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1. Introduction 

This paper deals mainly with bond percolation on the square lattice. This model 
is a special but perhaps the most interesting case of the general theory of 
percolation introduced by Broadbent and Hammersley [4] in 1957. In Section 2 
we review briefly the general percolation model; for further details see Frisch and 
Hammersley [13], Shante and Kirkpatrick [24], Essam [9] or Welsh [29]. 

In Section 3 we introduce the FKG inequality of Fortuin, Kasteleyn and 
Ginibre [12]. In Section 4 we introduce the problem of percolation through an 
n x n  sponge (loosely speaking, when is it possible to move from one side to 
another of a randomly dammed chessboard?). We examine two of the possible 
critical probabilities pT, pH defined in [29] and use the theory developed for the 
sponge problem to prove the result 

PT+PH = 1. 

Since Harris [18] has proved pHz=i and since intuitively one expects the numbers 
to be equal this suggests that all the critical probabilities for bond percolation on 
the square lattice have the common value i. 

2. The percolation model 

If G is a graph, finite or infinite, we let V =  V ( G )  be its set of vertices and 
E = E(G)  its set of edges. The little graph terminology we use is standard (see for 
example Berge [2] or Bondy and Murty [3]). 

By the percolation model on G we mean the assignment of open or closed to 
each edge of G with probabilities p and q = 1 - p  respectively, the assignments to 
be independent for each edge. If an edge is open we picture it as allowing fluid to 
pass along it; if closed it does not allow fluid to move along it. Thus if A is any 
subset of edges of the finite graph G, the probability that A is exactly the set of 
open edges is 

*(A) = plAlqIE\*l. 

227 
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If 0 denotes the set of all possible assignments, we identify a typical member o of 
0 with the subset of edges which are open in w. We shall be dealing throughout 
with a graph G in which E ( G )  is at most countable and the random variables are 
on the space 0. There is never any problem with the measurability or lack of it 
for the random variables which we shall be discussing and hence we shall usually 
write X for X ( w )  and so on. For details of similar such arguments see for example 

If G is a graph and A, B are subsets of V(G) and U is a subgraph of G, 
~171. 

denotes the fact that there is a path lying entirely in U which connects some vertex 
x in A to some vertex y in B. Occasionally we abuse notation and U is not a 
subgraph of G but just a set of vertices. In such cases we interpret the expression 

as {A J B} where 0 is the graph induced by U. 
If 0 is the probability space of the percolation model on G the event {A -+ B }  

is the event of R that there is some path of open edges linking a vertex of A to a 
vertex of B. 

Throughout 2 will denote the square lattice, that is the set of points (x, y)  of 
the plane having integer coordinates x and y and having edges joining each point 
(x, y)  to its nearest neighbours (x + 1, y), ( x  - 1, y), (x ,  y - l), (x ,  y + 1). 

As usual in this theory it is convenient to regard 2 as the “limit” of a sequence 
of finite graphs. One suitable sequence is (2,,: 0 s  n <a) where LEn is the 
restriction of 9 to the set of vertices {(x, y): - n S x G n, -n  S y S n}. LE itself is 
self-dual; that is, if we consider a new infinite graph 2’* whose vertices are the 
points (x +$, y +$) where x, y run through the integers, and whose edges are again 
those lines joining nearest neighbours, then 2* has the following properties. 

0 

(a) It is isomorphic to 2. 
(b) There is an obvious geometric duality between 2 and 9* inasmuch as they 

can be drawn as geometric duals in the plane, see for example [3]. 
Almost exclusively in this paper we shall restrict ourselves to percolation on 9, 

or some sequence of subgraphs of 2 which approach 2. 
Suppose we now regard the origin 0 as a source of fluid. We say that a point v 

of 2 is wet by fluid from the origin if there is a path consisting of open edges from 
0 to u, and otherwise v is dry. 

Let us now fix p,  O s p s l .  We let P,(p)  be the probability that at least n points 
are wet by fluid from the origin. Clearly 

so that 

P ( p )  = lim P, (p) 
n-m 
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exists, and satisfies 

O s P ( p ) s l .  

However, though each P,(p) is a polynomial in p and can be calculated, it still is 
not known for example whether or not P(p)  is continuous in p. Broadbent and 
Hammersley [4] show that there exists a critical probability pH defined by 

pH = inf p :  P(p)  > 0. 

Harris [18] proved that 

1 
2 P H  

and Hammersley [16] that 

PH s 0.646790. 

As pointed out in [29] there are several other “critical probabilities” in the 
literature, and the relationships among them are obscure to say the least. First 
consider V(p) ,  the expected number of points wet by the source at the origin- 
that is, 

We define pT by 

pT=infp: V(p)=m. 

Since V ( p )  is infinite if P ( p )  > 0, we have immediately that 

pT PH‘ 

One of our results below will be that 

(3) 

This has an easy proof, but also follows from our main theorem: 

Theorem 2.1. In percolation on the square lattice the critical probabilities pT, pH 
satisfy pT + PH = 1. 

Our proof of this is quite long and is given in Section 5.  Thus on an intuitive 
level at least there is strong evidence to support the following conjecture. 
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Conjecture 2.2. pr = pH = +, 

We should emphasize that for several years there has been a folklore belief that 
the above conjecture was proved by Sykes and Essam [25] in 1964. Sykes and 
Essam in fact show that under certain (as yet unproven) assumptions a third 
quantity pE associated with percolation on the square lattice is equal to 5. 
Although various attempts have been made (see for example Grimmett [ 141) to 
prove that the assumptions demanded by Sykes and Essam are correct it is a much 
more difficult (in fact, as far as we can see, hopelessly intractable) problem to 
relate pE with pH or pT. Even the very definition of pE is shrouded with mystery. 

3. The FKG inequality 

In 1971 Fortuin, Kasteleyn and Ginibre [12] proved a remarkable inequality 
showing that non-decreasing functions on a finite distributive lattice are positively 
correlated by all positive measures which have a certain convexity property. This 
inequality was originally applied to Ising ferromagnets in an arbitrary magnetic 
field, but as pointed out in [12] it is also closely related to a lemma used by Harris 
[18] in proving Theorem 2.1. In [23]  we showed that the inequality has diverse 
applications in combinatorial theory, and Kempermann [20] has given some new 
applications in probability theory. In this section we shall use it to obtain some 
new results in percolation, first passage percolation, and random graph theory. It 
is also used repeatedly in the proof of our main result in Section 5.  

Two random variables X and Y are covariant if % ( X Y ) 2 ( % X ) ( % Y ) .  Two 
events A, B are covariant if their respective indicator functions are covariant. 
Clearly (if P(B) f 0) A, B are covariant if and only if 

P(A I B )  P ( A ) .  

A set { X , ,  . . . , X , }  of random variables is covariant if for any subset I G  

Let D be a distributive lattice, where obviously we are using “lattice” in its 
algebraic sense. A function f : D -+ R is called increasing if f ( x )  S f (  y)  for any pair 
of elements x, y of D such that x i  y. A function f is decreasing if -f is 
increasing. 

When D is finite and p : D-+ R’, the p-average of a function f :  D-+ R is given 

(1, .  . . > kl,  ~(rI,EIx,)~rI,d~(x,). 

by 

The original version of the FKG inequality proved in [12] is as follows. 
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Theorem 3.1 (The FKG inequality). Let D be a finite distributive lattice and let 
p : D-+ R’ satisfy 

( 5 )  P ( ~ ) c L ( Y )  G ~ ( x  A Y>P(X  v Y )  ( x ,  Y E D).  

(fg) 3 ( f>(  g ) .  (6) 

Then i f f ,  g are both increasing or both decreasing functions, then 

An obvious corollary of this is that if f and g are functions on D which are 
monotone but in the opposite sense, then 

( f g )  (f)(g). 

Before proceeding to give some applications of Theorem 3.1 we prove a 
lemma. The proof is elementary, but we give it because we use the result several 
times later. 

Lemma 3.2. If  A,, A2 are covariant events in 0 with P(Al) = P(A2) then 

P(Al)a  1 -[I -P(Al U A,)]”’ 

which completes the proof. 

Example 3.3 (Random graphs). For each positive integer n let D, be the lattice 
of subsets of En, the set of edges of the complete graph K,. Now let p be defined 
as 

IAI IE\Al P A = P  9 . 

Consider the following events about the random graphs w on n vertices in which 
each edge of K, exists or does not exist with probabilities p ,  1 - p ;  

A: w is planar, 
B: w is hamiltonian, 
C: w is 4-colourable. 

It is clear that whereas A and C have decreasing indicator functions, B has an 
increasing indicator function. Hence the FKG inequality gives such statements as 

P[random graph w is hamiltonian I w is planar] 

=s P[random graph w is hamiltonian]. (7) 
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P[random graph w is 4 colourable I w is hamiltonian] 

P[random graph w is 4 colourable]. (8) 

Although intuitively appealing, such results do not seem easy to prove directly 
and serve to indicate the power of the FKG inequality. 

Now the reader will notice that in the FKG inequality as stated in Theorem 3.1 
the lattice D is restricted to being finite. Various infinite extensions of the 
inequality and of a stronger result of Holley [19] have been made recently by 
Batty [ 11, Cartier [ S ] ,  Edwards [7], Kempermann [20] and Preston [22]. However, 
as far as the main theorems of this paper are concerned the only infinite extension 
w e  need is the following covariance inequality first proved by Fortuin [lo]. 

Theorem 3.4. Let G be a countable graph and let P be the probability measure 
induced by a percolation model on G. Let f and g be increasing functions on the 
partially ordered probability space associated with this model. Then i f  8 is the 
expectation operator associated with P, 

whenever the expectations exist. 

Immediately from this we see that the results obtained in Example 3.3 above 
hold when G is a countably infinite graph. 

We close this section by sketching a proof of an extension of Harris’ correla- 
tion result to first passage percolation theory as defined by Hammersley and 
Welsh [17]. One interest of this extension is that Theorem 3.5 below was the 
original “physical result’’ which motivated Batty’s infinite extension [ 11 of the 
FKG inequality. 

Let G be a (finite or countably infinite) graph directed or undirected, with 
vertex set V and edge set E. Suppose that to each edge e, of G we assign a 
random variable ui drawn, independently for each edge, from a distribution F(x) .  
We call ui the time coordinate of ei. 

The set f2 of E-tuples w,  defined by w ( e , )  = ui, e, E E, is called the phase space 
and can be ordered by 

w s w ‘ e w ( e , ) ~ w ’ ( e ~ )  V e , E E .  

If x, y are any two vertices of G we write txy ( w )  to denote the first passage 
(shortest) time between x and y over paths of G, when it is in state w .  More 
precisely 

t .<”(w) = inf r(P, w ) ,  

where t(P, w )  is the sum of the time coordinates of the edges making up the path 
P, and the infimum is over all paths P joining x and y .  

Now for any points x , ,  x2, y , ,  y 2  of V(G) it is obvious that tX+,(w) and ty,,.(w) 
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are monotone on 0, in the sense that 

Thus we can apply the infinite version of the FKG inequality implicit in the work 
of Batty [l] and Edwards [7] to get the result that the pair of random variables 
t,,,, and t y ,y2  are covariant. More generally, if A, B are two subsets of V and 

tas(w) = inf tx,(w) 
* € A  
YES 

represents the first passage time between A and B when G is in state w we have 
the following general result: 

Theorem 3.5. For any sets A, B, C, D of vertices of the countable graph G the first 
passage times tas and tcD are covariant random variables. 

4. The sponge problem 

In this section we consider a new variant of the percolation problem. It is of 
some interest in its own right; indeed we studied it purely for its own sake before 
realising that it was a useful tool in giving insight into the relationship between pT 
and pH. Most of the results of this section will be used in proving our main result, 
Theorem 2.1. The vertex or atom percolation version of this problem has also 
been studied numerically by Kurkijarvi and Padmore [2 11. However, they assume 
as physically obvious certain results which we have found impossible to prove 
rigorously. 

The m x n sponge consists of the subgraph T ( m ,  n )  of 2 induced on the mn 
points 

{(x, y):  1 c x s n, 1 6  y G m}. 

Each of the m points (1, y ) ,  1 G y =s m, is regarded as an infinite source of fluid 
which may percolate through those edges of the sponge which are open. The 
probability that any edge is open is p ,  independently for each edge. 

We let S,(m, n )  = S(m, n )  denote the probability that some of the points (n, k ) ,  
1 s k S m, become wet by fluid. 

Trivial inequalities are 

S ( m ,  n + 1 )  c S(m, n ) ,  

S(m,  n ) <  S ( m  + 1, n ) .  

(9) 

(10) 

A basic, but extremely useful, result is the following. 
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Theorem 4.1. For all p ,  O s p c  1, and all positive integers m 3  1, n 3 2 ,  

S,(m, n ) +  S,(n - 1, m + 1) = 1, 

where 4 = 1 - p .  

Proof. Construct a new graph G(m, n )  from the m X n sponge T(m, n )  as follows. 
Identify all the vertices (1, y ) ,  1 s y s m, in a new vertex x,.  (Remove all edges 
which become loops.) Similarly identify all vertices (n ,  y ) ,  1 s y s rn, in a vertex 
x,. Add a new edge e joining x, and x2. The graph G(m, n )  is planar, and its 
planar ddal G* is isomorphic to G(n  - 1, m + 1). Now consider any assignment w 

of open and closed values to the edges of T(m, n ) .  There is a path of open edges 
from one of the vertices (1, y ) ,  1 s y 5 rn, to one of (n,  y ) ,  1 G y m, if and only if 
there is a cycle in G(m, n )  consisting of e and otherwise edges which are open in 
w. But, by the elementary max-flow min-cut theorem, either there is such a cycle 
in G(m, n ) ,  or there is a cycle in G* consisting of e and otherwise edges closed in w 

(and not both). But since G* is isomorphic to G ( n -  1, m + l ) ,  and an edge of 
T(m, n )  is closed with probability 4, the result follows. 

Hence if we define 

S , ( p )  = S,(n, n + 11, 

S,(p)+S,(l-p)= 1 (Osp<1) .  

we have for all positive integers n, 

In particular 

S,,($) =$ (1 < n <m). (11) 

It is also clear that S , ( p )  is a monotonic increasing function of p, satisfying for 
all n, 

S,(O)=O, S,(l)= 1.  

However we have noz been able to prove: 

Conjecture 4.2. For all p ,  0 < p < 1, lim S, ( p )  exists. ( W e  have shown that, even if 
the limit always exists, it is not continuous.) 

Conjecture 4.3. For p < $  (respectively>;), S , ( p )  is a monotone decreasing (re- 
spectively increasing) function of n. 

We now relate S , ( p )  with P,,(p). 

Theorem 4.4. For any positive integer n and 0 s p G 1 

S , , ( P ) G  1 - ( I  -Pm+l(P)Y. 
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Proof. Consider the n x (n + 1) sponge and let 

X = { ( x ,  y): x = 1, l s y s n } ,  

Y ={(x ,  y): x = n+ 1, 1 6 y S  n}. 

1 - S" (p) = P ( X +  Y )  

Then 
$. 

Y 

where A, = ((1, i) + Y}, 1 s i =s n. 

But by the FKG inequality the A, are covariant events, each having probability 
2 1  -Pn+, (p) .  Hence 

1 - S" ( P )  2 (1 - p,+ ,(P))" 

and the result follows. 

Suppose now we define the critical sponge probability p, by 

ps = inf p :  lim sup Sn(p) > 0. 
n-a. 

Then we know from (11) that 

PsCk (12) 

0.353210spTspp, .  (13) 

S(n, n ) < 8 S ( n - l ,  n-1).  (14) 

It will follow from the proof of Theorem 2.1 that 1 

One final result which we need before proving the main theorem is the 
following: For any n, 

To see this consider the n x n sponge. If there is a path across it, then there must 
be a path across one of the four ( n  - 1) x ( n  - 1) sponges inside it or there must be 
a path from the top to the bottom of one of these sponges. Considering the union 
of these events gives (14). 

5. Proof of Theorem 2.1 

We shall prove Theorem 2.1 by the series of Lemmas 5.1-5.6 below. However, 

First in Lemma 5.1, which is relatively straightforward, we show that 
it is probably instructive to show the broad outline here. 

PT+PH==1. (15) 
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In Lemmas 5.2-5.4 we prove various inequalities about the S(m, n )  which 
enable us to show in Lemma 5.5 that if p < 1 -pH not only does the sequence 
S,  ( p )  converge, but 

lim S,(p) = 0. 
n-m 

In Lemma 5.6, we show that if p > pT, 

lim sup S,(p) 3 6 > 0. 
n- 

Thus we have l-pH=zpT which with (15) proves our final result that 

P T + P H =  1. 

Lemma 5.1. pr+pH 6 1 

Proof. Let L be the set of points {(i, 0): i 3 0} of 9 and for 1 s M < 00 let L, be the 
set of points {(-i, 0): i 3 n} .  We choose a fixed p < pT; and then 

Choose N so that zIa,,,P,(p)< 1. Now 

Y Y 
P{ (- i,0) + L }  = P((0,O) -3 L, } F2 P, ( p )  . 

Hence 

Hence 

P{L,Z L}< 1. 

Now let Bi (1 s i < 00) be the points (-i +$, 4) (0 i < x) which are the vertices of 
the dual lattice 9*. For each assignment w of open and closed to the edges of 2 
we will consider 2* in state w * ,  where if e is closed in 2 under w then the 
corresponding edge e* of 2'* is closed in 2*. 

Let B * = B * ( w )  be the set of points of the dual lattice which are joined by a 
path of closed edges of 2'* to one of B,, . . . , B,. Suppose that we assume that 
with probability one B* is finite. Then if B* is finite let P* be those edges of 2* 
joining vertices of B" to vertices of 2*\B*. Then every edge in P* must be open 
in Z*. 
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Now since B* is finite P* must cut LN and must also cut L. Hence by 
elementary graph theory arguments there is an open path in 2 connecting LN with 
L. But we have chosen N so that the event LN+ L has probability strictly less 
than 1. Hence the assumption that B* is finite with probability one is false and we 
must have 

P(IB*] = to) > 0. 

But if for l S i S N  we let 

Ai ={a: Bi is connected in 2?* by a closed path to an infinite 
number of points of 2*}, 

then 

N 

P(IB*l= a) s P(A,) .  
i = l  

Since P ( A , )  = P(q) ,  we must have 

which implies 

so that pT + pH s 1 as required. 

Lemma 5.2. I f S ( 2 n , 2 n ) = ~ ,  then S ( 2 n , 4 n ) ) ~ ~ ( 1 - ( 1 - 7 ) ” ~ ) ’ .  

Proof. Consider the following regions of the square lattice. 

R ={(x, y) :  I ~ x s 4 n ,  1 c y S 2 n } ,  

X = { ( x , y ) : x = l ,  1 s y s 2 n } ,  

z = {(x, y 1: x = 2n, 1 s y G 2n},  

w = ((x. y ): x = n + 1,152 y sz 2n}, 

w, ={(x, y) :  x = n +  1 , 1  52y G n } ,  

W , = ( ( x ,  y ) : x = n + l , n + l < y s z 2 n ) ,  

U, = {(x, y ): n + 1 G x 4 3 n, y = l}, 

U ,  = {(x, y ) :  n + 1 G x 6 3n, y = 2n}, 

s ,  = ((x, y ): 1 G x c 2n, 1 s y G 2n}, 

S = {(x, y): n t 1 G x 3n, 1 y 4 2n}. 
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Fig. 1. 

We illustrate the situation in Fig. 1. 

Now for any subset of vertices A of 3' let A' be defined by 

Af=((4n+1-x,  y): (x, Y ) E A ) .  

so that for example 

W = { ( x , y ) :  x = 3 n , l s y s 2 n } ,  

X ' = { ( x ,  y ) : x = 4 n ,  l s y s 2 n j ,  

S : = { ( x , y ) : 2 n + l ~ x ~ 4 n ,  l S y s 2 n )  

Consider now the events Al,  A,, A, of 0 defined by 

s 
A , = { w :  W- W'} 

A, = { w :  there is an open path from X to Z in S, which 
meets an open path from U, to U2 in S}, 

A, = { w :  there is an open path from X' to 2' in S ;  
which meets an open path from U ,  to U, in S}. 

Then since A,, A,, A, are monotone in the same sense they are covariant and 
since also 

R 
A ,  f l  A, f l  A, c { X -  X'j, 

we have 
~ ( 2 n ,  4 n ) = = ~ ( ~ ,  n ~ , n ~ , )  

== P(Al)(P(A,))2 

= S(2n, 2n)(P(A,)),. 

We now consider P(A,) .  We wish to show 

P(A,)  3 (1 - (1 - T ) ' " ) ~ .  

Let (Pi: 1 S i S k )  be the collection of paths in S, which join X to 2 and which 
have the additional property that their last point Qi of intersection with W is a 
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point of W,. For 1 c is k let F, be the section of P, from 0, to 2. Then each F, is 
a path from W, to 2. 

Let X ,  be the event that there is an open path in S from F, to U, which uses 
only one vertex of F, and no vertex of F:. Let X :  be the event that there is an 
open path in S from F: to U2 which uses only one vertex of F: and no vertex of 

Now the set of points F, U F: separates U ,  from U, in S.  Hence if there is an 
Ft- 

open path in S from U ,  to U, then either X, or X:  occurs. Hence 

S 
P ( X ,  u x:) t P( U ,  - U,) 

= S(2n, 2 n )  = 7. 

But X,,  X :  are covariant, and by symmetry have equal probabilities; hence by 
Lemma 3.2, 

P(x,) = P( x:) 2 1 - J( 1 - 7).  

Let us now fix i and consider the three events, 

B, = By'= { w :  path P, is open}, 

B, = B:"' = { w :  for each j #  i such that P, lies in the 
region bounded by P, and y = 1, P, is not open}, 

B,  = B$) = x,. 

We assert 

P ( B ,  n B,n B,) a (1  -J(i - T))P(B, n B,). 

P ( B ,  n B, n B3) = P(B, n B3 I B, )P(B , ) ,  

For 

and if B ,  occurs, then the occurrence of &.depends only on the state of the edges 
of 2 strictly below Pi in S , ,  and the occurrence of B, depends only on the state of 
edges strictly above F, U F: in S. Since these two sets of edges are disjoint 

P(B,  n B, I B,) = P(B2 I B, )P(B ,  I B,).  

Hence 
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Now consider the event C that at least one of the Pi is open. Let {pi: 1 i k )  
be the collection of paths in S, which join X to 2 and which have the property that 
their last point of intersection with W is a point of W,. 

The event C that at least one of the pi is open is covariant with C and by 
symme try 

P(C) = P(C).  

Also P(CU C) = S(2n, 2 n )  = 7 so that by Lemma 5.1, 

P ( C ) a  l-d(l-7),  

and 

P(BY'nB2'for some i)>(l--J(l-~))~ 

Let E ,  be the event that there is a point w E W, such that 

.s , P 7 

w* x, W J  u,, w* 2. 

Let E2 be the event that there is a point D E  W, such that 

s ,  S s 
D d X ,  v-+ ul, U J Z .  

Now 

El n E ~ c  A2 

and hence the proof of Lemma 5.2 is complete if we show that 

P (  El n E,) 3 ( 1 - J( 1 - T ) ) ~ .  
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But E, ,  E, are covariant and by symmetry 

P(Ei)  = P(E2). 

Hence it is enough to show that 

P ( E , )  3 (1 - J( 1 - 7 ) ) 2 .  

But (by drawing a picture) E ,  occurs if,  for some i, P, is open and F, is joined to 
U2 by an open path in S. That is 

P ( E J  3 P u (B:"n ~ $ 1 ) ) .  L 
Thus with (16) we have the required result. 

Lemma 5.3. S(2n, 6n)>[S(2n, 2n)I3 ( l - J ( l -S (2n ,  2n)))16 

Proof. Consider the following regions of 2 (see Fig. 2): 
U = {( x, y ): y = 2n, 2 n + 1 < x S 4n}, 
V = {(x, y ): y = 1 , 2  n + 1 S x s 4n}, 
S={(x, y): 2 n + l S x s 4 n ,  l S y < 2 n } ,  
R = {(x, y): 1 =S x G 6n, 1 s y =S 2n}, 
x ={x, y) :  x = 1,1 =s y s2n} ,  
2 = {(x, y): x = 2n, 1 G y S 2 4 ,  
W = {(x, y ): x = 4n, 1 s y s 2n}, 
Y = {(x, y): x = 6n, 1 s y 6 2n}. 

Let 
R 

A = { w :  X -  W), 

R 
B = { o :  2- Y},  

C = { w :  u: V}. 

Then 
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and since A, B, C are monotone in the same sense and hence covariant we have 

= [S(2n, 4n)I2S(2n, 2n). 

which with Lemma 5.2 proves the result. 

Let R(n)  be the annulus of the square lattice 9 shown in Fig. 2 bounded by the 
squares C,,, D,, where C,, consists of the lines 

y=-3n+1,  x=3n,  y=3n,  x=-3n+1 

and 0, consists of the lines 

y=-n,  x = n + l ,  y = n + l ,  x = - n .  

Lemma 5.4. The probability that there is an open cycle around the annulus R ( n ) ,  
that is a cycle of open edges encircling the square D, and encircled by C,, is at least 

~ ( 2 ~ ,  2n)12(1 -d(i - ~ ( 2 ~ ,  2n)))64. 

Proof. Let A, B, C, D be the regions of R(n)  defined as follows (see Fig. 3): 

A =((x, y ) :  -3n+ 1 < x  < -n, -3n + 1 s y <3n},  
B = {(x, y ) :  -3 n + 1 s x s 3 n, -3 n + 1 =G y =Z -n}, 
C={(x,  y ) :  n + l S x = G 3 n , - 3 n + l c y ~ 3 n } ,  
D ={(x, y ) :  -3n+ 16.x ~ 3 n ,  n +  1 4  y ~ 3 n ) .  

X = { ( x ,  y ) :  - 3n+lsx=G-n ,  y=-3n+1},  
X’ = {(x, y ) :  -3n + 1 s x s -n, y = 3n}, 
Y={(x ,  y ) :  x=-3n+1,  n + l < y < 3 n } ,  
Y = {(x, y ) :  x = 3n, n + 1 6 y s 3 n}, 
U = { ( x ,  y ) :  x = -3n + 1, -3n + 1 s y =s -n}, 
U’ = {(x, y ) :  x = 3 n, -3 n + 1 s y s -n}, 
W = { ( x , y ) :  n + l ~ x ~ 3 n , y = - 3 n + I } ,  
W’={(x,  y ) :  n + l c x s 3 n ,  y=3n}.  

Let 

Then if F, is the event that there is an open cycle around R ( n )  we have 

A 

F , , ~ { x +  x’}n{u: u’)n{w-S, w~}n{YfL,y~}. 

Now the events on the right hand side are monotone in the same sense and thus 
covariant and each has probability S(2n,  6n) ,  so that 

P(F,,) 2 (S(2n, 

which with Lemma 5.3 proves Lemma 5.4. 
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4 b - - - - - - -  I -n , -n)  I n + l , - n )  

! I  I 

I 

I T  

Lemma 5.5. If p < 1 -pH, then S(n,  n )  exists and is zero, in other words 

Proof. If p < 1 -pH, then q > pH so that there is a positive probability of an 
infinite closed path from the origin in the dual lattice 3*. Suppose that for some 
E > O ,  S(n,  n ) > 8 E  for infinitely many n. Choose n,, n 2 , .  . . so that R(n, ) ,  
R(n,), . . . , are disjoint annuli and S(2ni ,  2 q ) >  E for each i. This is possible by 

Now by Lemma 5.4, the probability that there is an open path around R(ni)  is 
(14). 

at least 

€I2(  1 - J( 1 - €)y4 
for each i. Since the disjointness of the R(ni) makes these events independent, the 
Borel-Cantelli lemmas imply that with probability one there can be no closed 
infinite path from the origin in S*. Thus we have a contradiction. 

Lemma 5.6. If E > 0 and p 3 pr, then for infinitely many values of n, 

( 1  - ~ ( 2 n ,  2n))12(1 - J s ( 2 n ,  2 n ) ) 6 4 4 + ~ .  

In other words if  p ah, then lim sup,, S(2n,  2 n )  3 6, where 6 is a little bit 
bigger than 5 X 

Proof. Suppose the lemma is false, and choose N so that for all n s 3 N  the 
inequality fails. Now by Theorem 4.1 if 4 = 1 - p ,  

Sq(2n, 2 n ) a  Sq(2n - 1 , 2 n  + 1) = 1 -Sp(2n ,  2n). 
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Hence by Lemma 5.4 if 3' 3 3N then the probability that there is a closed cycle 
around the annulus R(3') is at least $+ E .  

Hence by the duality theory of graphs the probability of the event 0, that in 2* 
there is an open path from the origin through R(3') is not more than 6-6. 

If the number of points in 2* which are wet by a source at the origin is G, 
then we have 

G4X332N+ c 4x3*N(4-€)n--N 
t=N 

<a 

which contradicts p 3 pT. 
As our final corollary note that from Lemma 5.6 we know that 

p > p T j  lim sup Sn (p) 3 6 > 0, 
n-- 

whereas if p < fi then 

lim S,,(p) = 0. 
n-w 

Hence we have shown that even if Conjecture 4.2 is true and limn-- S , ( p )  exists 
and equals S ( p )  say, then S ( p )  must be a discontinuous function of p. 

Note also that our proof gives the result (13) and we can sum up the situation 
with the set of inequalities 

0.353210 spT=zpsS$ s p H s  0.646790 (17) 

which with Lemma 5.5 imply that for p > 0.646790, 

lim Sn(p) = 1.  
n-m 
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