
Rating Computer Science Via Chess
In memoriam Daniel Kopec and Hans Berliner

Kenneth W. Regan

Department of CSE, University at Buffalo
Amherst, NY 14260 USA; regan@buffalo.edu

Abstract. Computer chess was originally purposed for insight into the human
mind. It became a quest to get the most power out of computer hardware and
software. The goal was specialized but the advances spanned multiple areas, from
heuristic search to massive parallelism. Success was measured not by standard
software or hardware benchmarks, nor theoretical aims like improving the ex-
ponents of algorithms, but by victory over the best human players. To gear up
for limited human challenge opportunities, designers of chess machines needed
to forecast their skill on the human rating scale. Our thesis is that this challenge
led to ways of rating computers on the whole and also rating the effectiveness of
our field at solving hard problems. We describe rating systems, the workings of
chess programs, advances from computer science, the history of some prominent
machines and programs, and ways of rating them.

1 Ratings

Computer chess was already recognized as a field when LNCS began in 1971. Its
early history, from seminal papers by Shannon [1] and Turing [2], after earlier
work by Zuse and Wiener, has been told in [3–5] among other sources. Its later
history, climaxing with humanity’s dethronement in the victory by IBM’s DEEP

BLUE over Garry Kasparov and further dominance even by programs on smart-
phones, will be subordinated to telling how rating the effectiveness of hardware
and software components indicates the progress of computing. Whereas com-
puter chess was first viewed as an AI problem, we will note contributions from
diverse software and hardware areas that have also graced the volumes of LNCS.

In 1971, David Levy was feeling good about his bet made in 1968 with Alan
Newell that no computer would defeat him in a match by 1978 [6]. That year
also saw the adoption by the World Chess Federation (FIDE) of the Elo Rating
System [7], which had been designed earlier for the United States Chess Fed-
eration (USCF). Levy’s FIDE rating of 2380, representative of his International
Master (IM) title from FIDE, set a level of proficiency that any computer needed
to achieve in order to challenge him on equal terms.

The Elo system has aged well. It is employed for physical sports as well as
games and has recently been embraced by the statistical website FiveThirtyEight
[8] for betting-style projections. At its heart is a simple idea:

A difference of x rating points to one’s opponent corresponds to an
expectation of scoring a px portion of the points in a series of games.

This lone axiom already tells much. When x = 0, px must be 0.5 because the
two players are interchangeable. The curve likewise has the symmetry p−x =
1 − px. When x is large, the value px approaches 1 but its rate of change must
slow. This makes px a sigmoid (that is, roughly S-shaped) curve. Two eminent
choices are the cumulant of the normal distribution and the simple logistic curve

px =
1

1 + e−Bx
, (1)

whereB is a scaling factor. Originally the USCF used the former with factors to
make p200 = 0.75, but they switched to the latter with B = (ln 10)/400, which
puts the expectation of a 200-points higher-rated player a tad under 76%.

If your rating is R and you use your opponents’ ratings to add up your px
for each of N games, that sum is your expected score s. If your actual score S
is higher then you gain rating points, else your new rating R′ stays even or goes
down. Your performance rating over that set of games could be defined as the
valueRp whose expectation sp equals S; in practice other formulas with patches
to handle the cases S = N or S = 0 are employed. The last issue is how far to
move R in the direction of Rp to give R′. The amount of change is governed by
a factor called K whose value is elective: FIDE makes K four times as large for
young or beginning players as for those who have ever reached a rating of 2400.

Despite issues of rating uncertainty whose skew causes actual scores by 200-
points higher rated players to come in under 75% (see [9]), unproven suspicions
of “rating inflation,” proven drift between FIDE ratings and those of the USCF
and other national bodies, and alternative systems claiming superiority in Kag-
gle competitions [10], the Elo system is self-stabilizing and reasonably reliable
for projections. Hence it is safe to express benchmarks on the FIDE rating scale,
whose upper reaches are spoken of as follows:

– 2200 is the colloquial threshold to call a player a “master”;
– 2400 is required for granting the IM title, 2500 for grandmaster (GM);
– 2600 and above colloquially distinguishes “Strong GMs”;
– 2800+ has been achieved by 11 players; Bobby Fischer’s top was 2785.

Kasparov was the first player to pass 2800; current world champion Magnus
Carlsen topped Kasparov’s peak of 2851 and reached 2882 in May 2014. Com-
puter chess players, however, today range far over 3000. How did they progress
through these ranks to get there? Many walks of computer science besides AI
contributed to confront a hard problem. Just how hard in raw complexity terms,
we discuss next.

2 Complexity and Endgame Tables

Chess players see all pertinent information. There are no hidden cards as in
bridge or poker and no element of chance as in backgammon. Every chess posi-
tion is well-defined as W , D, or L—that is, winning, drawing, or losing for the
player to move. There is a near-universal belief that the starting position is D,
as was proved for checkers on an 8 × 8 board [11]. So how can chess players
lose? The answer is that chess is complex.

Here is a remarkable fact. Take any program P that runs within n units of
memory. We can set up a position P ′ on an N × N board—where N and the
number of extra pieces are “moderately” bigger than n—such that P ′ is W if
and only if P terminates with a desired answer. Moreover, finding the winning
strategy in P ′ quickly reveals a solution to the problem for which P was coded.

Most remarkably, even if P runs for 2n steps, such as for solving the Towers
of Hanoi puzzle with n rings, individual plays of the game from P ′ will take
far less time. The “Fifty Move Rule” in standard chess allows either side to
claim a draw if 50 moves have been played with no capture or pawn advance.
Various reasonable ways to extend it to N × N boards will limit plays to time
proportional to N2 or N3. The exponential time taken by P is sublimated into
the branching of the strategy from P ′ within these time bounds. For the tower
puzzle, the first move frames the middle step of transferring the bottom ring,
then play branches into similar but separate combinations for the ‘before’ and
‘after’ stages of moving the other n− 1 rings.

If we allow P on size-n cases z of the problem to use 2n memory as well as
time, then we must lift the time limit on plays from P ′, but the size of the board
and the time to calculate P ′ from P and z remain moderate—that is, bounded
by a polynomial in n. In terms of computational complexity as represented by
Allender’s contribution [12],N×N chess is complete in polynomial space with
a generalized fifty-move rule [13], and complete in exponential time without it
[14]. This “double-rail” completeness also hints that the decision problem for
chess is relatively hard to parallelize. Checkers, Go, Othello, and similar strategy
games extended to N ×N boards enjoy at least one rail of hardness [15–18].

These results asN grows do not dictate high complexity forN = 8 but their
strong hint manifests quickly in chess. The Lomonosov tables [19] give perfect
strategies for all positions of up to 7 pieces. They reside only in Moscow and
their web-accessible format takes up 140 terabytes. This huge message springs
from a small seed because the rules of chess fit on a postcard, yet is computa-
tionally deep insofar as the effort required to generate it is extreme. The digits
of π are as easy as pie by comparison [20]. These tables may be the deepest
message we have ever computed.

Even with just 4 pieces, the first item in our history after 1971 shows how
computers tapped complexity unsuspected by human players. When defending
with king and rook versus king and queen, it was axiomatic that the rook needed
to stay in guarding range of the king to avoid getting picked off by a fork from
the queen. Such huddling made life easier for the attacker. Computers showed
that the rook could often dance away with impunity and harass from the sides
to delay up to 31 moves before falling to capture—out of the 50 allotted for the
attacker to convert by reducing (or changing) the material. Ken Thompson tab-
ulated this endgame for his program BELLE and in 1978 challenged GM Walter
Browne to execute the win. Browne failed in his first try, and after extensive
study before a second try, squeaked through by capturing the rook on move 50.

Thompson generated perfect tables for 5 pieces with positions tiered by
distance-to-conversion (DTC)—that is, the maximum number of moves the de-
fender could delay conversion. In distance-to-mate (DTM), the king and queen
versus king and rook endgame can last 35 moves. The 5-piece tables in Eugene
Nalimov’s popular DTM format occupy 7.1 GB uncompressed. Distance-to-
zero (DTZ) is the minimum number of moves to force a capture or pawn move
while retaining a W value; if the DTZ is over 50 then its “Z50” flavor flips the
position value from W to D in strict accordance with the 50-move draw rule.

Thompson also generated tables for all 6-piece positions without pawns. He
found positions requiring up to 243 moves to convert and 262 moves to mate. In
many more, the winning strategy is so subtle and painstaking as to be thought
beyond human capability to execute. The Lomonosov tables, which are DTM-
based, have upped the record to 545 moves to mate—more precisely, 1,088 ply
with the loser moving first. Some work on 8-piece tablebases is underway but no
estimate of when they may finish seems possible. This goes to indicate that posi-
tions with full armies are intractably complex, so that navigating them becomes
a heuristic activity. What ingredients allow programs to cope?

3 The Machines: Software to Hardware to Software

Computer chess players began largely as hardware entities but have evolved into
software, with enough convergence in basic architecture and interchangeability
under APIs that they are now called engines. Three main components are iden-
tifiable:

1. Position representation—by which the rules of chess are encoded and legal
moves are generated;

2. Position evaluation—by which “knowledge” is converted into numbers; and
3. Search heuristics—whose ingenuity marches on through the present.

Generating legal moves is cumbersome especially for the sliding pieces
bishop, rook, and queen. A software strategy used early on was to maintain
and update their limits in each of the compass directions. Limit squares can be
off the board, and the trick of situating the board inside a larger array pays a sec-
ond dividend of disambiguating differences in square indices. For example, the
“0x88” layout uses cells 0–7 then 16–23 and so on up to 112–119. Cells pairs
with differences in the range [-7,7] must then belong to the same rank (that is,
row). The 0x88 layout aligns differences a multiple of 15 southeast-northwest,
16 south-north, and 17 southwest-northeast. Off-board squares are distinguished
by having nonzero bitwise-AND with 10001000, which is 0x88 in hexadecimal.

Such tricks go only yea-far, and it became incumbent to implement board
operations directly in hardware. As noted by Lucci and Kopec [21], the best
computer players from BELLE through DEEP BLUE went this route in the 1980s
and 1990s. They avoided the “von Neumann bottleneck” via multiprocessing of
both data support and calculation. Chess programs realize less than full benefits
of extra processing cores [22], an echo of the parallel hardness mentioned above.

The advent of 64-bit processing decisively favored an alternate representa-
tion that had been discussed since the late 1950s: bitboards. Instead of storing
the position in one 8 × 8 array, each piece has its own 8 × 8 binary array—or
several—coded as one 64-bit unsigned integer. A rook on the square b2 might
be represented by the number 29 and its potential moves along the second rank
by rm = 28 plus the sum of 210 through 215. If a same-colored piece arrives on
a square to its right, coded by s = 2i, then its mobility can be updated by

rm := rm & (s− 1),

in just two machine cycles. A similar subtraction trick finds the least bit set
to 1 in any position code. Similar operations for files and diagonals, perhaps
virtually rotated [23] into horizontal position to avail tricks like this, enable
fast move generation and updates. Newer generic hardware instructions, such as
population-count (POPCNT) which gives the number of bits set to 1, also speed
many operations. All this has lessened the advantage of specialized hardware,
exemplified by Robert Hyatt’s evolution of CRAY BLITZ into the open-source
program CRAFTY.

Evaluation assigns to each position p a numerical value e0(p). The values are
commonly output in discrete units of 0.01 called centipawns (cp), figuratively
1/100 the base value of a pawn. The knight and bishop usually have base val-
ues between 300 and 350cp, the rook around 500cp, and the queen somewhere
between 850 and 1,000cp. The values are adjusted for positional factors, such
as pawns becoming stronger when further advanced and “passed” but weaker
when “doubled” or isolated. Greater mobility and attacks on forward and cen-

tral squares bring higher values. King safety is a third important category, judged
by the structure of the king’s pawn shield and the proximity of attackers and de-
fenders. The fourth factor emphasized by DEEP BLUE [24] is “tempo,” meaning
ability to generate threats and moves that enhance the position score. Additional
factors face a tradeoff against the need for speedy evaluation, but this is helped
by computing them in parallel pipes and by keeping the formula linear. Much
human ingenuity goes into choosing and formulating the factors, but of late their
weights have been determined by massive empirical testing (see [25]).

3.1 Search and Soundness

Search has a natural recursive structure. We can replace e0(p) by the
maximum—from the player to move’s point of view—of e0(p′) over the set F1

of positions p′ reachable by one legal move, calling this e1(p). From the other
player’s point of view those positions have value e′0(p

′) = −e0(p′). Now let F2

be the set of positions p′′ reachable by a move from some p′ and define e′1(p
′) to

be the maximum of e′0(p
′′) over all p′′ reached from p′. From the first player’s

view this becomes a minimizing update e1(p′); then re-doing the maximization
at the root p over these values yields e2(p). This so-called the negamax form
of minimax search is often coded as a recursion exactly so. The sequence p′, p′′

such that e2(p) = e1(p
′) = e0(p

′′) (breaking any ties in the order nodes were
considered) traces out the principal variation (PV) of the search, and the move
m1 leading to p′ is the engine’s best-move (or first-move).

Continuing for d ≥ 3, we define Fd to comprise all positions r reached by
one move from a position q ∈ Fd−1. Multiple lines of play may go from p to
r through different q. Such transpositions may also have different lengths so
that Fd overlaps Fi for some i < d of the same parity. Given initial evaluations
e0(r) for all r ∈ Fd, minimax well-defines ed(p) and a PV to a node r ∈ Fd

so that all nodes in the PV have value ed(p) = e(r). In case of overlap at a
node u in Fi the value with higher generation subscript—namely j in ej(u)—is
preferred. The simple depth-d search has e(r) = e0(r) for all r ∈ Fd, but we
may get other values e(r) by search extension beyond the base depth d, possibly
counting them as having higher generation and extending the PV.

The 50-move rule ensures that ed(p) converges to the true value +M , 0, or
−M of p, where a big number M is used as the mate value. Convergence is
aided by the rule that the side bringing the third occurrence of any position in
a game can claim a draw. Engines avoid cycles in search by the sharper policy
of giving any node q repeating a position earlier in the line of search (or game)
a fixed value e(q) = 0 of highest generation. The goal of search is to visit a
subset E of nodes within a feasible time budget so that minimax from values

e0(r) over sufficiently many “floor nodes” r in E well-defines a value vd(p) so
that for c ≤ d ≤ D with d and D as high as possible:

– E includes enough of Fc that no value e0(q) for an unvisited node q ∈ Fc\E
affects vd(p) by minimax;

– most of the time this is true for Fd in place of Fc; and
– vd(p) approximates eD(p).

The first clause is solidly defined and says that the search is sound for depth
c. The second clause aspires to soundness for a stipulated depth d and motivates
our first considering search strategies that alone cannot violate such soundness.
The third clause is about trying to extend the search to depths D > d without
reference to soundness.

Nearly all chess programs use a structure of iterative deepening in succes-
sive rounds d = 1, 2, 3, . . . of search. The sizes of the sets E = Ed of nodes
visited in round d nearly always follow a geometric series so that the effective
branching factor (ebf) of the search—variously reckoned as |Ed|/|Ed−1| or as
|Ed|1/d for high enough d—is bounded by a constant. This constant should be
significantly less than the “basic” branching factor |Fd|/|Fd−1|. Similar remarks
apply for the overall time Td to produce vd(p) and the number Nd of node visits
(counting multiple visits to the same node) in place of |Ed|.

3.2 Alpha-Beta

The first search strategy involves guessing α and β such that our ultimate vd =
vd(p) will belong to a window (α, β) with β − α as small as we dare. One
motive for iterative deepening is to compute vd−1 on which to center the window
for round d. Values outside the window are reckoned as “≥ β” or “≤ α” and
these endpoint-values work fine in minimax—if ed(p) crosses one of them then
we fail high or fail low, respectively. After a fail-low we can double the lower
window width by taking α′ = 2α− vd−1 and try again, doing similar for a fail-
high, and possibly winding back to an earlier round d′ < d. Using endpoints
relieves the burden of being precise about values away from vd. This translates
into search savings via cutoffs described next.

Suppose we enter node p as shown in Figure 1 with window (1, 6) and the
first child p′ yields value 3 along the current PV. This lets us search the next
child q′ with the narrower window (3, 6). Now suppose this fails because its
first child q′′ gives value 2. It returns the value “≤ 2” for q′ without needing to
consider any more of its children, so search is cut off there and we pop back up
to p to consider its next child, r′. Next suppose r′ yields value 7. This breaks
β for p and all further children of p are considered beta-cutoffs. If p is the root

then this fail-high re-starts the search until we find a bound β′ that holds up
when vd(p) is returned. If not—say if the β = 6 value came from a sibling n of
p as shown in the figure—then p gets the value “≥ 6” and pops up to its parent.
A value vd−1(r′) = 4, however, would move the PV to go through r′ and keep
the search going with exact values in telescoping windows between α and β.

One further note is that if we had advance confidence that the adversary’s
first reply at q′ would show its inferiority to going to p′, then we could call
search at q′ with the null window (3, 3) there instead, propagating it downward
as needed. If we were wrong then we’d have to undo any ersatz cutoffs from
β′′ = 3 along the way, but if we’re right then we’ve pocketed their time savings.

Fig. 1. Alpha-beta search example

Returning to the beta-cutoff from v(r′) = 7, consider what happened along the
new PV in nodes below r′. Every defensive move m′ at r′ needed to be tried
in order to show that none kept the lid under β = 6; there were no alpha-
cutoffs on these moves. This situation propagates downward so we’ve searched
all children of half the nodes on the PV. If there are always ` such children then
we’ve done about `d/2 = (

√
`)d work. This is the general best-case for alpha-

beta search when soundness is kept at depth d, and it is often approachable.
A further move-ordering idea that helps is to try “killer moves” that achieved
cutoffs in sibling positions first, even recalling them from searches at previous
moves in the game. But with ` between 30 and 40 in typical chess positions,
optimizing cutoffs alone brings the ebf down only to about 6.

Further savings come from storing values ej(q) at hashed locations h(q)
in the transposition table. The most common scheme assigns a “random”-but-
fixed 64-bit code to each combination of 12 kinds of piece and square. This

makes 12 × 64 = 768 codes, plus one for the side to move, four for White and
Black castling rights, and eight for the files of possible en-passant captures. The
primary keyH(q) is the bitwise-XOR of the basic codes that apply to q. Then the
secondary key h(q) can be defined byH(q) modulo the sizeN of the hash table,
or whenN = 2k for some k, by taking k bits off one end ofH(q). GettingH(r)
for the next or previous position r merely requires XOR-ing the codes for the
destination and source squares of the piece moved, any piece captured, the side-
to-move code, and any other applicable codes. Besides storing ej(q) we store
H(q) and j (and/or other “age” information), the former to confirm sameness
with the position probed and the latter to tell whether ej(q) went as deep as we
need. If so, we save searching an entire subtree of the current parent of q. We
may ignore the possibility of primary-key collisions H(q) = H(r) for distinct
positions q, r in the same search. Collisions of secondary keys h(q) = h(r) are
frequent but errors from them are often “minimaxed away” (see also [26]).

3.3 Extensions and Heuristics

We can get more mileage by extending D beyond d. Shannon [1] already noted
that many depth-d floor nodes come after a capture or check or flight from check
and have moves that continue in that vein. Those may be further expanded until
a position identified as quiescent is reached. Human players tend to calculate
such forced sequences as a unit. Thus the game-logical floor for round d may be
deeper along important branches than the nominal depth-d floor.

Furthermore, the PV may accrue many nodes q whose value hangs strongly
on one move m to a position q′, so that a large change to ei(q′) would change
ei+1(q) by the same amount. The move m is called singular and warrants a
better fix on its value by expanding it deeper. Such singular extensions could
be reserved for cases of delaying moves by a defender on the ropes or moves
known to affect positions already seen in the search, or liberalized to consider
groups of two or more move options as “singular” [27, 28].

Other extensions have been tried. Search depths are commonly noted as
“d/D” where d is the nominal depth and D is the maximum extended depth.
Their values e(r) for r ∈ Fd may differ widely from e0(r) but this does not
violate our notion of depth-d soundness which takes those values e(r) as given.
We have added more nodes beyond Fd but not saved any more inside it than we
had from cutoffs. Further progress needs compromise on soundness.

From numerous heuristics we mention two credited with much of the soft-
ware side of performance gain. The idea of late move reductions (LMR) is sim-
ply to do only the first yea-many moves from the previous round’s rank order
to nominal depth d, the rest to lower depths c. If d/c = 2, say, this can prevent
a subtle mate-in-n-ply from being seen until the search has reached round 2n.

Even c = d − 4 or d − 3 can make terms in (
√
`)c minor enough to replace

(
√
`)d by (

√
a)d for a < 4, which is enough to bring the ebf under 2.

The second idea compresses search “vertically” rather than “horizontally”
in situations where we are trying to prove a cutoff value v after a “killer” but
might not know how to order our subsequent moves to cut off lower down too.
If the defender is really bad off then allowing two moves in a row might not
improve the score beyond v or much at all. Inserting null moves for our turns can
cement the search-depth halving on our side and also branch on fewer defensive
sequences than using two alternating levels of search would bring. To be sure,
there are so-called Zugzwang situations where letting the opponent move twice
gives us an unfair advantage—propagating the illusion of “killer moves” when
there really are none. However, these situations tend to occur in endgames where
they are recognizable in advance and errors especially for nodes away from the
PV may be stopped by minimax from propagating to the root.

Fig. 2. Left: Position illustrating search phenomena. Right: Bratko-Kopec test position 22.

The position at left in Figure 2 illustrates many of the above concepts. The
Lomonosov 7-piece tables show it a draw with best play. Evaluation gives White
a 100–200cp edge on material with bishop and knight versus rook, but engines
may differ on other factors such as which king is more exposed. After 1. Qd4+
Kc2 2. Qc5+, Black’s king cannot return to d1 because of the fork 3. Nc3+,
so Black steps out with 2...Kb3. Then White has the option 3. Qb6+ Kc2 4.
Qxb1+ Kxb1 5. Nc3+ Kc2 6. Nxe2. Since Black is not in check and has no cap-
tures, this position may be deemed quiescent and given a +600 to +700 value or
even higher since the extra bishop plus knight is generally a winning advantage.
However, Black has the quiet 6...Kd3 which forks the bishop and knight and
wins one of them, leaving a completely drawn game. What makes this harder to

see is that White can delay the reckoning over longer horizons by giving more
checks: 4. Qc7+ Kb3 5. Qb8+ Kc2 6. Qc8+ Kb3 7. Qb7+ Kc2 8. Qc6+ Kb3.
White has not repeated any position and now has three further moves 9. Qc3+
Ka2 (if Black rejects ...Ka4) 10. Qa5+ Kb3 11. Qb4+ Kc2 before needing to de-
cide whether to take the plunge with 12.Qxb1+. Pushing things even further is
that White can preface this with 1. Ke7 threatening 2. Nb4 with Black’s queen
unable to give check. Black must answer by 1...Rb7+ and after 2. Kd6 must
meekly return by 2...Rb1. Especially in the position after 1. Ke7 Rb7+, values
can differ widely between engines and between depths for the same engine and
be isolated to changes in the size of the hash table. Evidently the high degree of
singularity raises the chance of a rogue e(r) value propagating to the root.

How often is the quality of play compromised? It is one thing to try these
heuristics against human players, but surely a “sounder” engine is best equipped
to punish any lapses. Silver [29] reports an experiment where a current engine
running on a smartphone trounced one from ten years ago that was given hard-
ware fifty times faster. Although asking for depth d really gives a mélange of c
and D with envelope E lopsidedly bunched along the PV, it all works.

We have glossed over many variants and ideas, including Hans Berliner’sB∗

search [30] which uses endpoints exclusively. Many have been studied and de-
bated in the journal and symposia of the International Computer Chess Associa-
tion, now evolved into the International Computer Games Association (ICGA),
including LNCS conference proceedings. We argue that their sum achievement
is most neatly expressed by plotting the engines’ position values v against the
portion pv of points that human players of a given rating went on to score
from positions of value v with either side to move. Figure 3 plots this from
all standard-time games recorded in [31] between players rated within 10 points
of a “milepost” 2600, 2625, 2650, or 2675, and likewise for levels in the 1600s
range. Both sets give a near-perfect fit to a two-parameter logistic curve:

pv = A+
1− 2A

1 + e−Bv
. (2)

Here A represents the frequency of losing or drawing a “completely won” game
and is small enough that we can focus on B. The one parameter B does double-
duty: it is the scaling conversion from engine values to expectation and also
scales with the skill of the players. The y-axis and B are the same as in our
equation (1) for expectation based on rating difference. This suggests that skill
is largely the sharpness of perceptions of value. If a chess program were to value
a queen at 15 rather than 9 and so on for other terms in its evaluation function,
we would have to scale B down by 3/5 to preserve the correspondence to scor-
ing frequency. The figures have about the same ratio of B, which suggests that
values are 60% more vivid to 2600s-rated players than to 1600s-rated players.

Their simplicity gives such curves the force of natural law. Amir Ban, co-
creator of the (DEEP) JUNIOR chess program, argued [32] that the logistic re-
lationship optimizes both the predictive accuracy and playing skill of the pro-
grams. In a skin-deep way this is false: the programs can post-process their
values in any way that preserves the rank order of moves without affecting their
play. In order to rule out this possibility, we have used the open-source STOCK-
FISH program (official version 7 release) to analyze the human games for the
plots. That the evaluation terms, search heuristics, and minimax dynamics con-
form to the logistic relationship shows their natural acuity.

Fig. 3. Points expectation for 2600s-rated and 1600s-rated players from STOCKFISH 7 values.

4 Benchmarking Progress

All the notable human-computer matchups under standard tournament condi-
tions over the past 40 years total in the low hundreds of games. A dozen such
games at most are available for major iterations of any one machine or program.
Games in computer-computer play do not connect into the human rating system.
With ratings based only on a few bits of information—the outcomes of games
and opponents’ ratings—the sample size is too small to get a fix. Ratings based
on 25 or fewer games are labeled “provisional” by the USCF. However much
we feel the lack in retrospect, it applied all the more years ago looking forward.

Various internal ways were used to project skill. Programs could be played
against themselves with different depth or time limits of search. The scoring rate
of the stronger over the weaker translates into an Elo difference by the curve
(1). Thompson [33] carried this out with BELLE at single-digit search depths,
finding a steady gain of about 200 Elo per extra ply, but a followup experiment
joined by Condon [34] found diminishing returns beyond depth 7.

The two prior versions of CHESS 4.7 triumphed in amateur and regional
tournaments before its match with Levy, but the first provisional ratings above
2200 were earned by CRAY BLITZ and BELLE in the early 1980s. Berliner inte-
grated his B∗ search and high-tech parallel hardware to make his HITECH ma-
chine the first recognized as surpassing 2400 in 1988. Feng-hsiung Hsu, Thomas
Anantharaman, and Murray Campbell, working apart from Berliner at Carnegie
Mellon, developed CHIPTEST. Mike Browne and Andreas Nowatzyk joined
them for DEEP THOUGHT, which was the first to beat a GM (Bent Larsen)
in regulation play and gain a GM-level rating (2552). A flurry of activity fol-
lowed in 1989 but with no clear forecast of further progress. Berliner et al. [35]
conducted extensive self-play experiments and were led to state in their abstract:

Projections of potential gain have time and again been found to over-
estimate the actual gain. [Our work] suggests that once a certain knowl-
edge gap has been opened up, it cannot be overcome by small incre-
ments in searching depth. The conclusion . . . is that extending the depth
of search without increasing the present level of knowledge will not in
any foreseeable time lead to World Championship level chess.

Hsu et al. [36] reached the opposite conclusion regarding DEEP THOUGHT,
projecting that a 14 or 15-ply basic search with extensions beyond 30 ply would
achieve a 3400 rating. The Thoresen engine competition site today shows no
rating above 3230 [37]. One can say that its evolution into DEEP BLUE landed
between the two projections. A chart from 1998 by Moravec [38] seems to jus-
tify the extrapolation to 3400 by its notably linear plot of ascribed engine ratings
up to DEEP THOUGHT II near 2700 and 11 ply in 1991 and 1994, but it plots
DEEP BLUE well under the line at 13 ply and only a 2700–2750 rating.

Already in the late 1970s, Ivan Bratko and Daniel Kopec conceived that
an external test applicable to both human and computer players and less taxing
than fully staged games could provide a reliable metric. The published form [39,
40] was a suite of twenty-four positions, twelve on tactics and twelve empha-
sizing strategy of pawn structure in particular. The former are instantly solved
by today’s computers but the latter retain their challenge, especially position 22
pictured in Fig. 2 which they deemed “hardest.” The official STOCKFISH 8 ver-
sion with 256MB hash on one core thread in its “Single-PV” playing mode takes
until depth 26 to settle on the key move—yet this happens within 20 seconds on
an eight-year-old PC. Writing in 1990, Marsland [41] opined:

Although one may disagree with the choice of test set, question
its adequacy and completeness, and so on, the fact remains that the
designers of computer chess programs still do not have an acceptable

means of estimating the performance of chess programs, without resort-
ing to time-consuming and expensive “matches” against other subjects.
Clearly there is considerable scope for such test sets, as successes in
related areas like pattern recognition attest.

What further distinguished the Bratko-Kopec work were tests on human
subjects rated below-1600, 1600–1799, 1800–1999, 2000–2199, 2200–2399,
and 2400+. The results filled the whole range from only two correct out of 24 to
21-of-24, showing a clear correspondence to rating. The Elo rating chart in [40]
assigned 2150 to BELLE, 2050 to CHESS 4.9, and ratings 1900 and under to
DUCHESS and other tested programs. Their results were broadly in accord with
those ratings. But all these results were from small data.

Guy Haworth [42] proposed using endgame tables to benchmark humans—
and computers not equipped with them. The DTM, DTC, and/or DTZ metrics
furnish numerical scores that are indisputable and objective, and the 6- and later
7-piece tables expand the range of realistic test positions. Humans of a given rat-
ing class could be benchmarked from games in actual competition that entered
these endgames.

Matej Guid led Bratko back into benchmarking with a scheme using depth
12 of CRAFTY as authority to judge all moves (after the first twelve turns) in
all games from world championship matches by intrinsic quality [43]. This was
repeated with other engines as judges [44] including then-champion RYBKA 3
to reported depth 10, which arguably compares best to depth 13 or 14 on other
engines since RYBKA treats its bottom four search levels as a unit [45]. Coming
back to Haworth and company joined by this writer, two innovations of [46, 47]
were doing un-pruned full-depth analysis of multiple move options besides the
best and played moves, and judging prior likelihoods of those moves by fallible
agents modeling player skill profiles in a Bayesian setting. This led in [48] to
using RYBKA 3 to analyze essentially all legal moves to reported depth 13, train-
ing a frequentist model on thousands of games over all rating classes from 1600
to 2700, and conditioning noise from the observed greater magnitude of errors
in positions where one side has a non-negligible advantage. The model supplies
not only metrics and projections but also error bars for various statistical tests of
concordance with the judging engine(s) and an “Intrinsic Performance Rating”
(IPR) based only on analysis of one’s moves rather than results of games.

For continuity with this past work—and because an expanded model with
versions of KOMODO and STOCKFISH as judges is not fully trained and cali-
brated at press time—we apply the scheme of [48] to rate the most prominent
human-computer matches as well as some ICCA/ICGA World Computer Chess
Championships (WCCC). This comes with cupfuls of caveats: RYBKA 3 to re-
ported depth 13 is far stronger than CRAFTY to depth 12 but needs the defense

[49] of the latter to justify IPR values over 2900 and probably loses resolution
before 3100. The IPR currently measures accuracy more than challenge put to
the opponent and is really measuring similarity to RYBKA 3. Although moves
from turn 9 onward (skipping repeating sequences and positions with one side
ahead over 300cp) give larger sample sizes than games, the wide two-sigma
error bars reflect the overall paucity of data and provisional nature of this work.

5 A “Moore’s Law of Games” and Future Prospects

Table 4 lays out IPRs over 37 years of top events in computer chess. Despite
individual jumps in results, their wide error bars, and loss of resolution beyond
3000, some coherent points emerge from the long view:

– There has been steady progress.
– Early estimated ratings of computers were basically right.
– Computers had GM level in sight before DEEP THOUGHT’s breakthrough.
– Not long after the retirement of DEEP BLUE, championship quality became

accessible to off-the-shelf hardware and software.
– A few years later smartphones had it, e.g. HIARCS 13 as “Pocket Fritz.”
– Progress as measured by Elo gain flattens out over time.

The last point bears comparison with Moore’s Law and arguments over its
slowing or cessation. Those arguments pivot on whether the law narrowly ad-
dresses chip density or clock speed or speaks more general measure of produc-
tivity. With games we have a fixed measure—results backed by ratings—but a
free-for-all on how this productivity is gained.

We may need to use Elo’s transportability to other games to meter future
progress. The argument that Elo sets a hard ceiling in chess goes as follows: We
can imagine that today’s strong engines E could hold a non-negligible portion d
of draws against any strategy. This may need randomly selecting slightly inferior
moves to avoid strategies with foresight of deterministic weaknesses. If E has
rating R, then no opponent can ever be rated higher than R + x by playing E,
where with reference to (1), p−x = 0.5d. The ceilingR+xmay be near at hand
for chess but higher for Go—despite its recent conquest by Google DeepMind’s
ALPHAGO [50]. Games of Go last over a hundred moves for each player and
have hair-trigger difference between win and loss.

A greater potential benefit comes from how large-scale data from deep en-
gine analysis of human games may reveal new regularities of the human mind,
especially in decision-making under pressure. Why and when do we stop think-
ing and take action, and what causes us to err? For instance, this may enable
transforming the analysis of blunders in [51] into a smooth treatment of error in

Year Engine Score IPR moves Event/Opponent(s) Opp. IPR moves
1978 CHESS 4.7 1.5/6 2120 +- 490 159 IM David Levy 2280 +- 415 159
1983 BELLE 5.5/10 2180 +- 300 279 US Open oppts. 2175 +- 320 280
1983 BELLE 3/5 2070 +- 415 126 WCCC oppts. 2130 +- 420 131
1983 CRAY BLITZ 4.5/5 2265 +- 350 144 WCCC oppts. 2065 +- 405 152
1986 CRAY BLITZ 4/5 2605 +- 315 153 WCCC oppts. 2135 +- 395 155
1986 HITECH 4/5 1975 +- 625 111 WCCC oppts. 1805 +- 660 115
1988 HITECH 5/7 2495 +- 270 188 avail. Open oppts. 2165 +- 385 194
1989 HITECH 3.5/4 3085 +- 275 97 GM A. Denker 2100 +- 555 98
1989 HITECH 3.5/5 2445 +- 325 146 WCCC oppts. 2485 +- 245 149
1989 BEBE 4/5 2415 +- 420 141 WCCC oppts. 1910 +- 505 144
1989 CRAY BLITZ 3.5/5 2470 +- 375 195 WCCC oppts. 2255 +- 360 196
1989 CHIPTEST 2/5 2540 +- 285 185 The Hague oppts. 2545 +- 250 181
1989 DEEP THOUGHT 5/5 2600 +- 255 126 WCCC oppts. 1890 +- 445 132
1988 DEEP THOUGHT 5.5/7 2780 +- 230 269 Long Beach oppts. 2400 +- 265 270
1989 DEEP THOUGHT 4/4 2885 +- 325 74 Levy 1820 +- 560 79
1989 DEEP THOUGHT 2/4 2325 +- 400 85 GM R. Byrne 2215 +- 690 83
1989 DEEP THOUGHT 2/5 2955 +- 245 131 Miles/Renet/Valvo 2585 +- 275 131
1989 DEEP THOUGHT 3.5/4 2830 +- 290 130 Amer. Open oppts. 1990 +- 440 133
1989 DEEP THOUGHT 0/2 2265 +- 815 53 Kasparov 2445 +- 340 51
1991 DEEP THOUGHT 2.5/7 2205 +- 430 213 Hannover oppts. 2400 +- 265 214
1993 DEEP BLUE 1.5/4 2820 +- 215 173 GM Bent Larsen 2800 +- 210 172
1993 DEEP BLUE 4.5/9 2720 +- 210 249 Copenhagen oppts. 2340 +- 295 246
1995 DEEP BLUE 3/3 3080 +- 220 100 ACM oppts. 2550 +- 420 103
1995 DEEP BLUE 3.5/5 2695 +- 430 119 WCCC oppts. 2420 +- 475 120
1996 DEEP BLUE 2/6 2915 +- 200 222 Kasparov 2610 +- 235 220
1997 DEEP BLUE 3.5/6 2850 +- 190 205 Kasparov 2585 +- 260 205
1999 REBEL 10 0.5/2 2915 +- 590 58 GM V. Anand 2660 +- 605 58
2000 DEEP JUNIOR 4.5/9 2845 +- 165 300 Dortmund oppts. 2605 +- 220 298
2002 DEEP FRITZ 4/8 3055 +- 140 221 GM V. Kramnik 2885 +- 155 221
2003 DEEP JUNIOR 3/6 2855 +- 275 148 Kasparov 2750 +- 305 148
2003 FRITZ X3D 2/4 2955 +- 175 107 Kasparov 2475 +- 395 108
2004 FRITZ 3.5/4 2945 +- 255 134 Bilbao HC oppts. 2530 +- 305 136
2004 HYDRA 3.5/4 3045 +- 230 176 Bilbao HC oppts. 2510 +- 275 176
2004 DEEP JUNIOR 1.5/4 2835 +- 290 124 Bilbao HC oppts. 2910 +- 155 121
2005 FRITZ 2/4 2705 +- 350 170 Bilbao HC oppts. 2740 +- 280 170
2005 HYDRA 3/4 3080 +- 190 99 Bilbao HC oppts. 2600 +- 340 101
2005 JUNIOR 3/4 3085 +- 100 251 Bilbao HC oppts. 2935 +- 115 251
2005 SHREDDER 9.5/10 2990 +- 165 239 Lopez ITT oppts. 2265 +- 275 243
2005 HYDRA 5.5/6 3160 +- 115 210 GM M. Adams 2825 +- 175 208
2006 DEEP FRITZ 4/6 2985 +- 160 208 Kramnik 2740 +- 265 208
2009 POCKET FRITZ 9.5/10 2905 +- 165 290 Mercosur oppts. 2250 +- 265 292
2011 JUNIOR 6/8 3065 +- 120 311 next 4 in WCCC 3035 +- 65 1,418
2013 JUNIOR 7.5/10 2995 +- 120 446 next 4 in WCCC 3095 +- 55 1,615
2015 JONNY 7/8 2970 +- 110 432 next 4 in WCCC 3035 +- 50 1,668

Fig. 4. IPRs from major human-computer events and some computer championships.

perception. Although computer chess left the envisaged mind and knowledge-
based trajectory, its power-play success may boost the original AI aims.

References

1. Shannon, C.: Programming a computer for playing chess. Philosophical Magazine 41 (1950)
256–275

2. Turing, A.: Computing machinery and intelligence. Mind 59 (1950) 633–660
3. Marsland, T.A.: A short history of computer chess. In: Computers, Chess, and Cognition.

Springer-Verlag, New York (1990) 3–7
4. Campbell, M., Feigenbaum, E., Levy, D., McCarthy, J., Newborn, M.: The History

of Computer Chess: An AI Perspective. http://www.computerhistory.org/
collections/catalog/102651382 (2005) Video, The Computer History Museum.

5. Larson, E.: A brief history of computer chess. The Best Schools Magazine (2015)
6. Levy, D.: Computer chesspast, present and future. Chess Life and Review 28 (1973) 723–

726
7. Elo, A.: The Rating of Chessplayers, Past and Present. Arco Pub., New York (1978)
8. Silver, N.: Introducing Elo Ratings. https://fivethirtyeight.com/datalab/

introducing-nfl-elo-ratings/ (2014)
9. Glickman, M.E.: Parameter estimation in large dynamic paired comparison experiments.

Applied Statistics 48 (1999) 377–394
10. Sonas, J., Kaggle.com: Chess ratings: Elo versus the Rest of the World. http://www.

kaggle.com/c/chess (2011)
11. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., Sutphen,

S.: Checkers is solved. Science 317 (2007) 1518–1522
12. Allender, E.: The complexity of complexity. In: This volume. (2017)
13. Storer, J.: On the complexity of chess. J. Comp. Sys. Sci. 27 (1983) 77–100
14. Fraenkel, A., Lichtenstein, D.: Computing a perfect strategy for n x n chess requires time

exponential in n. Journal of Combinatorial Theory 31 (1981) 199–214
15. Lichtenstein, D., Sipser, M.: Go is polynomial-space hard. Journal of the ACM 27 (1980)

393–401
16. Robson, J.: The complexity of Go. In: Proceedings of the IFIP Congress. (1983) 413–417
17. Robson, J.: N by N checkers is Exptime complete. SIAM Journal on Computing 3 (1984)

252–267
18. Iwata, S., Kasai, T.: The Othello game on an n*n board is PSPACE-complete. Theoretical

Computer Science 123 (1994) 329–340
19. Zakharov, V., Makhnychev, V.: Creating tables of chess 7-piece endgames on the Lomonosov

supercomputer. Superkompyutery 15 (2013)
20. Bailey, D., Borwein, P., Plouffe, S.: On the rapid computation of various polylogarithmic

constants. Mathematics of Computation 66 (1997) 903–913
21. Lucci, S., Kopec, D.: Artificial Intelligence in the 21st Century. Mercury Learning, Dulles,

Virginia USA (2013)
22. Chess Programming Wiki: Parallel Search. chessprogramming.wikispaces.com/

Parallel+Search (2017 (accessed))
23. Hyatt, R.: Rotated bitmaps, a new twist on an old idea. ICCA Journal 22 (1999) 213–222
24. IBM Research: How Deep Blue works. https://www.research.ibm.com/

deepblue/meet/html/d.3.2.html (1997)
25. Chess Programming Wiki: Automated Tuning. https://chessprogramming.

wikispaces.com/Automated+Tuning (2017 (accessed))

26. Hyatt, R., Cozzie, A.: The effect of hash signature collisions in a computer chess program.
ICGA Journal 28 (2005) 131–139

27. Anantharaman, T., Campbell, M., Hsu, F.: Singular extensions: Adding selectivity to brute-
force searching. Artificial Intelligence 43 (1990) 99–110

28. Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World Chess Cham-
pion. Princeton University Press (2002)

29. Silver, A.: Komodo 8: the smartphone vs desktop challenge. https://en.chessbase.
com/post/komodo-8-the-smartphone-vs-desktop-challenge (2014)

30. Berliner, H.: The B* tree search algorithm: A best-first proof procedure. Artificial Intelli-
gence 12 (1979) 23–40

31. ChessBase: Big2017 Chess Database (2017)
32. Ban, A.: Automatic learning of evaluation, with applications to computer chess. Technical

Report Discussion Paper 613, Center for the Study of Rationality, Hebrew University (2012)
33. Thompson, K.: Computer chess strength. In: Advances in Computer Chess 3, Pergamon

Press (1982) 55–56
34. Condon, J., Thompson, K.: Belle. In Frey, P., ed.: Chess Skill in Man and Machine. Springer-

Verlag (1982) 201–210
35. Berliner, H., Geotsch, G., Campbell, M., Ebeling, C.: Measuring the performance potential

of chess programs. 43 (1990) 7–21
36. Hsu, F.H., Anantharaman, T., Campbell, M., Nowatzyk, A.: A grandmaster chess machine.

Scientific American 263 (1990) 44–50
37. Top Chess Engine Championship: Ratings after Season 9 - Superfinal. http://tcec.

chessdom.com/archive.php (2017 (accessed))
38. Moravec, H.: When will computer hardware match the human brain? Journal of Evolution

and Technology 1 (1998)
39. Bratko, I., Kopec, D.: A test for comparison of human and computer performance in chess.

In: Advances in Computer Chess 3, Elsevier (1982) 31–56
40. Kopec, D., Bratko, I.: The bratko-kopec experiment: a comparison of human and computer

performance in chess. In: Advances in Computer Chess 3, Elsevier (1982) 57–72
41. Marsland, T.: The Bratko-Kopec test revisited. ICCA Journal 13 (1990) 15–19
42. Haworth, G.: Reference fallible endgame play. ICGA Journal 26 (2003) 81–91
43. Guid, M., Bratko, I.: Computer analysis of world chess champions. ICGA Journal 29 (2006)

65–73
44. Guid, M., Bratko, I.: Using heuristic-search based engines for estimating human skill at

chess. ICGA Journal 34 (2011) 71–81
45. Rajlich, V., Kaufman, L.: Rybka 3 chess engine. www.rybkachess.com (2008)
46. DiFatta, G., Haworth, G., Regan, K.: Skill rating by Bayesian inference. In: Proceed-

ings, 2009 IEEE Symposium on Computational Intelligence and Data Mining (CIDM’09),
Nashville, TN. (2009) 89–94

47. Haworth, G., Regan, K., DiFatta, G.: Performance and prediction: Bayesian modelling of
fallible choice in chess. In: 12th ICGA Conference on Advances in Computer Games, Pam-
plona, May 2009. Volume 6048 of Lect. Notes Comp. Sci., Springer-Verlag (2010) 99–110

48. Regan, K., Haworth, G.: Intrinsic chess ratings. In: Proceedings of AAAI 2011, San Fran-
cisco. (2011) 834–839

49. Guid, M., Pérez, A., Bratko, I.: How trustworthy is Crafty’s analysis of world chess cham-
pions? ICGA Journal 31 (2008) 131–144

50. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search.
Nature 529 (2016) 484–489

51. Chabris, C., Hearst, E.: Visualization, pattern recognition, and forward search: Effects of
playing speed and sight of the position on grandmaster chess errors. Cognitive Science 27
(2003) 637–648

