
7 Appendix - Further discussion of provably recursivefunctionsIn this appendix we discuss some di�culties related to Lemma 5 (in section 3.1). In par-ticular, we explain why can't we use this lemma to conclude that PA1 ` P 6= NP i�PA ` P 6= NP . To demonstrate these di�culties, consider the following algorithm (whichwe denote by A), that is a variation of the algorithm in example 1:On input x, if x is a code of a proof in PA of a contradiction - reject x.Otherwise - enter an in�nite loop.Clearly, since PA is consistent, then A halts on every input. Moreover, we can bound itsrunning time by, say, n3. (the time that takes to verify that x is not a code of a contradictionproof). Let us now de�ne the function EXECA:EXECA(x) = the �rst (and only) y s.t. jyj � jxj3;and y is (a coding of) an accepting execution of A on x.Since the claim: \8x 9y of length � jxj3 s.t. y is (a coding of) an accepting execution of Aon x"is a �1 formula that is true in N , then PA1 ` \EXECA is a complete function". A non-careful usage of lemma 4, would lead to the conclusion that PA ` \EXECA is a completefunction", and hencePA ` \PA is consistent", which is a contradiction to Godel's second theorem [Go31].The catch here lies in the de�nition of the term \provably recursive function". Let usrecall that f is provably recursive in PA i� there exists an algorithm Af that computes f ,s.t. PA ` Af halt on every input. The de�nition says nothing about the ability of PA toprove that Af computes f . In the above example, one can easily design an algorithm thatcomputes EXECA, s.t. PA can prove its totality. But then, PA will not be able to provethat this algorithm computes EXECA.Back to our business, assume that PA1 ` P 6= NP , then - by theorem 4 - RPSAT isdominated by F� for some � � �0. Consider the following algorithm (which we denote byB): On input x, if RPSAT (jxj) � F�(jxj) - return RPSAT (jxj)otherwise - return 01. Clearly, B halts on every input. We can even bound the running time of B by F�(n)�nlogF�(n) � 2n+1. Since PA ` \F� is complete" then PA ` \B halts on every input".2. By our assumption, 8x;RPSAT(jxj) � F�(jxj), So B really computes RPSAT (jxj).From 1 and 2 we conclude that, by de�nition, RPSAT is provably recursive in PA. Still thisdoes not mean that PA ` \RPSAT is complete", since we did not show that PA ` \B computesRPSAT . Consequently, we do not know how to prove, that in such a case, PA ` P 6= NP .18

[Sm83] Smorynski C., \'Big' News from Archimedes to Friedman", Notice of AmericanSociety, Vol 30. (1983), 251-256.[Sm77] Smorynski C., "The Incompleteness theorem", Handbook of mathematical logic,J.Barwise ed., North-Holland, New-York (1977), 821-865.[Wa70] Wainer S.S. \A Classi�cation of Ordinal Recursive Functions." Arch. Math Logic,13 (1970), 136-153.

17

[Go31] Godel K., \Uber formal unentscheidbare Satze der Principia Mathematica undverwandter Systeme I", ibid., Vol. 38, (1931), 173-198.[GRS90] Graham R.L., Rothschild B.L., and Spencer J.H, "Ramsey theory", A Wiley-Interscience Publication (1990)[HH76] Hartmanis J., Hopcroft J.E., \Independence results in computer science", SIGACTNews 8,4 (1976), 13-24.[Ha85] Hartmanis J., "Independence results about Context Free Languages and lowerbounds", Information processing Letters 20 (1985) 241-248.[JY81] Joseph D., Young P.,\Independence results in computer science?", J.Compute.System.Sci. 23 (1981),311-338.[JY85] Joseph D., Young P., \A survey of some recent results on computational complexityin weak theories of arithmetic", Fundamentica Informatica 8, (1985), 104-121.[Kr52] Kreisel G., \On the concepts of completeness and interpretation of formal systems",FM, Vol. 39, (1952), 103-127.[KM81] Krishnamurthy B., and Moll R.N., "Examples of Hard Tautologies in PropositionalCalculus", Proceedings of 13'th STOC (1981) 28-37.[KOR87] Kurtz S. A., O'donnell M. J., and Royer J. S., \How to Prove Representation-Independent Independence Results", Information Processing Letters 24 (1987) 5-10.[Ku80] Kunen K., "Set theory", North-Holland (1980).[Le82] Leivant D., "Unprovability of Theorems of Complexity Theory in Weak NumberTheories", Theoretical Computer Science 18 (1982) 259-268.[Li78] Lipton R.J., \Model theoretic aspects of computational complexity", FOCUS 19(1978), 193-200.[LN88] Loebl M., and Nesetril J., "Linearity and Unprovability of Set Union ProblemStrategies" Proceedings of 20'th STOC 1988 360-366.[Ly75] Lynch N., "On reducibility to complex or sparse sets", Journal of Association forComputing machinery, Vol. 22, No. 3, (1975), 341-345.[PH77] Paris J., and Harrington L., \A mathematical incompleteness in Peano arithmetic",Handbook of mathematical logic, J.Barwise ed., North-Holland, New-York (1977),1133-1142.[Sm80] Smorynski C., \Some rapidly growing functions", Mathematical intelligencer 2(1980), 149-154. 16

2. n �! (l)rk denotes the claim: For every function F from the r-subsets of f1; 2; : : : ; ngto a set of size k, there exists a large subset S � f1; 2; : : : ; ng of cardinality at least l,such that F is constant on the r subsets of S.Example: Let us de�ne the languageLPH = f< 1k; 0n >: n �! (k + 1)kkg1. The following is an immediate consequence of Theorem 3:2 of Paris and Harrington[PH77]: PA 6` \fk : 9n(< 1k; 0n >2 LPH)g is infinite\In particular, PA 6` \LPH is not regular".2. A standard pumping argument shows that LPH is not a Context Free Language.3. It can be shown that LPH 2 Co�NP6 AcknowledgmentsWe wish to thank Michal Dvir, her M.Sc. thesis (under the �rst author`s supervision), hasacquainted us with the ideas and techniques of proof theory that underline this research.We also owe a lot to Menachem Magidor for a very insightful discussion at an early stage ofthis work. We also thank Janos Makowsky for his inspiring interest in the applications ofModel-Theory to Computer Science.References[Be92] Ben-David S., "Can Finite Samples Detect Singularities of Real-Valued Func-tions?". To appear in Proceedings of STOC`92.[BD91] Ben-David S., and Dvir M., "Non-Standard Models for Independent ArithmeticalStatements", Technical Report, Technion, (1991)[BI87] Blum M., and Impagliazzo R., \Generic Oracles and Oracle Classes", 28`th Sym-posium on Foundations of Computer Science, (1987),118-126.[Bo74] Book R.V., "Tally languages and complexity classes", Information and Control,26, (1974), 186-193.[Co63] Cohen P.J., \The independence of the continuum hypothesis", Proceeding of theNational Academy of Science, USA 50, 1143-1148 (1963)[FLO83] Fortune S., Leivant D., O'donnel M., \The Expressiveness of Simple and Second-Order Type Structures", Journal of the Association for Computing Machinery, Vol.30, No. 1 (1983), 151-185. 15

Theorem 13:1. For every f there exists a language Df , computable in f , such that both Df and its com-plement �Df are f-meager. (Furthermore, for every recursive f there exists a recursivef 0 that dominates f such that Df 0 is computable in lineartime and in logspace).2. If D is f-meager then so is L \D for every L.3. For every meager language L, the statement \L is not �nite" is not provable in PA1.4. For every language L there exists a partition L = L0 [L1 such that neither L0 nor L1can be proved to be in�nite within the framework of Peano Arithmetic. (Furthermore,each of L0; L1 is computable from L in lineartime and logspace).Proof: The theorem easily follows from the proof of Theorem 4.4 of [KOR87].The following corollary is implicit in [KOR87]. In their Theorem 4.4 they could have alsostated that the language L0 they de�ne, the language that the theory cannot prove to bein�nite, is actually outside the complexity class S.Corollary 14: There exist arbitrarily complex languages such that PA1 cannot prove thatthey are not �nite languages.Let us conclude this section by demonstrating an inherent `easiness' property of meagerlanguages, namely, that using such a language as an oracle cannot signi�cantly speed up anycomputation.Lemma 11: Let G be a meager language. If for a standard language L and an SCFf , PA1 `\L =2 DTIME(f)" then, PA1 cannot prove that an Oracle Turing Machine cancompute L in time f using G as an oracle.Note that by our main results, if the negation of a statement L 2 DTIME(f) is not provablein PA1, then the statement itself is true (semantically) in N (up to adding the inverse ofany Wainer function to f).Let us also remark that, as any generic oracle (in the sense of Blum-Impagliazzo [BI87])is necessarily a meager language, the last lemma o�ers an easy proof to to their Theorem1:5.5.1 A concrete example of non-provabilityLet us demonstrate the emergence of non-provability of a lower bound, by translating theParis Harrington version of Ramsey Theorem into a decision problem of a binary language.For more on this theorem see [GRS90].De�nition 11:1. A set S � N is large if its cardinality is bigger than its �rst element.14

5 Meager LanguagesTo help focusing on the source of non-provability of complexity statements, we introduce thenotion of Meager Languages. Our notion of meager languages is quite similar to [KOR87]'snotion of an emaciated subset of N . Somewhat like Sparse sets [Ly75] and Tally sets [Bo74],meager languages combine some inherent 'easiness' properties with the possibility of beingarbitrarily complex. We shall show that on one hand, there are arbitrarily complex languagesthat are meager, while on the other hand, (all) meager languages are minimal elements inthe lattice of Turing reducibility (i.e. they are useless as oracles).Our interest in meager languages is mainly due to the phenomena they exhibit withrespect to formal provability: If L is a meager language, then the statement \L is in�nite"is not provable in PA (as well as in PA1).De�nition 9: Let f : N ! N be a function such that f(n) > n for all n. We call alanguage L f-meager if, for in�nitely many n's, any string in L is either shorter than n orlonger than f(n).intuitively speaking, meager languages are languages that in�nitely often skip big chunks oflengths, avoiding all strings of such skipped lengths.De�nition 10:1. A language L is meager if it is f-meager for every f in the Wainer hierarchy - fF� :� < �0g.2. For a class C we say that a language L is C-meager if there exists some L0 2 C suchthat the symmetric di�erence L4 L0 = fx : L(x) 6= L0(x)g is meager.Claim 1:1. De�ne a function ML(n) def= `the n'th i for which LT�i 6= �'. A recursive L is meageri� ML is not provably recursive.2. If a class C is closed under complementation then so is the class of all C-meagerlanguages.It appears that there is a strong connection between the notion of C-meagerness and prov-ability:Lemma 10: For every function g, let us denote DTIME(ng(n)) by Cg. PA1 6` P 6= NP ifand only if SAT is Cg-meager for every S.C.F g.Proof: By theorem 4, PA1 6` P 6= NP i� RPSAT is not dominated by Wainer hierarchy.By Lemma 2, if h is an S.C.F. and R isn't dominated by the hierarchy then for every f inthe hierarchy, there exists in�nitely many n's s.t. 8n � m � f(n); R�1(n) � h(n).Let A be the algorithm of lemma 7 (for computing SAT), and let A` be a similar al-gorithm, with running time bounded by ng(n), then L(A`)4SAT is meager i� RPSAT is notdominated by the Wainer hierarchy.Following [KOR87], we apply the above characterization of non-provability to prove theexistence of wide class on languages whose best provable lower bounds lie far below theirtrue worst case complexity. 13

4.2 Existence of One Way FunctionsIn this section, we consider the implications of our main theorem to the existence of one-way-functions. We use a slight variation of the common de�nitions of one-way-functions:De�nition 8: Let f be a function that is computable in polynomial time.1. Let g be any S.C.F. We say the f is a g-one-way-function in the (non-)uniform for-mulation if 8 deterministic (non-uniform) algorithm A in DTIME(ng(n)) (NU(ng(n))) 9 N such that 8n > N 9x 2 f0; 1gn for which f(A(x)) 6= x2. We say the f is a (non-)uniform one-way-function if there exists a S.C.F. g s.t. f isa (non-)uniform g-one-way-function.Note that our de�nitions are weaker then the usual ones, in that we only demand thatdeterministic (non-uniform) algorithm will fail reversing f(x) on at least one input of everylength. On the other hand, it is stronger then the usual one in that we demand not onlythat every polynomial algorithm can't reverse f , but also the existence of a super-polynomialfunction h such that every algorithm in DTIME(h) (NU(h)) fail to do so.As an immediate corollary, from the above discussion, we get:Corollary 11: If PA1 6` P 6= NP then uniform one-way-functions do not exist.Proof: Let f be a function that is computable in polynomial time, and let g be a S.C.F.We denote RPSAT by R. By theorem 3, SAT is solvable by a deterministic algorithm withcomplexity n(1+log(R�1(n)) � R�1(n). Since f is computable in polynomial time, then theproblem of inverting f is clearly in NP . (A nondeterministic TM can, on input y, simplyguess x and then compute f(x) and see if it equals y). Thus, the problem of inverting f isreducible to SAT. This means that 9 deterministic algorithmM that inverts f and works intime complexity of T (n) = nk[1+log(R�1(nk)] �R�1(nk) for some k.Since g is a standard complexity function, then so is the function h(n) = 2 12k g(logn). Bytheorem 4, if PA1 6` P 6= NP then A is not dominated by Wainer hierarchy, and by claim 1there exists in�nitely many n's s.t.R�1(nk) < h(nk) = 2 12k g(lognk)and thus 2k log(R�1(nk)) < g(log nk) < g(n)Since for big enough n's hold k[1 + log(R�1(nk))] + log(R�1(nk))logn < 2k log(R�1(nk))Then there are in�nity many n's s.t. k[1 + log(R�1(nk))] + log(R�1(nk))logn < g(n)hence T (n) = nk[1+log(R�1(nk)] �R�1(nk) < ng(n)This means that an algorithm that works like M , but halt after at most ng(n) steps, willsucceed in inverting f for in�nity many lengths, and thus, f is not a g-one-way-function.We can prove a similar corollary for the non-uniform case as well:Corollary 12: If PA1 6` SAT =2 NU(P) then non-uniform one-way-functions do not exist.12

Note that the intervals in the corollary are the same for all languages in NP .Proof: Let L be any language in NP . Since L has a polynomial reduction to SAT , thenthere is a polynomial algorithm translating inputs to L of length n, to inputs to SAT oflength at most Q(n) for some polynomial Q. By the above discussion, under the assumptionsof the corollary, SAT has in�nitely many easy intervals. Furthermore, applying Lemma 2again, it can be seen that there exist (in�nitely many) such intervals of the form [n;A(A(n))].It follows that for big enough n's (for which Q(n) < A(n)) the intervals [n;A(n)] are 'easy'for L.Krishnamurthy and Moll show in [KM81] an example of in�nitely many tautologies thatare probably hard instances for SAT . These tautologies appear too frequently to avoid our`easy intervals'. Therefore, assuming their tautologies are hard (say,
(n�(n))), there is noproof for the independence of P 6= NP .4.1 Provability in the Non-Uniform modelWe now turn our attention to provability of questions in the Non-Uniform Circuit complexitymodel. First we consider a family of non-uniform complexity classes, for which we can showa surprisingly strong result:Theorem 8: Let L be any standard language and let f be any standard complexity function.1. If L =2 Non-Uniform-size(f) (NU(f)) then PA ` L =2 NU(f).2. If L 2 NU(f) then PA1 ` L 2 NU(f).Proof:1. if L =2 NU(f), there exists an integer n s.t. for every boolean circuit Cn that has atmost f(n) gates, there is an input x of length n, s.t. Cn(x) 6= L(x). The last claim canbe stated as an existential formula. It is known that every existential formula that istrue in N can be proved by PA, and hence L =2 NU(f) is provable in PA.2. If L 2 NU(f) then for every n there is a circuit Cn of size � f(n) s.t. for every inputx 2 f0; 1gn holds Cn(x) = L(x). This is a �1 statement that is true in N , and hence -it is provable in PA1.Things are not that easy when we deal with NU complexity classes that are not de�nedby a single function, such as Non-Uniform-P (NU(P)). In this case, we use the non-uniformapproximation rate to state a theorem, and a corollary similar to theorem 4, and corollary6.Theorem 9: PA1 ` "SAT =2 NU(P)" if and only if there is a function in Wainer hierarchythat dominates NRPSAT .Corollary 10 : If it is provable (in any method known today) that SAT =2 NU(P) isindependent of PA, then SAT 2 NU(nf�1(n)), where f is not dominated by Wainer hierarchy.The proof is similar to the proof of theorem 4 and corollary 6.11

Proof:If: Suppose there is a function g in the hierarchy that dominates RPSAT . By the de�nitionof the approximation-rate, 8i 9x of length � RPSAT (i) s.t. Mi(x) 6= SAT (x). Since for allsu�ciently large i, RPSAT (i) < g(i), and by lemma 1, such g is provably recursive, then theclaim: 8i9x s:t: l(x) < g(i) and Mi(x) 6= SAT (x)is a �1 formula, being true in N it is therefore provable in PA1.Only-if: If RPSAT is not total then, by Lemma 7, P = NP . In such a case, the soundnessof PA1 prevents it from proving the inequality. So assume RPSAT is a total function. If itisn't dominated by any function in Wainer hierarchy, then by Lemma 1, PA1 6` \RPSAT iscomplete". By Lemma 7, this implies that PA1 6` \P 6= NP".Since we didn't use any special properties of SAT or P in the last proof, we can apply thesame proof for every language and every complexity class.Theorem 5: Let C be any standard complexity class and let L be any standard language:PA1 ` "L =2 C" if and only if RCL is dominated by Wainer hierarchy.Corollary 6: If it is provable (in any method known today) that P 6= NP is independentof PA, then the search problem of SAT (i.e. on input x 2 SAT , �nd an assignment thatsatis�es x) is in DTIME(nf�1(n)), where f is not dominated by Wainer hierarchy.Proof: By corollary 3 (Section 3.1), if it is provable that P 6= NP is independent ofPA then it is also independent of PA1. By theorem 4, this means that the approximationrate of SAT to P , (which we denote by f), is not dominated by any function in Wainerhierarchy. Since we know that x 2 SAT , we can use the algorithm of lemma 7 withoutcomputing f�1(n) in advance. By the argument of lemma 7, the search problem is solvablein deterministic time TA(n) = f�1(n)� n[1+log(f�1(n))] � nf�1(n).InterpretationTo appreciate the signi�cance of the last corollary, note that f�1 is constant on any intervalof the form f(n); f(n) + 1; f(n) + 2; : : : ; f(n + 1). By Lemma 2 this implies that, for an fas implied by the corollary, nf�1(n) is in�nitely often bounded (from above) throughout verylong intervals by, say, n�(n) (where �(n) is the inverse of the Ackermann function A(n)). Wecall such an interval - an 'easy interval' for SAT .Could it be the case that SAT is easy on (in�nitely many) long stretches of n`s and yetit has in�nitely many hard instances?An indication to the implausibility of such a situation is demonstrated by the following:Corollary 7: If it is provable (in any method known today) that P 6= NP is independentof PA, then there exists in�nitely many intervals of the form [n, A(n)], such that for everylanguage L 2 NP all these intervals (except, perhaps, �nite number of them) are 'easyintervals' for L. 10

Lemma 7: For every language L and every class C, RCL is a total function i� L =2 C.In particular - we'll consider the approximation rate of P by SAT . Let us pick a standardenumeration fM̂i : i 2 Ng satisfying:1. The function DESC(i) = M̂i can be computed in linear time.2. For every i, Mi runs at most nlog i steps on every input.Lemma 8: Let us denote the approximation rate of SAT by P (RPSAT) by R. If R�1 isbounded by some easily computed function g, then SAT is in DTIME(n[1+log g(n)] � g(n)).Proof: Consider the following algorithm:for i := 1 to g(jxj) do beginCompute M̂i ; Use a simulation of Mi as a SAT -oracle to �nd a satisfying as-signment for x; If you �nd one - accept x.endreject x.Since R is the approximation rate of SAT to P , we don't have to check more then R�1(n) �g(n) TMs until we �nd one that gives right answer on every input of length � n. For i � g(n)Mi runs for at most nlog g(n) steps, and we call eachMi at most n times, so the whole processends within n[1+log g(n)] � g(n) many steps.The following is a natural extension of the notion of approximation rate to the contextof Non-Uniform circuit complexity.De�nition 7 : Let C = SkNU(fk) (where NU(fk) denotes the class Non-Uniform-size(fk)), and let L be a language. The non-uniform approximation rate of L by C is thefunction:NRCL (i) = maxj�ifminfn : 8 circuit C of size � fj(n); 9 x 2 f0; 1gn s:t: L(x) 6= C(x))ggLemma 9: If C = SkNU(fk) and L is a language for which NRCL = g(n) then, L is inNU(f1+g�1(n)(n)).For an example -let Non-Uniform(P) = Sk NU(nk) and let us denote by g the functionNRPSAT , then SAT is in NU(n1+g�1(n)).4 The Main ResultsTheorem 4: PA1 ` P 6= NP if and only if there exists F� for � < �0 in the Wainerhierarchy, that dominates the approximation rate of SAT to P (RPSAT).9

Well, all this is very nice, but why should we care about provability in a non-recursivetheory? Of course, whenever we show that some statement is not provable in PA1 we alsoget its non-provability in PA. The distinctive virtue of PA1 is that, for a signi�cant class ofproperties, the above implication can be also reversed. This is manifested by the followinglemmas. Both lemmas are part of the folklore of proof theory. [FLO83] present a proof ofthe next lemma and attribute it to G. Kreisel.Lemma 5: 6 A function is provably recursive in PA1 if and only if it is provably recursivein PA.Lemma 6: For a relational structure M let �1(M) denote f : is a �1 formula thatholds true in Mg. If the non-provability of a statement � relative to a theory T can bedemonstrated by starting with a model M of T in which � holds and constructing a submodelin which :� holds, then � is also unprovable in T S�1(M).Any known technique for proving independence from su�ciently strong theories of state-ments that are neither self-referential nor inherently proof-theoretic, meets the assumptionsof Lemma 6.Corollary 3: Any independence result from PA or from ZFC obtained through any ofthe approaches currently known, can be extended to an independence result relative to thattheory augmented with all true �1 statements.3.2 Approximating a Language by a Complexity ClassIn order to characterize non-provable complexity statements, we de�ne a measure of distancebetween a language L, and a complexity class C { the approximation rate of L by C. Wewill show that "L =2 C" is not provable i� the approximation rate of L by C is an extremelyfast growing function. We will also show a close relationship between the approximation rateand worst-case complexity.The idea of approximation rate of a complex language by a class of easier languages isanalogous to the idea of Diophantine approximations to Real numbers by Rationals. Pushingthis analogy further, languages that are outside C but not provably so - resemble Liouvillenumbers. We exploit this idea further in [Be92].De�nition 6: Let L be a language, let C be a complexity class, and let M1;M2; ::: be somecanonical enumeration of C. The approximation rate of L by C, is the function:RCL (i) = maxj�ifminfjxj : L(x) 6=Mj(x)gg(Where jxj denotes the length of the string x).Note that the de�nition of RCL depends upon the canonical enumeration we chose. Just thesame, all the properties of RCL that are relevant to our discussion are invariant with respectto this choice.6Due to a subtle weakness of the de�nition of `provably recursive function', this lemma is not as signi�cantas it may sound. See the Appendix for an elaborated discussion.8

PA1 enjoys a property that guarantees that non-provability phenomena is inherentlydue to the languages in question and not an artifact of their presentation. This propertyis introduced and discussed in [KOR87], they call it Representation Completeness. Let usdemonstrate (and implicitly de�ne) the representation completeness of PA1 by the followingLemma 3 and Corollary 1. First we �rst need some notation.De�nition 5:� A Standard Language is a language L for which the membership relation \x 2 L"is de�nable by a �0 formula - a formula having only bounded (by a function of x)quanti�cations.5� A class of languages, C, is a Standard Complexity Class if there exists an easily com-putable (e.g. linear time) enumeration fM̂i : i 2 Ng where each M̂i is a standard codeof a Turing machine endowed with a provably recursive (relative to PA) upper boundon its running time, such that C = fL(Mi) : i 2 Ng. We call such an enumeration acanonical enumeration for C.Note that `in practice', any language or complexity class one ever comes across complieswith the above de�nition.Lemma 3: Let L be a standard language. If M is a TM whose running time is boundedby some provably recursive f(n), and if L(M) = L then PA1 ` \L(M) = L".Proof: Using standard coding techniques, one can express the claim: \There is a sequenceof successive con�gurations of M , < C1; : : : ; Ck >, with C1 being the starting con�gurationof M on input x and Ck being an accepting �nal con�guration of M" as a formula with freevariables k and x. Thus the claim: \For every x - there is such a sequence of length < f(n)i� x 2 L" can be expressed as a �1 formula, and hence, being a true such formula, is anaxiom of PA1.Corollary 1: IfM1 andM2 are TMs with running time bounded by some provably recursivef(n), then L(M1) = L(M2) if and only if PA1 ` \L(M1) = L(M2)".Corollary 2: If P = NP then PA1 ` \P = NP".This is true because if P = NP then there is a TM M with running time bounded bynk (for some constant k) that recognizes SAT . Let M 0 be a TM similar to M , except thatM 0 has a `clock' that stops it after nk steps (if it didn't stop before). Clearly it is provablein PA1 that M 0 is polynomial. Since SAT is a standard language then, by lemma 2, PA1 `\L(M 0) = SAT", and hence the claim. More generally -Lemma 4: Whenever C is a standard complexity class and L is a standard language,L 2 C if and only if PA1 ` \L 2 C".5As far as the results of this work go, we could have extended the de�nition to allow languages de�nableby �1 formulas as well. But, not being able to come up with a natural example of a language that is not`standard', we feel that �0 is the more natural choice.7

3 Setting - Up the Ground3.1 The Theory PA1The natural, and commonly accepted, formal system for re
ecting �nitistic mathematicalreasoning, is Peano Arithmetic (or, equivalently, Set Theory without the axiom of in�nity).We therefore chose to state our �nal results in terms of provability with respect to PA.3Still, as a working tool, we need a stronger theory, PA1, that we de�ne below.De�nition 4:1. We say that a formula is a �1 formula if it is of the form 8x� where � is a formulain the (�rst order) language of arithmetic and all its quanti�ers are bounded. (Inthe context of higher order logics, such formulas are referred to as �01). By `boundedquanti�ers' we mean quanti�cation of the form 8x < g(y), where g is any provablyrecursive function.42. PA1 is the proof system having PASf� : � is a �1formula that is true in Ng as itsset of axioms. (Here N stands for the standard model of arithmetic).It is not hard to see that PA1 is not recursive (this can be seen, for an example, by notingthat the consistency of PA1 itself can be formalized as a �1 statement). Consequently PA1is not a conceivable candidate for a workable framework for mathematical reasoning.To motivate our use of a non-recursive proof system, consider the following example of anon-provable statement:Example 1: Let T H be any sound and recursive proof system for arithmetic. De�ne analgorithm ATH by:On input x, if x is a code of a proof in T H of a contradiction - reject x.Otherwise - accept x.Let AT H run over binary strings and use L(A) to denote the language accepted by A. AsT H is consistent L(AT H) = f0; 1g�. On the other hand, as Godel's theorem implies thatsuch T H cannot prove its own consistency, T H 6` \L(AT H) = f0; 1g�".This example can be easily modi�ed to produce independence of whichever property thatcomes to mind: The running time of an algorithm, the totality of a function etc. (And, in asense, is not too far from the independence results of [HH76].Clearly, the non-provability exhibited here stems from our very speci�c choice of algo-rithm. The same language, f0; 1g�, can be de�ned by an algorithm that raises no provabilityproblems.3All of our results can be easily translated to similar theorems for any recursive formal system thatextends PA (in particular, to ZFC set theory).4Here we di�er from the common de�nition of �1 formulas [Sm77] that allows only primitive recursivebounds. It is not hard to realize that the relevant proof theoretic results (mainly Lemma 5 below) can bestrengthened to apply for our de�nition. This is shown explicitly in [BD91].6

� If a total recursive function f : N ! N is provably recursive in PA then, for some� < �0, it is dominated by F�.Furthermore, Fortune Leivant and O`donnell [FLO83] prove that the set of functions that areprovably recursive in PA equals that set of functions that can be computed in (deterministic)time, t(n), dominated by some F� in fF� : � < �0g.De�nition 3:� We call f : N ! N a Standard Complexity Function (SCF), if it is provable in PAthat f is total (i.e. de�ned for every i 2 N), monotonic, and unbounded.� For any total monotonic and unbounded f , we de�ne f�1 - the inverse of f - by:f�1(n) def= maxfi : f(i) � ng:Examples of standard complexity functions are f(n) = nk, f(n) = log(n), and f(n) = 2n, aswell the functions fF� : � < �0g in the Wainer hierarchy and their inverses.Lemma 2:If f is a standard complexity function and g is a monotone function that is not dominatedby Wainer hierarchy, then there are in�nitely many n's satisfying:8m [(n < m < A(n)! (g�1(m) < f�1(m); f(m) < g(m))](We have chosen A(n) just for concreteness, the claim remains valid for any bound on mwhich is an SCF function of n)Proof:Let us denote by h the function h(n) = maxf f(n); f�1(n) g. Since both f and f�1are SCF s, then so is h. Let F� be a function in the hierarchy that dominates both h andthe Ackermann Function. Since g is not dominated by Wainer hierarchy, there are in�nitelymany n's satisfying : F�+1(n) < g(n). Note that, for every n > 2, F�(F�(n)) < F�+1(n). Itfollows that for every m that satis�es n < m < A(n):h(m) < h(A(n)) < F�(F�(n)) < F�+1(n) < g(n) < g(m)and therefore, g�1(m) < h�1(m) � f(m) � h(m) < g(m):Note, that we didn't use any special property of A(n) in our proof. The same proof canbe applied for any other SCF function. 5

and only if the approximation rate of L by C is an extremely fast growing function (i.e. notprovably recursive).We conclude the paper by a brief discussion of our notion of a language being extremely-fast-approximable by a class of `easy' languages (say, P). We show that, on one hand, suchlanguages exist in arbitrarily high levels of the worst-case-complexity hierarchy, but on theother hand, these languages are 'easy' for all practical purposes (e.g. cryptography).2 Proof Theoretic BackgroundIn this section we review some basic facts from the proof theory of Arithmetic. We refer thereader to [Sm80, Sm83] for an elaborated and truly enjoyable discussion of this topic.The basic idea goes back to Kreisel [Kr52]. For every recursive formal theory which issound for arithmetic there exist total recursive functions such that the theory cannot provetheir totality. Such functions can be characterized by their rate of growth.Wainer [Wa70] supplies a useful measuring rod for the rate of growth of recursive functions(from natural numbers to natural numbers) - theWainer hierarchy. The Wainer hierarchy isan extension, to in�nite countable ordinal indices, of the more familiar Ackermann hierarchyof functions: F1(n) = 2nFk+1(n) = F (n)k (n)and, for a limit ordinal �,F�(n) = F (n)�n (n)where F (n)k denotes the n0th iterate of Fk and, for each limit ordinal �, f�n : n 2 INg is some�xed recursive sequnce of ordinals increasing to �. The famous Ackermann Function is F! -quite low in this hierarchy.De�nition 1:1. We say that a function f dominates a function g if for all large enough n`s, g(n) <f(n).2. �0 is the �rst ordinal � satisfying !� = �. (The exponentiation here is ordinal ex-ponentiation and �0 turns out to be a countable ordinal - the limit of the sequence!; !!; !!! ; : : :).Note that for every � < �, F� dominates F�. It is also worthwhile to recall that AckermannFunction, F!, dominates all primitive recursive functions.De�nition 2: A function f is provably recursive in a formal theory T if there is an algo-rithm A that computes f for which T proves (using some �xed recursive coding of algorithms)that A halts on every input.Lemma 1: [Wa70]� For every ordinal � < �0, F�, the �`th function in the Wainer hierarchy, is provablyrecursive in PA. 4

of a language L in a class C cannot be decided in our strong system, then L is very closeto members of C (in terms of its worst case complexity function). Focusing on a concreteand well investigated theory, namely PA, allows us to strengthen the easiness condition of[KOR87].We show that the currently known tools for proving independence, are not re�ned enoughto distinguish between our system and the standard Peano Arithmetic. We conclude that,as long as no new proof theoretic method will be employed, proving independence from PAof, say, P 6= NP , would imply the existence of an almost polynomial decision algorithm forSAT .We o�er a new tool for measuring the distance between a language and a complexityclass. We show that it yields precise characterization of provability and that it inhibitssome practically jarring aspects of the worst case measure. The new technique enables us togeneralize our results to the membership problem of any language in any complexity class.1.3 Outline of our proofFor the sake of clarity let us concentrate on the case of provability relative to Peano Arith-metic. Our results can be modi�ed to handle provability relative to other proof systems (inparticular the ZFC axioms of set theory).We augment the Peano Arithmetic axioms with the �1 theory of the natural numbers- the set of all �1 formulas that are true in N (the standard model of arithmetic). 1Let us denote the resulting theory by PA1 and use PA to denote (non-augmented) PeanoArithmetic. PA1 is not a recursive theory and therefore too strong for being considered as aconceivable formalization of mathematical reasoning. Still, it turns out to be a useful tool foranalyzing provability relative to Peano Arithmetic: If a statement � is not provable in PA1then, of course, it is not provable in PA. On the other hand, if � is a natural mathematicalstatement for which \� is independent of PA" is provable in any of the known methods forestablishing such results2, then � is independent of PA1 as well!The next ingredient in our approach comes from the proof theory of Arithmetic. Thebasic idea behind the Paris-Harrington independence proof may be viewed as a `fast growingfunctions' principle. This idea goes back to Kreisel who in [Kr52] proved that, as far asprovability in PA goes, recursive functions having very high rate of growth are not provablytotal. It turns out that the totality of such functions is also independent of PA1. Further-more, we shall show that, any complexity lower-bound statement that is independent of PA1can be represented as a statement of that type (i.e. that some meaningful recursive functionis total).The last component we need is a new way of measuring how close is a given language to acomplexity class. Given a class C of languages and a language L we de�ne the approximationrate of L by C. The central step in this work is theorem 4 stating that PA1 6` \L =2 C" if1Our de�nition of PA1 di�ers slightly from the common de�nition. See section 3:1 for details.2We use the term `a natural mathematical statement' to rule out the conspicuous counter example to ourclaim: By Godels' theorem, the consistency of PA is a true �1 statement that is not provable in PA. Sofar, Godel's type of argument, as well as reductions to this non-provability theorem, have been successfulonly when applied to self-referential or inherently proof-theoretic statements �.3

1.1 Previous WorkPrevious work on this issue can be roughly classi�ed into the following categories:1. Results that are based on self-referential algorithms (or diagonalization). The workof Hartmanis and Hopcroft [HH76] is a central example in this category. Results ofthis type tend to be easily generalizable to any recursive proof system. On the otherhand, as such results can be easily extended to oracle complexity models, they are ofinherently limited range. Rather than referring to the complexity of a language theyrefer to the complexity of a speci�c algorithm or to the complexity of languages inrelativised models of computation.2. Another line of attack , is to show independence of natural problems relative to a weak(and consequently of limited interest) proof systems. The work of Lipton [Li78] Josephand Young [JY81, JY85], and Leivant [Le82] can be viewed as taking this approach.3. More recently, several researchers have succeeded in applying the basic idea behindthe Paris-Harrington result to computer theoretic questions. As shall be elaboratedbelow, once a (recursive) function grows extremely fast, its totality cannot be provedin �nite set theory. Fortune Leivant and O'donnell [FLO83], and Loebl and Nesetril[LN88], have found problems in the areas of Semantics of Programming Languages andof Data Structures (respectively) that give rise to such functions and, consequently, tonon-provable (as far as �nitistic methods go) true statements in these �elds. Hartmanis[Ha85] and Kurtz O'donnell and Royer [KOR87] similarly prove that, for every recursiveproof system, the existence of non-trivial languages that are not provably in�nite.4. Kurtz O'donnell and Royer chose to attack the problem of provability by strengtheninga natural proof system (rather than taking the common approach of replacing it bya weaker one). They discuss the extension of a proof system by adding to it a non-recursive set of true axioms - the set of true �1 statements. They present a su�cientcondition for the the non-provability, relative to such an extended system, of the in-�niteness of a language. A novel contribution of [KOR87] is that they consider, for the�rst time, the reverse direction as well. They prove that if P 6= NP is not provable insuch an extended system, then the (deterministic) complexity of SAT satis�es someeasiness condition.1.2 Our ResultsWe wish to understand the issue of independence of natural complexity questions (suchas P ?= NP) with respect to proof systems that re
ect the reasoning process of everydaymathematical investigation. We follow the approach introduced in [KOR87] and considerprovability relative to the theory PA augmented by all true �1 statements. We prove a nec-essary and su�cient condition for the independence of computational complexity questionsrelative to this strong proof system.Our su�cient condition is a generalization of the ideas underlying the third of the above-mentioned approaches. Our necessary condition indicates the inherent limitations of inde-pendence proofs in the realm of computational complexity. We prove that if the membership2

1 IntroductionGodel's incompleteness theorem [Go31] has opened a new era in the history of mathematicalthought. In the face of an open conjecture we can try to prove it or try to refute it, butGodel has brought to our awareness a third possibility - it may sometimes be the case that,in the framework of what we consider as acceptable mathematical reasoning, the conjectureis neither provable nor is it refutable. In such cases we say that the conjecture is independentof the underlying mathematical theory.Godel's incompleteness theorem states that every formal theory that is recursive, soundand su�ciently expressive, cannot be complete. In other words, once we �x our prooftechnique, there is always a statement that both it and its negation are not provable in thatformal theory.It took more than thirty years to come up with the �rst example of a genuine mathe-matical question that is independent of mathematics (i.e. Set Theory). In [Co63] Cohenproves the independence of the continuum hypothesis. Cohen introduces a special techniquefor proving independence from the axioms of set theory - the `forcing' technique. So far,Cohen's forcing is the only available framework for proving such results.The forcing method has, however, some inherent limitations: There is a class of formulas,called absolute formulas [Ku80], for which the forcing method cannot produce independenceproofs. In particular, forcing cannot prove the independence (from set theory) of any openquestion in Number Theory.It may be justi�ed, when dealing with number theoretic statements, to investigate in-dependence from number theoretic theories. Peano Arithmetic proof system (PA) may beconsidered a reasonable candidate for re
ecting the �nitistic working tools of a mathemati-cian, yet it is strictly weaker than full Set Theory. This approach was successfully applied byParis and Harrington [PH77] who, in 1977, proved the independence from Peano Arithmeticof a combinatorial statement concerning �nite sets of natural numbers.The results of Paris and Harrington have raised some hopes that similar independenceresults could be obtained for interesting statements in Computer Science. Questions con-cerning computational complexity in the Turing Machine model can usually be coded asquestions about natural numbers. It is only natural to wonder whether our apparent help-lessness in the face of questions like P ?= NP is not the result of an inherent independenceof this statement (rather than an indication to an insu�cient understanding of the issue).The aim of this work is to investigate this rather exotic possibility. The bottom lineof our analysis can be roughly stated as follows: In order to prove a lower bound inde-pendence result, with the tools currently available to logicians, one would basically haveto resolve the original question. In particular, the existence of a proof, by any currentlyknown method, of the independence from PA of the statement \P 6= NP" is equivalent tothe existence of almost-polynomial upper bounds on the deterministic complexity of NP .Such an independence result would imply, for an example, the nonexistence of (polynomial)One-Way-Functions. (An analogous result holds for the independence of P = NP).On the other hand we prove the existence of arbitrarily complex languages L for whichPA 6` \L is not a regular language". We also present an explicitly de�ned language exhibitingsuch behavior. 1

On the Independence of P versus NP(Revised Version)Shai Ben-David � Shai HaleviDept. of Computer ScienceTechnion, Haifa 32000, IsraelAbstractWe investigate the possibility that the current failure to resolve basic complexitytheoretic questions stems from the independence of these questions with respect to theformal theories underlying our mathematical reasoning.We show that, any question in the �eld of computational complexity that is in-dependent of a certain extension of the axioms of Peano Arithmetic, using currntlyavailable techniques, is `practically insigni�cant'. This implies that if P 6= NP can beshown to be independent of Peano Arithmetic, using any currently known mathemat-ical paradigm, then NP has extremely-close-to-polynomial deterministic time upperbounds. In particular, in such a case, there is a DTIME(nlog�(n)) algorithm thatcomputes SAT correctly on in�nitely many huge intervals of input lengths.We provide a complete characterization of the worst case behavior of languageswhose location in the complexity hierarchy is independent (with respect to su�cientlystrong proof systems, including Peano Arithmetic). Such languages are, on one handeasily computable for long stretches of inputs, and, on the other hand, they are complexin�nitely often. (We also construct an explicit example of such a language).Our results hold for both the Turing Machine and the Non-Uniform Circuit com-plexity models.
�e-mail: shai@cs.technion.ac.il 0

