User Guide for IR Chess Statistical Analyzer

1 Setup and Introduction

The name “IR” stands for “Intrinsic Ratings”—per the title of my AAAI 2011 stem paper “Intrin-
sic Chess Ratings” with the late Guy Haworth (who had a separate Bayesian approach that is not
implemented by this code). The items needed to run the program are:

1. The compiled executable of the source IRallifile.cpp or the unpacking of that file into its
constituent .h and .cpp code units (which are described further in the “non-quick” part of this
guide). We will use IRW.exe as its name. Its location is called the home folder.

2. Some reference files RefSF11.aif, RefKom13.aif, RefSF7.aif, and/or RefKom10.aif, prefer-
ably in the same location as the executable. RefSF15.aif is in preparation. These files are
86—100 megabytes each.

3. One or more other files in the custom .aif format to use as main data. These can be located
in the home folder or in a separate main data folder. The program offers a pre-set path for the
latter at startup; you can say no followed by giving a path to change it.

The code produces numerous files in the home folder, the most important being TRcommandLog.txt
and IRsessionData.txt. The former logs every command entered, and (after some editing) enables
re-playing any session. The latter preseves all data output—beware that it can grow large with
frequent use, though on modern computers the couple hundred megabytes I accumulate a year is no
problem. Additional output files can be created on the fly for specific tests. Sessions are labeled and
UTC-timestamped in both files.

The extension .aif for “Analysis Interchange Format” (which is described in the Gddel’s Lost Letter
article https:/ /rjlipton.wpcomstaging.com/2015/01/20/a-computer-chess-analysis-interchange-format /)
can clash with .aiff for “Audio Interchange File Format.” The clash helps avoid .aif files being
rejected in some cases, but some machines change .aif to .aiff on download. Only the reference
files are looked for by name—so change RefSF11.aiff to RefSF11.aif and so on if that happened.

The program should be run from a console, such as the Windows Command Prompt, not by double
click. Give the window height at least 40 lines and a scrollback buffer of at least 3,000 lines. Navigate
the console to the home folder and enter the executable name plus two command-line arguments, e.g.:

IRW SF11 UW

This loads the reference file for Stockfish 11 and invokes unit weight for all positions. The alterna-
tive engine labels are Kom13 (which gives Komodo 13.3), Kom10 (the original Komodo 10), and SF7
(Stockfish 7, in all cases with default settings except for 512MB hash table size). The alternative to
UW is EWN for “expectation weights normalized.” The latter gives more weight to positions that are
more complex and difficult, and thus is targeted to “smart cheaters,” but tends to reduce the z-scores
of “non-smart cheaters” by dint of how the data is clumped. The program is case-sensitive and runs
entirely in text mode—mo GUI.

The program makes one screen-prompt query before showing the main menu. Any answer other than
n, N, no, No, or NO is interpreted as ‘yes’ plus giving a label for the current session. Then comes the
main menu, after a pause to read the reference file (twice) and display numerous messages:


https://rjlipton.wpcomstaging.com/2015/01/20/a-computer-chess-analysis-interchange-format/

[1] Change (equation model of) Focus Trial <changeTrial>
[2] Fixed Settings <fixedSettings>

[3] Show Active Trial and Filters <showTrial>

[4] Skill-contingent scaling; outer parameters <slideScale>
[6] Add More Game Turns <addTurns>

[6] Clear Turns And Filtered Tuples <clearTurns>

[7] Define New Move Filter <newFilters>

[8] Attach Filter(s) to Focus Trial <attach>

[9] Detach Filter(s) from Focus Trial <detach>

[10] Clear Filters from Focus Trial <clearFilters>

[11] Hide Filters <hideFilters>

[12] Define New Move Selector <newSelectors>

[13] Toggle Move Selector <toggleSelectors>

[14] Define and Load New Trial Spec <newTrialSpec>

[15] Show Active Trial Specs and Load One <loadTrialSpec>
[16] Hide Trial Specs <hideSpecs>

[17] Run Fit to Find Best (s,c,...) <runFit>

[18] Run Performance Test on Focus Trial <perfTest>

[19] Iterate to calculate IPR <runIPR>

[20] Attach Output File <addOutputFile>

[21] Close Output File <closeQOutputFile>

[22] Process Commands from File <readCommands>

[23] Quit <quit>

Options 1,2,4 are at research level and should not be changed in normal use; 4 and 14 will be invoked
as-needed by other routines. The program has a single focus for data and operations. (A feature that
allowed storing multiple trials and loading them into focus was disabled to keep things simple; the lone
vestige is the “reference trial” used for IPRs and skill-contingent scaling.) Option 3 describes what
is currently in focus, after a y/n prompt for whether to output the loaded move data using one line
per position to the screen and all output files (this is refused if there are more than 1,000 positions
anyway). Option 5 is followed by a “glob” argument specifying AIF files to load. The program filters
out duplicate games. If any “Game Filters” (marked ‘GF’ in displays) are loaded, the program also
skips games that do not match them. Option 6 clears all data and takes no argument.

All menu items can be invoked by number or by the name in brackets. Interaction is fully streamed so
that multiple space-separated commands can be typed ahead before hitting carriage-return to invoke
them. This enables a rudimentary “scripting language” that can also be invoked from stored text files
via option 22. Examples are given below that can be readily customized to execute performance tests
(option 18) and Intrinsic Performance Rating (IPR) calculations (option 19, which invokes options 17
and 4 alternately to give skill-contingent scaling). These options are the main workflow of the
program. Option 20 allows saving the output to a new or existing file, 21 for discontinuing output
to a named file.

Option 7 leads to a large menu of basic database functions for creating filters to select subsets of the
loaded data. Option 8 shows a long list of predefined filters and exemplifies the “catalog interface” in



which active elements are marked with a *. Catalog elements can likewise be accessed by number or
by name. Option 9 allows making individual filters inactive. Option 10 clears all filters but leaves all
defined ones in the displayed catalog. Option 11 allows moving never-/no-longer-wanted filters off the
displayed catalog (to cut down the lines displayed onscreen) to the “hidden catalog”—which can be
accessed anyway via the menu option -2, moreOptions, on main menu option 8.

Options 12 and 13 define special selections of moves in any given position, thus widening the notion of
a “match” in a performance test. The interface is similar to that of filters, but simplified by allowing
one menu to toggle them active/inactive rather than the separate options 8 and 9 with filters. The
reason for the difference is that filters are more of a safety concern, so their state is absolute rather
than “modal.” User-defined selectors become additional z-tests in the “Performance Test” display;
numerous selectors are permanently active. Another difference is that whereas loaded filters act like
Boolean and, selection rules are conjoined only when an AndSelector is explicitly created. In normal
workflow, no additional selectors are needed—so these options may be ignored.

Options 14 and 15 (and 4) manage values of configurable model parameters. Although there are
currently 43 parameters in all, only 3 of them are activated as independent characteristics of players:

e s for sensitivity to small differences in the values of moves (lower is better);
e c for consistency of avoiding mistakes, especially in tactical positions (higher is better);

e ev for influence of equal-value moves (lower means less swayed by impulse).

A sizable subset of “slide-scale” parameters are treated as characteristics of the level of play but not
of individual players. The basic points are depicted graphically in my Gddel’s Lost Letter blog articles
“When Data Serves Turkey” and “Sliding-Scale Problems”:

e https://rjlipton.wpcomstaging.com/2016/11/30/when-data-serves-turkey /

e https://rjlipton.wpcomstaging.com/2018/09/07 /sliding-scale-problems/

The program is initially set up to treat ev as tied to s and c. It was treated independently in the
model-building stage. Another parameter, co, is tied equal to s; this makes two fractions in the
model’s utility function share a common denominator.

Different combinations of s and ¢ correspond to the same Elo rating R, much as players of the same
strength can have different mixes of strategic and tactical skill. The regressions over thousands of
games at each rating (in steps of 25 from 1000 to 2825, only a few hundred games per “bucket” at
2700+) yield uniform progressions sg and cg in terms of R, representing the “central tendencies” of
players of that rating. This central fit is how the performance test (option 18) sets parameters for
a given rating R. Issues of players having different tradeoffs of s and ¢ for the same rating R are
addressed in my ICGA ACG 2015 paper “A Comparative Review of Skill Assessment: Performance,
Prediction and Profiling” with Haworth and my PhD graduate Dr. Tamal Biswas:

e https://cse.buffalo.edu/ regan/papers/pdf/BHR2015ACG.pdf.

More simply put, options 14 and 15 can be left alone, being manipulated by options 17-19. Option 17
allows a host of choices of active parameters and “loss functions” for the model-fitting regression, but
unless some “slide-scale parameters” are expressly freed in the parameters submenu, this is best left
to control by option 19. Option 18, it is important to note, does not involve regression. It also has a


https://rjlipton.wpcomstaging.com/2016/11/30/when-data-serves-turkey/
https://rjlipton.wpcomstaging.com/2018/09/07/sliding-scale-problems/
https://cse.buffalo.edu/~regan/papers/pdf/BHR2015ACG.pdf

number of configurable options, but aside from the rating to test (plus slack allowance set to add 25),
they can be left alone.

Thus, the main user action items are options 5-10 and 18-22. Usage can be further streamlined by
working in terms of pre-scripted blocks of commands.

2 Examples of Commands
Suppose we have placed the following files in the main data folder:

CandidatesMadridJune2022cat21_Kom133d20-30pv64.aif
CandidatesMadridJune2022cat21_SF11d20-30pv64.aif
Candidates2020cat21C24_Kom131d20-30pv64.aif
Candidates2021cat21C24_Kom133d20-30pv64.aif
Candidates2020cat21C24_SF11d20-30pv64.aif

A note on nomenclature: pv64 means that the data uses the engine’s Multi-PV analysis mode. The
program will not handle data in the usual Single-PV engine playing mode, which is notated pv1.
(To make the program give errors on such data is a deliberate safety choice.) The d20-30 part means
a variable-depth mode where the engine is run until depth 20, then is allowed higher depths within a
given time budget (measured by number of nodes) budget, but stops at depth 30 even if time remains.
The engine used is after the underscore; the 2020 games were run with version 13.1 not 13.3 of Komodo
but the differences are minor enough to combine. I used to mark files from chess24.com with ‘C24’ to
warn that that became the Site field, but I've not found reason to continue caring, nor do I manually
change it to e.g. Chennai IND because the ease of forgetting breeds inconsistency in the Site field.
Here are some examples of commands and globs:

clearTurns addTurns Candidates*Koml13*aif

This clears out previous data and loads the three Candidates files with Komodo 13. Command lines
must always have a final carriage return to be acted on, but commands within a line can be separated
by spaces.

newFilters TurnNum froml4 geq 14 TurnNum to60 leq 60 done

This creates and loads two filters that combine to isolate turns 14-60 of all games. Creation always
begins with the type of the filter (always a capitalized name—following the conventions of a “function
object” class in the C++ code) followed by the particular name—which can be arbitrary. Names
cannot have internal spaces but may have hyphens, underscores, dots, etc. Multiple filters can be
created in a chain as shown above.

newFilters PlayerToMove Nepomniachtchi2m Nepomniachtchi done

This selects the moves made by GM Nepo. The part of the player’s name must be spelled out in
full exactly as it appears in the AIF file (which replicates PGN game headers), not counting spaces
and commas. One must be careful that hyphen is not a delimiter, thus “Vachier-Lagrave” is treated
as an indivisible unit and will not match “Vachier” by itself. (This is a pain because sources vary



between hyphen and space. But making hyphen a delimiter would be worse.) The name-matching
system does not accept “globs” like Nepo* the way file systems do. But provided no other player in
the loaded data has ‘Tan’ as a block, one could get the same results by newFilters PlayerToMove
Nepomniachtchi2m Ian done; nothing constrains the name of the filter to match the content. The
“2m” is my habitual way of saying “to move.”

If you want to distinguish the Candidates games that were played in 2020 versus 2021, you can do
newFilters YearIs yeq2020 eq 2020 done

and similarly for 2021. All numerical comparison filters have similar syntax where the element after
the class and name is one of leq, eq, or geq. Strict < and > are not provided but can be simulated
in one of two ways, say for “x > 1.00” figuratively meaning “advantage more than a pawn”:

(a) Use the NotFilter construction applied to the comparison x < 1.00. There are also OrFilter
and AndFilter constructors giving full Boolean logic.

(b) For comparisons involving decimal numbers, you can simulate something like “x > 1.00” as
“xr > 1.0001.” With unscaled centipawn units, which work in strict steps of 0.01, there cannot be
any difference. The program’s scaled evaluations can be arbitrary decimals—which the program
rounds to 2, 3, or 4 decimal places for displays—so in rare cases a position could have scaled
value between 1.00 and 1.0001 and be mis-classified. Notwithstanding this, the program only
claims 3-place precision of values and 4-place precision of averages, so this kind of difference
must be regarded as immaterial.

There are limitations to the Boolean logic. Put another way, the program does not have fully rela-
tional database capabilities, only what is sometimes called a “flat-file” or “card box” database. For
example, one cannot make a query to select those players who were common to both the 2020 and
2022 Candidates, or any two tournaments, automatically. One can “manually” determine that they
were Caruana, Ding Liren, and Nepomniachtchi, and use Boolean logic to disjoin them:

newFilters

PlayerToMove Caruana2m Caruana

PlayerToMove Nepo2m Ian

PlayerToMove Dingliren2m Ding

OrFilter CommonPlayers Caruana2m y Nepo2m y Dingliren2m n
done

detach Caruana2m y Nepo2m y Dingliren2m n

Some points about this: Each filter construction begins with the always-capitalized class of the filter,
then a name you supply, then its body. The name of the filter does not matter for the program
logic—thus it was fine to abbreviate “Nepomniachtchi” to “Nepo” in that name—but you must be
consistent with that name in later commands. Filters exist as soon as they are created, so it was not
necessary to exit with done and do newFilters again before creating the OrFilter. They are all
loaded at top level (unless created in nested fashion as exemplified below), so one must detach the
three individual filters to avoid what is otherwise a logical contradiction creating a “null filter.”

The use of Ding will not clash if the data included moves by the German FM Florian Dinger, because
the match is delimited by spaces, commas, and string boundaries. But in case Ding Liren and the
Chinese WGM Yixin Ding were in the same tournamernt, one would have to create separate filters



called (say) Ding2m and Liren2m and then define AndFilter Dingliren2m Ding2m y Liren2m n. It
is possible to nest this so that the components Ding2m and Liren2m are not exposed at the top level:

newFilters

AndFilter Dingliren2m moreOptions PlayerToMove Ding2m Ding y moreOptions
PlayerToMove Liren2m Liren n

done

To understand this: The y and n go with AndFilter. After the overall name Dingliren2m, the syntax
expects either the name or the catalog number of an existing filter. If you say moreOptions, however
(or give -2 as the catalog number), the program goes into creation mode. This internal creation is
not ended by done; rather, once you finish PlayerToMove by giving the name Ding, it jumps out to
ask if you want to define another conjunct for the AndFilter. The y signifies yes, so we repeat with
the “Liren” part and then the final n stops the AndFilter. This pops execution up to the top level of
newFilters, and when you say done, only the name DinglLiren2m is added to the global catalog.

One cannot achieve this in a shorter way by writing, say, PlayerToMove Dingliren2m "Ding Liren"
instead. This would fail to match the form Ding, Liren with internal comma in a PGN file anyway,
not to mention the order of Liren and Ding being switched. This is also a reason why the program
never allows spaces within blocks of input; space is always only a delimiter. Carriage return is
equivalent to space when reading data but causes a line of commands to be acted upon.

Because Boolean logic can be clunky, it is useful to bear in mind that loading multiple filters naturally
works like Boolean and, and there are shortcuts for some cases of or. For example, if we are happy
that “Liren” is unique in the data, we can define:

newFilters
PlayerOrToMove CommonPlayers Caruana Ian Liren .
done

The period . necessarily preceded by a space terminates the list of players. Now there is no issue of
having to detach the three components.

To distinguish games within a tournament, there are two main ways: by round or by date. The PGN
standard specifies that dates must be in the Euro YYYY.MM.DD format, so it is right for the Datels
filter in my program to require it. There is no such standard for the PGN Event and Site fields
(despite TWIC strictly giving the latter as city followed by the 3-letter country code with no comma),
and this feeds into why my program has no support for cataloguing tournaments. For rounds, my
program tries to handle multiple conventions; indeed, I extended it to handle notation like “23-07” for
the Women’s Speed and the double-decimal monstrosity “7.24.3” where 7 is the round, 24 the team
pairing, and 3 the board within the team match (or vice-versa?). There are some onscreen prompts
about these matters.

Once you have determined the appropriate filters—and maybe double-checked the selection by doing
showTrial vy if there are at most 1,000 selected positions—the workhorse commands are simple:

e perfTest useRating R goTest

e runIPR Ry name

In the former, you fill in a value for the rating R. They system will actually test R 4+ 25 unless you
expressly set the slack to zero, i.e., do perfTest ratingSlack O useRating R goTest instead. For



safety reasons, the ratingSlack field does not stay set to 0 when you do this. (You could also just
give useRating R — 25 to get rating R.) There are theee special useRating values:

e 0 preserves the rating entered in a previous test (or creation of a “TrialSpec” via the rating
field in main-menu option 14).

e 1 computes and uses the average rating R of the player(s) to move in the data. Again, you
actually get R 4+ 25 unless you include ratingSlack O before goTest.

e -1 computes and uses the opponents’ average rating instead.

The option 1 would enable you to test Caruana, Nepo, and Ding as if they were one player using their
average rating (weighted by how many moves they made). One can use it to test all players from a
given country by filtering the PGN WhiteCountry and BlackCountry fields; the newFilters menu
has a PlayerCountry option which handles the white/black determination. Whether it is appropriate
to average data this way, as opposed to combining separate tests of each player by the Fisher-Stouffer
rule—is a thorny technical matter. In the case of multiple players from a round-robin or knockout
finals stage of a tournament, I would bless doing so. But for evaluating Team Norway’s performance
at the Olympiad, where Carlsen has such a higher rating, maybe not.

For runIPR, the Ry is only an initial guess to help speed the iterative process. The final answer should
be the same unless Ry is weirdly extreme. This option sanitizes the now immensely complicated main
menu option 17, runFit, which is now targeted for technical research. Both routines create a set of
parameters that best fit the data. The set is called a TrialSpec and has a “ScaleSpec” subset which
you will see the program chatter about. It is good to give your spec a name in advance, but if you
don’t, the system will prompt you for the name before you see the final results.

3 Scripted Runs

What all this works toward is the principle that it is safer to script a formal test entirely in advance
rather than work interactively. Thus, for instance, to do a performance test of Ding Liren in Madrid
using his 2806 June rating, we can type the following into a text file and then paste it into the console
window:

IRW SF11 UW

y

clearTurns addTurns Candidates*2022*SF11*.aif
newFilters

PlayerToMove Liren2m Liren

done

perfTest useRating 2806 goTest

runIPR 2800 LirenMadridSF11IPR

The carriage return after the first line is necessary because it is executed at console level. The one
after the second line is advisable because it is the opening prompt. The rest could be all one one line
with spaces (or tabs) in between, but a final carriage return is needed for the last line to be acted
upon. It is fine (IMHO) to mouse-copy this and paste it into the console window, but remember either
to include the last line’s carriage return in the copied text or hit return after pasting.

This is without removing book. In big tournaments I often resort to approximating the removal of
book by using the TurnNum filter constructor to compare move numbers. To test only turns 14-60, do:



IRW SF11 UW

y

clearTurns addTurns Candidates*2022xSF11x.aif
newFilters

TurnNum froml4 geq 14 TurnNum to60 leq 60
PlayerToMove Liren2m Liren

done

perfTest useRating 2806 goTest

runIPR 2800 LirenMadridSF11IPR

(The turn-60 cutoff comes from a highly technical phenomenon that I and certain others have been
unable to “model away.”) The filter logic can build turn selections for each individual game. I have a
pair of Perl utilities to help with the complex syntax, pgn2CT.pl and ct4.pl. The former converts a
PGN file into a form where you can enter the novelty moves by hand. For the G/3+1’ segment of the
match between WGMs Kateryna Lagno and Humpy Koneru from the Women’s Speed quarterfinal, it
creates a file in a format best explained after filling in the needed by-hand information:

WSCC Main Event 2022 : LagnoVsKoneru Chess.com Online, 2022

9 2022.07.19 29-01 Lagno, Kateryna -- Koneru, Humpy: 13...Q47

10 2022.07.19 29-02 Koneru, Humpy -- Lagno, Kateryna: 10.Rb2

11 2022.07.19 29-03 Lagno, Kateryna -- Koneru, Humpy: 18...Beb

12 2022.07.19 29-04 Koneru, Humpy -- Lagno, Kateryna: 10.h4

13 2022.07.19 29-05 Lagno, Kateryna -- Koneru, Humpy: 15.a4

14 2022.07.19 29-06 Koneru, Humpy -- Lagno, Kateryna: 10...Nf6 ¥ repeat of game #12
15 2022.07.19 29-07 Lagno, Kateryna -- Koneru, Humpy: 15.Re2

16 2022.07.19 29-08 Koneru, Humpy -- Lagno, Kateryna: 10...Nfd7

I've inserted “LagnoVsKoneru” by hand because it becomes part of the names of filters created.
Otherwise, you could get multiple filters named Chess.comOnline2022 which would clash. The
initial numbers on the succeeding lines are used only as labels within the names of the filters for
individual games and do not need to start from 0 or 1 or even be in sequence. The column af-
ter the date, however, must have the round number exactly as it appears in the PGN file, includ-
ing any decimals. After the colon, the important elements are the turn number and either . or

with no intervening space, to tell whether it is a White or Black move. The move itself, or
any following text (after a percent sign) is not used internally—but of course, this helps when I
include this literal text into my cheating reports. The script ct4.pl translates a file foo.txt of
this form into foo.cmd with commands that my program can read via main menu option 22, called
readCommands. So is the PGN file is called LagnoVsKoneruWSCCFinalsG4B1itz2022.pgn then we will
get LagnoVsKoneruWSCCFinalsG4B1itz2022CT.txt, which we edit manually. Then applying perl
ct4.pl to that file gives LagnoVsKoneruWSCCFinalsG4B1itz2022CT. cmd, usable as follows:

IRW SF11 UW

LagnoG4testSF11

addOutputFile LagnoG4Results.txt LagnoG4testSF11
clearTurns addTurns WomensSpeedFinals*SF11x.aif
readCommands LagnoVsKoneruWSCCFinalsG4B1itz2022CT.cmd
newFilters

PlayerToMove Lagno2m Lagno

done



attach pnewbnorm n detach pnew4norm n
perfTest useRating 1912 goTest
runIPR 2500 LagnoG4vKoneruSF11IPRNB

The third-from-last line widened the cap on advantage for the player to move from 4.00 to 5.00 because
Stockfish 11’s evaluation function is “inflated” even compared to versions through Stockfish 9. The
IPR is standardly defined without removing book (as above), so I use IPRNB in names to record its
removal. All output gets logged the the file IRsessionData.txt and all user commands get logged
to IRcommandLog.txt, so the exact course of a session can be audited. (The latter also shows actions
taken by some commands, which need to be manually edited out if you want to actually copy and
replay the sequence.)

Note that I changed the simple y on the second line to a descriptive name for the session. The third line
creates a dedicated output file (besides all data getting dumped to IRsessionData.txt); the syntax
requires giving a session name too, which I made the same as the name of the session overall. Any
session name other than no, No, NO, n, or N is legal and interpreted as a yes answer to the suggested
main data path. The main z-score is after Combined: adj on a line by itself. The z-score of the
alternate “predictivity” test is the number after adj on the line beginning CombMultiWtd; for technical
reasons it is negated. The final IPR is on the line beginning IPR- at the end; I generally prefer to
quote the “simple” form on the next line which is rounded to the nearest 05.

4 Backdoor Features and Design Quirks
Some of these have even fooled me when I've forgotten them for a time:

e The rating 2001, if specified by the user, has the special action of turning off the “sliding scale”
hyperparameters. The same happens if you test a 1976 rating with adding 25. This is OK at the
rating 2001, so does not disturb a test, and goes away as soon as you test another rating. But if
you do certain other things after testing 2001 (especially with menu option 17 without using 19
as its front end) you can get unexpected results. The program says its results are “(ref2001)”
as a warning. (You can create other fixed-reference ratings; this is so wonky it is not even yet
in my material below.)

e AIF file names beginning Ref are treated in “magic” manner as additions or substitutions to
the reference file. Long story short: please avoid. There are 18 players on the August 2022 FRL
with surnames from Refaat to Refuveille; do not begin AIF files with their names.

e Filters marked “(GF)” depend only on characteristics of a game, not on any positions in that
game. For example, whether Black’s Elo rating is at least 2000. If any GameFilters are active at
the time addTurns is executed, they prevent the loading of games that fail the filter. If you wish
to load such games, you must detach them first, load the data, then attach them again. If you
are interested in only one player in a large tournament, this feature can greatly save memory
and loading time—but if you are frequently changing both filters and data, this can mislead. A
tricky case is the PlayerElo filter class. If you define PlayerElo moveBy2000plus geq 2000
then the filter can depend on the position insofar as whether White or Black is to move, if only
one player is 2000+. But it is still marked GF because it will suppress loading games in which
both players are under 2000.

e The Ctrl-C key combination kills the program except when the regression is running. From
option 17, it aborts the regression and leaves the last TrialSpec computed in the regression in-



place. This is handy if progress is slow and a non-fit is evident. From option 19, runIPR, it
aborts to the last iteration of option 17, which is done at higher precision. A further Ctrl-C then
aborts that regression as before.

One can configure parameters differently for runIPR by going into runFit, making the desired
changes, and instead of selecting go, do -3 which is the code for cancelChoice. You will get
a prompt that asks whether you wish to save the new settings. Answer y, then do option 19,
runIPR.

If you give option 5 a file name or glob without ‘/’ or ‘path information, it will look for matching
file(s) first in your home directory (where the executable file is). If any files are found there, the
search stops. If not, then the main data path is polled. It is neatest to keep only the reference
files in the home folder, so polling the main data path is the normal mode of operation. If your
argument to 5 includes a path (which can be relative including use of .. once), and matching
file(s) are found at that location, this supersedes looking up the main data path. If not, and if
the path is relative, then maybe it will be read relative to the main data folder.

Command files cannot have commands to open other command files. All reading of command
files must be at top level. This is one of several self-limitations for safety, and is the one I may
soonest liberalize.

Some menus allow toggling choices on.off at the same screen, but some do not—most notably, the
options for attaching and detaching filters are completely separate entries in the main menu. The
point is that toggling is modal, and modality creates an unsafe dependence on earlier commands.

Comparisons are always inclusive of their endpoints. This owes more to my experience with
Constructive Mathematics than with quantum theory as in the ‘linearization’ point.

The main modeling concept is that every set of values for the parameters—especially “sensitivity
s” and “consistency ¢’—defines a wvirtual player Q. The IPR regression works by finding the
Q@ that is closest to the performance of the actual player P. Then the IPR is calculated by
calculating how () is expected to perform on a fixed set of positions, namely the reference file
for the engine. The actual T1-match and centipawn loss in the games by player P is not tallied
directly (as the screening does) but rather factored into the regression. The regression is how the
difficulty of the positions faced by a player is accounted, which the simple “box-score” tallying
of PGN Spy and other screening-like utilities simply misses.

Depths are virtual and smoothed. As with the screening files, the Multi-PV AIF files tend to
go to higher depths in endgames and simpler positions, under the supposition that players are
able to calculate more moves ahead. Unlike with screening, the Multi-PV AIF files go to depth
at least 20 even with the newer engines. Whatever the highest depth D > 20 reached in the
analysis, it is mapped to depth 20 (or to whatever is specified as the “judgment depth” in the
model-configuring parts of the code) on a virtual scale. A depth d < D will be mapped to
d* < 20—or more precisely, the engine’s value at depth d will be split up into the virtual value
at depth d* and the depth d* — 1 and/or depth d* + 1. What thereby gets smoothed is the
tendency of engines to have a “brain fart” about a move at one depth d which gets corrected
at the next depth d’. Then the values at virtual depths d* and d* + 1 will each have a little of
both, and the over-sharp difference between depths will be muffled.

Evaluations are virtualized too—by what is essentially the same scaling as plotting stock prices
on log-log charts where percentage change rather than raw points change is what matters. Matej
Guid and Ivan Bratko were aware of the need but acted only as far as making a +2.00 cutoff

10



in advantage for the player to move. That the phenomenon goes stringly all the way down to
0.00 is graphically demonstrated in my “When Data Serves Turkey” article linked above. An
independent analyst gave me a demonstration that my scaling has equivalent effect to standard
general statistical noise-reduction procedures. Theoretically, the scaling should correspond to
the win-lose-draw expectation, which is how AlphaZero and other neural engines calculate eval-
uations, but the nub of my “Sliding Scale” article is that what works hummingly for AlphaZero
loses its simplicity for modeling human players of all ratings.

e The program is fully linearized. This means that all individual choices of numerical items
are treated as potentially being linear combinations of multiple choices—quite literally the
“Schrodinger’s Cat” view of the world. This is most transparent in main menu option 17 where
the user can compose “loss functions” with arbitrary weights, but it operates in some places
where I followed the design philosophy without really craving it. The above treatment of depths
is less transparent. The pivotal case is the weighting of positions. I've wound up using simple
unit weighting—which is the case where every coefficient has value 1.0—over 99% of the time.
I've tried numerous other weighting schemes, but only my recent idea of “expectation weights,
normalized” (EWN) has shown internal signs of good behavior. Before my code bulked up, I used
to display results under unit weights and general wights side-by-side. Now you see only the
“...Wtd” version of everything, but when the weights are unit, it’s the same as the unweighted
version anyway.

I hasten to explain a point that I always put in my long-form resports for over-the-board cases: Moves
where there is an obvious recapture are already discounted by my model in a manner separate from
giving them tiny or zero weight. Namely, my model will generate a prediction probability for the
recapture of basically 1.00, so the fact of the player matching it will add almost nothing to the z-score.

But it would be nice to give obvious-move positions small weight, which EWN will do organically. EWN
up-weights positions where not only is there more at stake, but there are enough ponderable choices
to create a substantial likelihood of error. By dint of being normalized, EWN will give those positions
weights higher than 1.0, to offset the obvious-move cases. It also gives small weight to positions with
many choices but where they all keep the evaluation at 0.00, say. That is more problematic as policy,
and I'll just say that the use of depth weights and other volatile features attempts to detect things
such as “drifting into the zone of one msitake” as the saying goes. The use of EWN is to try to
isolate “smart cheating” on critical positions by up-weighting them, and in a non-cheating context, to
measure how difficult the positions are—e.g. so as to calculate the amount of challenge a player creates
for opponents. The downside is that thus “chunking” the weights tends to increase the denominator
of the z-scores, thus blunting the instrument in cases of “dumb cheating”—as has been seen all too
often online during the pandemic, alas.

5 Code Organization

The program has nine major sections. Much of the code is inlined in .h files only. Some parts have
long descriptive comments. The basic organization is:

1. Utilities, math functions, chess notation:

e Files IRincludes.h, IRutil.h, IRfunctions.h, Position.h

e (Classes SimpleDate, MoveParse, Move, Position; namespaces IRutil, IRfunctions

2. The text-based, extensible menuing and logging system.

11



e File Menus.h starts with global interfaces Logging and Catalogable.
e (Classes EnumMenu, GoMenu, DynamicMenu, the last composed into Catalog, ValueCata-
log, and RefCatalog.

3. Model settings, model parameters, configuring the utility function, generating likelihoods.

e File TrialSpec.h with class TrialSpec (Catalogable) holds 40 model parameters to fit. The
parameters are divided into an “inner tier” and an “outer tier”; the latter are referred to
as if a class ScaleSpec existed but are not coded separately.

e File Scaler.h with class Scaler (Catalogable) and subclasses NonScaler, LinearScaler,
LogScaler, LogisticScaler, which scale down engine-given move values to reduce extremes.

e File EvalHandler.h with class EvalHandler (Catalogable) to manage model settings that
are fixed rather than fitted.

e File ForwardSpec.h with class ForwardSpec: Translates TrialSpec into model equations
according to EvalHandler settings. For instance, the ‘s’ parameter can be inverted and/or
made to multiply vy — v; rather than just v;.

e File FitDataTuple.h with classes CurveApplication, which holds move utilities wu;, likeli-
hoods L;, and probabilities p;, and FitDataTuple, which evaluates quantities to be multi-
plied by model parameters.

4. Chess game and analysis data read, filtered, and modified.

e Files GameInfo.h, TurnInfo.h, FilteredTurn.h, and DecisionInfo.h

e Classes Gamelnfo, TurnInfo, FilteredTurn, DecisionInfo. Use is described below.

e (Also Shuffle.h with class Shuffle which is currently disabled.)

5. Apply parameters to data to generate probabilities.

e File IRmodels.h with namespace IRmodels and a class MoveProjection which holds prob-
ability projections according to user-chosen model equations.

e Enum MODELS governs the choice of model, which includes (proto-)linear, log-linear, and
loglog-linear models.

6. Turn filters and move selectors determine which positions and move predicates are tested.

e File MoveSelector.h has abstract base class MoveSelector (Catalogable) with a hierarchy
of function-object classes that select subsets of moves for any position, such as all Knight
moves.

e File TurnFilter.h has abstract base class MoveSelector (Catalogable) with a hierarchy of
function-object classes that govern which positions are loaded for a test.

e Users may dynamically create TurnFilters (and Selectors to a more-limited extent) and
form Boolean combinations of them.
7. Performance data is collected and compiled into test results
e Files PerfData.{h,cpp} with classes SimpleStats, PerfData, IPRstats, BootstrappedItem
and the following hierarchy:

e Abstract class Statsltem deriving virtual base classes AggregateStat and TestItem which
converge into the bellwether class AggregateTest and subclasses MovelndexTest and Selec-
tionTest.

12



e The test classes automatically manage projected and actual means and variances for z-tests
etc.

8. Manager for data and fitting according to user-configured loss function

e Files Trial.{h,cpp} and Minimizer.h, plus TrialFilters.h for filters that involve fitting-
dependent criteria, and third-party optimization package files.

e Class Trial (which is Catalogable, but the feature of multiple Trials—each with its own
model equation and data—is disabled) holds data, executes statistical fitting, and executes
performance tests with fitted or assigned parameters.

e (Class Minimizer provides user-configured loss functions and interfaces with minimization
algorithms in GSL and other libraries.

e Files Heap.h and HeapNM.h with an original implementation of Nelder-Mead minimization
via a heap data structure, replacing the GSL implementation.

9. Ensemble coordinates menus and actions and streams and session logging.

e Files Ensemble.{h,cpp} have the omnibus single-instance class Ensemble(Logging).

e File IRmain. cpp merely builds an Ensemble and sets the stream interaction going.

6 Setup and Dataflow

Here is what happens on startup when the program is run:

1. The lone Ensemble instance is created along with both the “focus trial” and the “reference
trial”; the latter trial is used only to set a fixed benchmark for statistical tests (which represents
a particular master fitting of the model). System paths are set up—the user confirms them by
giving any response other than ‘n’ or ‘no’ and this becomes the recorded name for the session.
Then a script that is in the user language but coded within the program as strings above main
is run to create initial settings for all configurable quantities in EvalHandler and TrialSpec.

2. Data from the Analysis Interchange Format (AIF) file SF7Turns.aif is read into both trials.
This is held in raw form by Gamelnfo and TurnInfo.

3. The data flow is Turnlnfo —(TurnFilters)— FilteredTurn —(EvalHandler)— DecisionInfo —
(EvalHandler )~ FitDataTuple.

4. TurnInfo holds the raw values in the AIF file(s) from White’s point of view in centipawn (CP)
units. Mate values are stored as 100,000 centipawns minus the number of moves to mate.
Indications for move values that are not available because they were pruned by the engine
(PRUN), not recorded in lesser-PV mode (NREC), or otherwise not applicable (NA) are stored
as-such.

5. FilteredTurn flips values around to the player-to-move’s view and divides them by 100.0 to put
them into two-place decimal (“Pawn”) units. PRUN values are replaced by the worst recorded
value of a move at that depth; then NREC values use the value at the highest-available lower
depth for the move; and then NA values (which are usually for depths before the first depth at
which the search reports values) use the value at the lowest-available higher depth for the move.
FilteredTurn thus stores an “Unscaled Value” for every move/depth pair. It also maintains the
highest and lowest recorded evaluations at each depth of search. This is done only for the turns
selected by the “attached” TurnFilters.

13



6. DecisionInfo creates and stores a parallel table of “Scaled Values” for every move/depth pair,
using both the fixed settings in EvalHandler and outer-tier “sliding-scale” parameter settings.
Also per optional fixed settings regarding the handling of lower-depth values, it creates “swing”
values needed for fitting (see next item). Extreme values are first capped (using user-configurable
settings) by Scaler::capEval. Then they are scaled and otherwise mapped by Scaler::mapEval.
Access to the unscaled values in FilteredTurn also goes only through this class, so it serves as
the main value gateway.

7. FitDataTuple sifts down a DecisionInfo object into just the values actually used for statistical
fitting and testing. Those values depend on the “judgment depth” selected by the user to test and
the “telescope window” of (weighted) depths on which predictions are based. The latter window
may consist solely of the judgment depth but is notionally apart from it. The FitDataTuple
object is created in the body of DecisionInfo but not exported until the user begins a statistical
fit or performance test.

Each TurnInfo, FilteredTurn, and Decisionlnfo object holds an L x D array of values, where the
number L of legal oves averages in the mid-30s and the number D of data depths is in the range 20—
30. Since each array is derivable from the previous one, holding them in triplicate wastes space, but
the latter two are generated only for the TurnFilter-selected data and are not altered during fitting.
The FitDataTuple objects, however, have size proportional only to L (though some settings cause
fitting methods to create up to D of them for each data point—this is real slow and we won’t use them
unless forced to). They are freely created and recycled on the fly—they are treated as temporaries
with lifespan only to generate one set of projections for one game-position data point.

The initial script creates many more “available” TurnFilters than are attached by default and also
creates a suite of MoveSelectors, all of which are active for inclusion in a performance data (PerfData)
object. The difference between a TurnFilter and a MoveSelector is the former determines which turns
in games are tested or regressed over, whereas a selector determines which moves in each position
“pass” a certain test. There are also special selectors that represent numerical attributes of moves
such as value and ordinal best-to-worst rank—they are configurable only from the fitting menu.

7 Main Menu

Most of the user options build resources or change settings without carrying out any “statistical
activity.” As grouped on the main menu, they are:

1. Change the main fitting equation between a log-linear model (called “Shares”) or a loglog-linear
model (“Power Shares”) and a dozen other choices.

2. Change settings that are supposed to be fixed rather than fitted: scaling, whether a “patch” is
used when moves are tied for equal (optimal) value, prediction depth(s), the judgment depth,
the handling of “swing” (described below), and the mapping of how the user sees parameters to
the fixed way the evaluator treats them.

3. Show the current settings and loaded data.

4. Edit parameters in the “outer tier” that are ultimately supposed to be fixed but may be fitted
while the intended model upgrade is still in “R & D mode.” Any edit to most these parameters
causes all DecisionInfo objects to be remade.

14



5. Add more game data from files that may be specified using “glob” wildcards.

6. Clear the loaded game data.

The settings from these six items used to be savable as a catalogable “Trial” object, so that multiple
trials each with its own data could be maintained, but this was unwieldy so the feature is currently
disabled. Thus only one Trial (apart from the reference trial) exists at any one time, let along be “in

focus”—but it can be change at will. The next group of user actions is:

7. Design a new TurnFilter. It is automatically attached after creationbut can be detached at will.

8. Attach one or more existing TurnFilters. This and detaching cause all FilteredTurn as well as
Decisionlnfo objects to be remade. When filteres are being swapped in and out and many game
turns are loaded, it is quicker to attach first (even if it causes a warning that all the turns are
filtered out) and then detach.

9. Detach one or more existing TurnFilters. They are kept in a Catalog which allows access by
number (good for live use) or name (important for writing scripts since numbers may change).
The numbers do not change when a filter is detached.

10. Clear all attached filters—this is even more useful in scripts than interactively.

11. Hide a filter from the “available” list—which in particular allows redefining it by the same name
if the original definition was bungled. Filters on the hidden list (and there are some initially by
default) can be made available by using the global “moreOptions” feature (numbered -2) in the
menuing system.

The next block has numbers 12-13 with similar precedures for MoveSelectors, except that they toggle
rather than have separate attach/detach operations and cannot be hidden. Then come:

14. Define a new TrialSpec. This menu shows all the “inner tier” parameters, with option to set
(some of ) them according to the Elo rating. This is used both to set parameters for performance
tests and to choose a reasonable starting point for the fitting algorithms. This and the outer-tier
parameter menu are also reachable directly from the fitting menu.

15. Load an existing TrialSpec from the catalog. Unlike filters or selectors, only one can be loaded
at a time, so there are no separate “attach” or “detach” operations.

16. They can, however, be hidden. The current method of displaying them takes a lot of vertical
screen space so this is handy. Also handy is that whereas TurnFilters and MoveSelectors disallow
overwrites (one must hide the original first even if it is detached), TrialSpecs and EvalHandlers
allow them.

Items 17-19 are the main statistical actions described above. All results are automatically stored in a
local file named IRsessionData.txt but menu option 20 allows also directing them to a namable file
for the current session. Option 21 can be used to stop this recording.

Option 22 reads and runs scripts from a file of commands. Commands can also be just pasted at the
screen prompt up to the allowed buffer size, but it will be best to use files. The “scripting language” is
simply whitespace-separated menu commands, preferably by name rather than number so they won’t
break if numbers are changed. Option 23 closes all files for a clean exit.

15



	Setup and Introduction
	Examples of Commands
	Scripted Runs
	Backdoor Features and Design Quirks
	Code Organization
	Setup and Dataflow
	Main Menu

