The Statistical Tests

We can cast the second plank in the general context of predictive modeling. Consider a forecaster who
places estimates {q J-} on the true probabilities { Pi} of various events. In the quantum case, the P; come
from distributions in D ; -, where the [ that applies to the latter sampling stage can be estimated
based on the size and depth of (. The §; come from the physical quantum device—that is to say, from
the strings z that it outputs. What's needed is to compute the corresponding outcome probability ¢
analytically based on the given circuit (. This must be done classically, and incurs the “7 i-versus-7""

issue discussed above. [See Addendum below.]

But before we get to that issue, let’s say more from the viewpoint of predictive modeling. We measure
how well the forecasts {; conform to the true P; by applying a prediction scoring rule. If outcome ;

happens, then the log-likelihood rule assesses a penalty of

L= log(l).
qi

This is zero if the outcome was predicted with certainty but goes to infinity if the individual g; is very low

—which is an issue in the quantum case. The expected score based on the true probabilities is

1
E[Li] =" pilog( q—_)- (2)
: 1
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The log-likelihood rule is strictly proper insofar as the unique way to minimize F/[L;|is to setq; = p;
for each ;. In human contexts this means the model has incentive to be as accurate as possible. For the
quantum device, knowing the [ that applies to its running of circuits (' suffices to caleulate [/|L;|as

“F/y+ p.” and hence to benchmark how accurately the device is conforming to the target.

The formula (2) is the cross-entropy between the " and @' distributions. It is advocated in several
predecessor papers on quantum supremacy experiments, but in fact the team shifted to something
simpler they call “linear cross-entropy.” They simply show that the ¢ from their samples collectively

beat the “ ;" that applies to 7;—more simply put, that when summed over 7T-many trials 2¢,

1 « 1
t=1
This just boils down to giving a z-score based on the modeling for ;. It is analogous to how I (Ken
writing this) test for cheating at chess. We are flagging the physical device as getting surreptitious input
from quantum to achieve a strength of | 4 § compared to a “classical player” who is “rated” as having
strength 1.



The difference from showing that the device’s score from (2) is within a hair of [}, - is that this is
based on [/|. To be sure, the paper shows that their z-scores conform to those one would expect an

“ [y + p-rated” device to achieve. But this is still not the same as (2). Whether it is tantamount for
enough purposes—including the theorem about AN —is where were most unsure, and we note
distinctions between fully (classically) sampling and “spoofing” the statistical tests(s) raised by Scott
(including directly in reply to me here) and others. The authors say that using “linear cross-entropy”
gave sharper results and that they tried other (unspecified) measures. We wonder how much of the
space of scoring rules familiar in predictive modeling has been tried, and whether rules having more

gentle tail behavior for tiny ¢; than [; might do better.

Finally, there is the issue that the team were able to verify ; exactly only for circuits up to 43 qubits
and/or with 14 levels, not 53 with 2() levels. This creates a dilemma in that IBM’s paper may push them
toward 1, = G() or 7(), but that increases the gap from instance sizes they can verify. This also pushes
away from the possibly of observing the D, i nature of )~ more directly by finding repeated strings z
in the second-stage sampling of a fixed (. The “birthday paradox” threshold for repeats is roughly 9r/2
samples, which might be feasible for 17 around 5() (given the classical work needed for each z, which
IBM’s cleverness might speed) but not above (). The distinguishing power of repeats drops further with
. We intend to say more about these last few points, and we are sure there are many chapters still to

write about supremacy experiments.

Addendum 10/28: On further review, the “outcome probability” of a string z comes from first
exhaustivelv computing the probability 7, that would result from error-free operation of (' and plugging
that in to make F'r, + (1 - F ) % Although derived from the estimate of [' and taking z from the
device, this seems better to regard as the “true probability” Pz, rather than “G,” as stated above. The
actual quantity to regard as “(;” is not calculable and estimating it would require observing repeats from
the physical device. Equation (2) remains correct on principle, but as explained in these notes by Ryan

O’Donnell, the reversed equation is used instead:
1 .
E[L] =Y g.log(—). (2)
> Pz

The difference is that lt)g ( pi) can be calculated, and while @ still cannot be, the act of sampling from
the physical device estimate§ the idealized sum Z?— i ]L)g( PA} closely enough. This switches the roles of
“forecaster” and “forecastee,” but the optimality of ¢, = P remains valid and the target value is the
same as before. O'Donnell calls this inversion “slightly dicey™ but (i) it was ultimately not used anyway,
(ii) has an interpretation that regards the physical device as the ground truth, and (iii) may be equally

amenable to asymptotic conditional hardness results. Likewise “q-,” should be re-named as “P;,” in (3).]



