What Causes Weaker Players to Play Weaker Moves?

Common belief is that weaker players prefer weaker moves. In a brusque sense, that amounts to

denying that the axiom

u > u ⟹ p > pi j i j

holds at weaker rating levels (or at all). One project idea that would really get into said weeds would be

to expand the simple kind of bulk evidence I give in support of this axiom in my August 2019 "Predicting

Chess and Horses" article.] Instead, the principle of using the lower-depth values for prediction can be

stated as:

• Weaker players are more likely to be diverted by shiny objects.

I often feel this myself when I am playing: As soon as I learn an attractive new fact about a move, I

have an impluse to play it right away---without necessarily going back to other moves I've considered to

see if it is really better. Or even if it's really safe to play. This strikes me as also related to the thesis of

the book Nudge by Richard Thaler and Cass Sunstein.

The implementation has a term like but does not allow a separate variable to multiply it---instead, � h
its relative influence is globally controlled by the "gradient" hyperparameter mentioned above. The

parameter is allowed only to further resolve moves of equal-optimal value, and even it is a separate ev
regressed parameter only over the large training sets. The implementation is demonstrably sub-

optimal as far as prediction goes, but:

• It does give highest probability to an inferior move 10--20% of the time. That is, it often predicts

players of a given rating will fall into separate traps.

• It gives 2--3 percentage points higher predictivity overall, which seems to sharpen -scores of z
(cheating) players by or so.0.5

• The final model is highly numerically stable and passes the internal prediction accuracy checks

developed here and exhibited in graphs just recently here.

• It finally reflects---in some form---all of the large-scale phenomena I know in chess play.

Two Other Features

There are two other highly technical features worth mentioning. One is that the model does not use a

fixed depth of analysis---nor does the screening stage. There are bounding depths and d < d1 2

https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
https://www.amazon.com/Nudge-Final-Richard-H-Thaler/dp/014313700X/
https://www.amazon.com/Nudge-Final-Richard-H-Thaler/dp/014313700X/
https://rjlipton.wpcomstaging.com/2019/11/29/predicating-predictivity/
https://rjlipton.wpcomstaging.com/2019/11/29/predicating-predictivity/
https://rjlipton.wpcomstaging.com/2024/02/11/stop-cheating-again/
https://rjlipton.wpcomstaging.com/2024/02/11/stop-cheating-again/

bounding counts of positions searched (called nodes) so that the rule for running analysis is: c < c1 2

• Search at least to depth and for at least nodes. When nodes are done, finish the d1 c1 c1
current depth of search. But if you finish depth before passing nodes, stop there; while if d d2 c1
you pass nodes at any time, abort and stop with a patched-up partial rendition of the current c2
search level , even if .d d > d1

This removes any dependence on processor speed. Moreover, if only one CPU core is used, the whole

search is often reproducible.

• Screening in Single-PV mode with Stockfish versions uses and , million d = 201 d = 302 c = 51

nodes and million. Komodo and Komodo Dragon versions use or and c = 502 d = 181 19
 or million nodes.c = 31 4

• Full analysis in Multi-PV mode uses and (even for Komodo) but d = 201 d = 302 c = 2001

million nodes and million nodes.c = 9002

The main point is that this allows searching to higher depths in relatively simple positions, especially

endgames with few pieces on the board.

The second wrinkle is a knock-on of this motivation: The real depths are mapped onto the d … d0

virtual interval . (The bottom depth is not depth 1 even though Stockfish versions display d ... 200 d0
it---the reason for that and my handling of a further notorious issue with 0.00 values of chess programs

are described here.) A side benefit is that the engine values---which can jerk up and down between

depths as you can readily see---are usefully smoothed out. This makes "depth 20" a stationary concept

in my current implementations.

Moreover, the entire code is linearized. Many program elements are coded as potentially being linear

combinations of themselves and other elements. This is most immediately visible in the way weights of

terms in the main loss function (menu option [17]) can be freely fiddled with. It is the rule of

Schrödinger's Cat. This has paid some benefits in code uniformity and simplicity, for instance in how I

implemented the Efron bootstrap technique.

Okaaayyy...from now on we will accept the wisdom of the modeling decisions---unless we see more

ideas besides the Sonas correction for improving the model. On to applying it...

https://rjlipton.wpcomstaging.com/2016/01/21/a-chess-firewall-at-zero/
https://rjlipton.wpcomstaging.com/2016/01/21/a-chess-firewall-at-zero/
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

