7 Appendix - Further discussion of provably recursive
functions

In this appendix we discuss some difficulties related to Lemma 5 (in section 3.1). In par-
ticular, we explain why can’t we use this lemma to conclude that PA; - P # NP iff
PAF P # NP. To demonstrate these difficulties, consider the following algorithm (which

we denote by A), that is a variation of the algorithm in example 1:

On input x, if x is a code of a proof in PA of a contradiction - reject x.
Otherwise - enter an infinite loop.

Clearly, since PA is consistent, then A halts on every input. Moreover, we can bound its
running time by, say, n”. (the time that takes to verify that x is not a code of a contradiction
proof). Let us now define the function KX EC y:

EXEC,(x) = the first (and only) y s.t. |y| < |z|?,

and y is (a coding of) an accepting execution of A on x.

Since the claim: “Va Jy of length < |z|* s.t. y is (a coding of) an accepting execution of A
on &’

is a II; formula that is true in N, then PA; F “EXECy, is a complete function”. A non-
careful usage of lemma 4, would lead to the conclusion that PA F “EXFEC4 is a complete
function”, and hence

PAF “PA is consistent”, which is a contradiction to Godel’s second theorem [Go31].

The catch here lies in the definition of the term “provably recursive function”. Let us
recall that f is provably recursive in PA iff there exists an algorithm Ay that computes f,
st. PAF Ay halt on every input. The definition says nothing about the ability of PA to
prove that Ay computes f. In the above example, one can easily design an algorithm that
computes FXFEC}y, s.t. PA can prove its totality. But then, PA will not be able to prove
that this algorithm computes EX EC 4.

Back to our business, assume that PA; = P # NP, then - by theorem 4 - RE,;, is
dominated by F, for some a < ¢. Consider the following algorithm (which we denote by
B):

On input x, if RS p(|]) < Fuo(|z]) - return RS 4 (|2|)
otherwise - return Q

1. Clearly, B halts on every input. We can even bound the running time of B by F,(n) x
nlogFaln) s 2741 Since PAF “F, is complete” then PA & “B halts on every input”.

2. By our assumption, Vz, RE ., (|z|) < F.(|z]), So B really computes RE ,,(|z]).
From 1 and 2 we conclude that, by definition, RE,; is provably recursive in PA. Still this

does not mean that PA “RL . is complete”, since we did not show that PA = “B computes
RE 7. Consequently, we do not know how to prove, that in such a case, PA+ P # NP.

18

[Sm83] Smorynski C., “’Big’ News from Archimedes to Friedman”, Notice of American
Society, Vol 30. (1983), 251-256.

[Sm77] Smorynski C., "The Incompleteness theorem”, Handbook of mathematical logic,
J.Barwise ed., North-Holland, New-York (1977), 821-865.

[Wa70] Wainer S.S. “A Classification of Ordinal Recursive Functions.” Arch. Math Logic,
13 (1970), 136-153.

17

[Go31]

[GRS90]

[HH76]

[Ha85]

[JYS81]

[JYS3]

[Kr52]

[KM81]

[KORST]

[KuS0]

[Le82]

[Li78]

[LN8S]

[Ly75]

[PHT7T]

[Sm80]

Godel K., “Uber formal unentscheidbare Satze der Principia Mathematica und

verwandter Systeme 17, ibid., Vol. 38, (1931), 173-198.

Graham R.L., Rothschild B.L., and Spencer J.H, "Ramsey theory”, A Wiley-
Interscience Publication (1990)

Hartmanis J., Hopcroft J.E., “Independence results in computer science”, SIGACT
News 8,4 (1976), 13-24.

Hartmanis J., "Independence results about Context Free Languages and lower
bounds”, Information processing Letters 20 (1985) 241-248.

Joseph D., Young P.
“Independence results in computer science?”, J.Compute.System.Sci. 23 (1981),

311-338.

Y

Joseph D., Young P., “A survey of some recent results on computational complexity
in weak theories of arithmetic”, Fundamentica Informatica 8, (1985), 104-121.

Kreisel G., “On the concepts of completeness and interpretation of formal systems”,

FM, Vol. 39, (1952), 103-127.

Krishnamurthy B., and Moll R.N., ”Examples of Hard Tautologies in Propositional
Calculus”, Proceedings of 13’th STOC (1981) 28-37.

Kurtz S. A., O’donnell M. J., and Royer J. S.,; “How to Prove Representation-
Independent Independence Results”, Information Processing Letters 24 (1987) 5-
10.

Kunen K., ”Set theory”, North-Holland (1980).

Leivant D., ”Unprovability of Theorems of Complexity Theory in Weak Number
Theories”, Theoretical Computer Science 18 (1982) 259-268.

Lipton R.J., “Model theoretic aspects of computational complexity”, FOCUS 19
(1978), 193-200.

Loebl M., and Nesetril J., ”Linearity and Unprovability of Set Union Problem
Strategies” Proceedings of 20’th STOC 1988 360-366.

Lynch N., 7On reducibility to complex or sparse sets”, Journal of Association for

Computing machinery, Vol. 22, No. 3, (1975), 341-345.

Paris J., and Harrington L., “A mathematical incompletenessin Peano arithmetic”,
Handbook of mathematical logic, J.Barwise ed., North-Holland, New-York (1977),
1133-1142.

Smorynski C., “Some rapidly growing functions”, Mathematical intelligencer 2

(1980), 149-154.

16

2. n 5 ()5, denotes the claim: For every function F from the r-subsets of {1,2,....,n}
to a set of size k, there exists a large subset S C {1,2,... n} of cardinality at least ,
such that F' is constant on the r subsets of S.

Example: Let us define the language

Lpg ={< 150" >:n 5 (k+ 1)}

1. The following is an immediate consequence of Theorem 3.2 of Paris and Harrington

[PHT7]:

PAY “{k:3In(< 1%,0" >€ Lpg)} isinfinite®

In particular, PAV “Lpy is not reqular”.

2. A standard pumping argument shows that Lpg is not a Context Free Language.

3. It can be shown that Lpgy € Co— NP

6 Acknowledgments

We wish to thank Michal Dvir, her M.Sc. thesis (under the first author‘s supervision), has
acquainted us with the ideas and techniques of proof theory that underline this research.

We also owe a lot to Menachem Magidor for a very insightful discussion at an early stage of
this work. We also thank Janos Makowsky for his inspiring interest in the applications of
Model-Theory to Computer Science.

References

[Be92] Ben-David S., "Can Finite Samples Detect Singularities of Real-Valued Func-
tions?”. To appear in Proceedings of STOC92.

[BD91] Ben-David S., and Dvir M., "Non-Standard Models for Independent Arithmetical
Statements”, Technical Report, Technion, (1991)

[BI87] Blum M., and Impagliazzo R., “Generic Oracles and Oracle Classes”, 28‘th Sym-
posium on Foundations of Computer Science, (1987),118-126.

[Bo74] Book R.V., "Tally languages and complexity classes”, Information and Control,
26, (1974), 186-193.

[Co63] Cohen P.J., “The independence of the continuum hypothesis”, Proceeding of the
National Academy of Science, USA 50, 1143-1148 (1963)

[FLO83] Fortune S., Leivant D., O’donnel M., “The Expressiveness of Simple and Second-

Order Type Structures”, Journal of the Association for Computing Machinery, Vol.
30, No. 1 (1983), 151-185.

15

Theorem 13:

1. For every [there exists a language Dy, computable in f, such that both Dy and ils com-
plement D¢ are f-meager. (Furthermore, for every recursive f there exists a recursive
I’ that dominates f such that Dy is computable in lineartime and in logspace).

2. If D is f-meager then so ts LN D for every L.
3. For every meager language L, the statement “L is not finite” is not provable in PA;.

4. For every language L there exists a partition L = Ly U Ly such that neither Lo nor Ly
can be proved to be infinite within the framework of Peano Arithmetic. (Furthermore,
each of Lo, Ly is computable from L in lineartime and logspace).

Proof: The theorem easily follows from the proof of Theorem 4.4 of [KORST].

The following corollary is implicit in [KOR87]. In their Theorem 4.4 they could have also
stated that the language Ly they define, the language that the theory cannot prove to be
infinite, is actually outside the complexity class 5.

Corollary 14: There exist arbitrarily complex languages such that PA; cannot prove that
they are not finite languages.

Let us conclude this section by demonstrating an inherent ‘easiness’ property of meager
languages, namely, that using such a language as an oracle cannot significantly speed up any
computation.

Lemma 11: Let GG be a meager language. If for a standard language L and an SCF
f, PA1 <L ¢ DTIME(f)” then, PA; cannot prove that an Oracle Turing Machine can

compute L in time f using G as an oracle.

Note that by our main results, if the negation of a statement L. € DT TM E(f) is not provable
in PAy, then the statement itself is true (semantically) in A" (up to adding the inverse of
any Wainer function to f).

Let us also remark that, as any generic oracle (in the sense of Blum-Impagliazzo [BI8T])
is necessarily a meager language, the last lemma offers an easy proof to to their Theorem

1.5.

5.1 A concrete example of non-provability

Let us demonstrate the emergence of non-provability of a lower bound, by translating the
Paris Harrington version of Ramsey Theorem into a decision problem of a binary language.
For more on this theorem see [GRS90].

Definition 11:

1. A set S C N islarge if its cardinality is bigger than its first element.

14

5 Meager Languages

To help focusing on the source of non-provability of complexity statements, we introduce the
notion of Meager Languages. Our notion of meager languages is quite similar to [KOR87]’s
notion of an emaciated subset of N. Somewhat like Sparse sets [Ly75] and Tally sets [Bo74],
meager languages combine some inherent ’easiness’ properties with the possibility of being
arbitrarily complex. We shall show that on one hand, there are arbitrarily complex languages
that are meager, while on the other hand, (all) meager languages are minimal elements in
the lattice of Turing reducibility (i.e. they are useless as oracles).

Our interest in meager languages is mainly due to the phenomena they exhibit with
respect to formal provability: If L is a meager language, then the statement “L is infinite”
is not provable in PA (as well as in PAy).

Definition 9: Let f : N — N be a function such that f(n) > n for all n. We call a
language L t-meager if, for infinitely many n’s, any string in L is either shorter than n or
longer than f(n).

intuitively speaking, meager languages are languages that infinitely often skip big chunks of
lengths, avoiding all strings of such skipped lengths.

Definition 10:

1. A language L is meager if it is f-meager for every f in the Wainer hierarchy - {F, :
a < €f.

2. For a class C' we say that a language L is C-meager if there exists some L' € C' such

that the symmetric difference L AL = {a: L(x) # L'(x)} is meager.
Claim 1:
def

1. Define a function Mp(n) = ‘the n’thifor which LN X' # ®°. A recursive L is meager
iff My, is not provably recursive.

2. If a class C' is closed under complementation then so is the class of all C-meager
languages.

It appears that there is a strong connection between the notion of C'-meagerness and prov-
ability:

Lemma 10: For every function g, let us denote DTIMEn?™) by C,. PA; I/ P # NP if
and only if SAT is Cj-meager for every S.C. I g.

Proof: By theorem 4, PA; I/ P # NP iff RL,; is not dominated by Wainer hierarchy.
By Lemma 2, if A is an S.C.F. and R isn’t dominated by the hierarchy then for every f in
the hierarchy, there exists infinitely many n’s s.t. ¥Yn < m < f(n), R~'(n) < h(n).

Let A be the algorithm of lemma 7 (for computing SAT), and let A* be a similar al-
gorithm, with running time bounded by n#(" then L(A*)ASAT is meager iff R%,; is not
dominated by the Wainer hierarchy. L]

Following [KORS&7], we apply the above characterization of non-provability to prove the
existence of wide class on languages whose best provable lower bounds lie far below their
true worst case complexity.

13

4.2 Existence of One Way Functions

In this section, we consider the implications of our main theorem to the existence of one-
way-functions. We use a slight variation of the common definitions of one-way-functions:

Definition 8: Letl f be a function that is computable in polynomial time.

1. Let g be any S.C.F. We say the [is a g-one-way-function in the (non-)uniform for-
mulation if ¥ deterministic (non-uniform) algorithm A in DTIMEm™) (NU(n™)
) 3 N such that ¥Yn > N Jz € {0,1}" for which f(A(z)) # x

2. We say the f is a (non-)uniform one-way-function if there exists a S.C.F. g s.t. f is
a (non-)uniform g-one-way-function.

Note that our definitions are weaker then the usual ones, in that we only demand that
deterministic (non-uniform) algorithm will fail reversing f(x) on at least one input of every
length. On the other hand, it is stronger then the usual one in that we demand not only
that every polynomial algorithm can’t reverse f, but also the existence of a super-polynomial

function h such that every algorithm in DTIME(%) (NU(R)) fail to do so.

As an immediate corollary, from the above discussion, we get:
Corollary 11: If PA; 1/ P # NP then uniform one-way-functions do not exist.

Proof: Let f be a function that is computable in polynomial time, and let g be a S.C.F.
We denote RL, - by R. By theorem 3, SAT is solvable by a deterministic algorithm with
complexity n(HosE™(n) R™'(n). Since f is computable in polynomial time, then the
problem of inverting f is clearly in NP. (A nondeterministic TM can, on input y, simply
guess x and then compute f(x) and see if it equals y). Thus, the problem of inverting f is
reducible to SAT. This means that 3 deterministic algorithm M that inverts f and works in
time complexity of T'(n) = pFlHog(R™H ()] 5 R~ (n*) for some k.

Since ¢ is a standard complexity function, then so is the function h(n) = 2ar9(logn) By
theorem 4, if PA; I/ P # NP then A is not dominated by Wainer hierarchy, and by claim 1

there exists infinitely many n’s s.t.
R™Y(n¥) < h(n*) = 235000en”)
and thus 2k log(R~1(n")) < g(log n*) < g(n)
Since for big enough n’s hold k[1 + log(R~ (n*))] + “EU05) < 2k log(R (n))

Then there are infinity many n’s s.t. k[l + log(R~ (n*))] + w < g(n)

hence T'(n) = pFHlog(RTH(nM)] o R_l(nk) < pd(n)

This means that an algorithm that works like M, but halt after at most n?(") steps, will
succeed in inverting f for infinity many lengths, and thus, f is not a g-one-way-function.

O

We can prove a similar corollary for the non-uniform case as well:

Corollary 12: [f PA; i/ SAT ¢ NU(P) then non-uniform one-way-functions do not exist.

12

Note that the intervals in the corollary are the same for all languages in N P.

Proof: Let L be any language in N P. Since L. has a polynomial reduction to SAT', then
there is a polynomial algorithm translating inputs to L of length n, to inputs to SAT of
length at most @(n) for some polynomial Q. By the above discussion, under the assumptions
of the corollary, SAT has infinitely many easy intervals. Furthermore, applying Lemma 2
again, it can be seen that there exist (infinitely many) such intervals of the form [n, A(A(n))].
It follows that for big enough n’s (for which Q(n) < A(n)) the intervals [n, A(n)] are ’easy’
for L.]

Krishnamurthy and Moll show in [KM81] an example of infinitely many tautologies that
are probably hard instances for SAT. These tautologies appear too frequently to avoid our
‘easy intervals’. Therefore, assuming their tautologies are hard (say, Q(n®™)), there is no

proof for the independence of P # NP.

4.1 Provability in the Non-Uniform model

We now turn our attention to provability of questions in the Non-Uniform Circuit complexity
model. First we consider a family of non-uniform complexity classes, for which we can show
a surprisingly strong result:

Theorem 8: Let L be any standard language and let f be any standard complexity function.
1. If L ¢ Non-Uniform-size(f) (NU(f)) then PAF L ¢ NU(f).
2. If L € NU(f) then PA1 = L € NU(f).

Proof:

1. if L ¢ NU(f), there exists an integer n s.t. for every boolean circuit), that has at
most f(n) gates, there is an input = of length n, s.t. C,(x) # L(x). The last claim can
be stated as an existential formula. It is known that every existential formula that is

true in AV can be proved by PA, and hence L ¢ NU(f) is provable in PA.

2. If L € NU(f) then for every n there is a circuit C,, of size < f(n) s.t. for every input
z € {0,1}" holds C,(x) = L(x). This is a II; statement that is true in A, and hence -
it is provable in PA;. (]

Things are not that easy when we deal with NU complexity classes that are not defined
by a single function, such as Non-Uniform-P (NU(P)). In this case, we use the non-uniform
approximation rate to state a theorem, and a corollary similar to theorem 4, and corollary

6.

Theorem 9: PA; F"SAT ¢ NU(P)” if and only if there is a function in Wainer hierarchy
that dominates N RE 4.

Corollary 10: [f it is provable (in any method known today) that SAT ¢ NU(P) is
independent of PA, then SAT € NU(nf_l(”)), where f is not dominated by Wainer hierarchy.

The proof is similar to the proot of theorem 4 and corollary 6.

11

Proof:

If: Suppose there is a function g in the hierarchy that dominates RE ;. By the definition
of the approximation-rate, Vi 3z of length < RL (i) s.t. M;(x) # SAT(z). Since for all
sufficiently large 7, RE,+(7) < ¢(2), and by lemma 1, such g is provably recursive, then the
claim:

Vide st l(x) < g(¢) and M;(x) # SAT (x)

is a II; formula, being true in A it is therefore provable in P A;.
Only-if: If RL,; is not total then, by Lemma 7, P = NP. In such a case, the soundness
of PA; prevents it from proving the inequality. So assume RL,; is a total function. If it

isn’t dominated by any function in Wainer hierarchy, then by Lemma 1, PA; t/ “RE . is
complete”. By Lemma 7, this implies that PA; i/ “P # NP”. []

Since we didn’t use any special properties of SAT or P in the last proof, we can apply the
same proof for every language and every complexity class.

Theorem 5: Let C be any standard complexity class and let L be any standard language:
PA F 7L ¢ C” if and only if RS is dominated by Wainer hierarchy.

Corollary 6: [f it is provable (in any method known today) that P # NP is independent
of PA, then the search problem of SAT (i.e. on input & € SAT, find an assignment that
satisfies x) is in DT[ME(nf_l(”)), where [is not dominated by Wainer hierarchy.

Proof: By corollary 3 (Section 3.1), if it is provable that P # NP is independent of
PA then it is also independent of PA;. By theorem 4, this means that the approximation
rate of SAT to P, (which we denote by f), is not dominated by any function in Wainer
hierarchy. Since we know that « € SAT, we can use the algorithm of lemma 7 without
computing f~*(n) in advance. By the argument of lemma 7, the search problem is solvable
in deterministic time T4(n) = f~'(n) x pll+loe(f T ()] < 5 /7 () U]

Interpretation

To appreciate the significance of the last corollary, note that f~! is constant on any interval
of the form f(n), f(n) +1,f(n) +2,..., f(n 4+ 1). By Lemma 2 this implies that, for an f
as implied by the corollary, nf ™' (" is infinitely often bounded (from above) throughout very
long intervals by, say, n®(") (where a(n) is the inverse of the Ackermann function A(n)). We
call such an interval - an ’easy interval’ for SAT'

Could it be the case that SAT is easy on (infinitely many) long stretches of n‘s and yet
it has infinitely many hard instances?
An indication to the implausibility of such a situation is demonstrated by the following:

Corollary 7: If it is provable (in any method known today) that P # NP is independent
of PA, then there exists infinitely many intervals of the form [n, A(n)], such that for every
language L € NP all these intervals (except, perhaps, finite number of them) are ’easy
intervals’ for L.

10

Lemma 7: For every language L and every class C, RS is a total function iff L ¢ C.

In particular - we’ll consider the approximation rate of P by SAT'. Let us pick a standard
enumeration {M; : ¢ € N} satisfying:

1. The function DESC(i) = M; can be computed in linear time.

log+

2. For every ¢, M; runs at most n'°8" steps on every input.

Lemma 8: Let us denote the approximation rate of SAT by P (RL,;) by R. If R7! is
bounded by some easily computed function g, then SAT is in DTIME(nl'*189(] 5 g(n)).

Proof: Consider the following algorithm:
for ¢ := 1 to g(]z|) do begin

Compute M; ; Use a simulation of M; as a SAT-oracle to find a satistying as-
signment for z; If you find one - accept .

end

reject x.
Since R is the approximation rate of SAT to P, we don’t have to check more then R™'(n) <
g(n) TMs until we find one that gives right answer on every input of length < n. For ¢ < ¢g(n)
M; runs for at most n'°89(") steps, and we call each M; at most n times, so the whole process
ends within pl'+1°89(")] » g(n) many steps. L]

The following is a natural extension of the notion of approximation rate to the context
of Non-Uniform circuit complexity.

Definition 7: Let C = U, NU(fy) (where NU(fy) denotes the class Non-Uniform-
size(fi)), and let L be a language. The non-uniform approximation rate of L by C is the
function:

NRS (i) = mazjc;{min{n : ¥ circuit C of size < f;(n), Iz € {0,1}" s.t. L(z) # C(x))}}

Lemma 9: If C =, NU(f.) and L is a language for which NRY = g(n) then, L is in
NU(fr4g-1(n)(n)).

For an example -let Non-Uniform(P) = U, NU(n") and let us denote by g the function
NRE ., then SAT is in NU(n'*97 (%),

4 The Main Results

Theorem 4: PA; = P # NP if and only if there exists F,, for a < €y in the Wainer
hierarchy, that dominates the approzimation rate of SAT to P (RE,r).

Well, all this is very nice, but why should we care about provability in a non-recursive
theory? Of course, whenever we show that some statement is not provable in PA; we also
get its non-provability in PA. The distinctive virtue of PA; is that, for a significant class of
properties, the above implication can be also reversed. This is manifested by the following
lemmas. Both lemmas are part of the folklore of proof theory. [FLOS83] present a proof of
the next lemma and attribute it to G. Kreisel.

Lemma 5: ¢ A function is provably recursive in PA, if and only if it is provably recursive

i PA.

Lemma 6: For a relational structure M let 1I1(M) denote {¢ : 4 is a II; formula that
holds true in M}. If the non-provability of a statement ¢ relative to a theory T can be

demonstrated by starting with a model M of T in which ¢ holds and constructing a submodel
in which —¢ holds, then ¢ is also unprovable in T \JIl;(M).

Any known technique for proving independence from sufficiently strong theories of state-
ments that are neither self-referential nor inherently proof-theoretic, meets the assumptions
of Lemma 6.

Corollary 3: Any independence result from PA or from ZFC obtained through any of
the approaches currently known, can be extended to an independence result relative to that
theory augmented with all true 11 statements.

3.2 Approximating a Language by a Complexity Class

In order to characterize non-provable complexity statements, we define a measure of distance
between a language L, and a complexity class C' — the approximation rate of L by C'. We
will show that 7L ¢ C” is not provable iff the approximation rate of L by C is an extremely
fast growing function. We will also show a close relationship between the approximation rate
and worst-case complexity.

The idea of approximation rate of a complex language by a class of easier languages is
analogous to the idea of Diophantine approximations to Real numbers by Rationals. Pushing
this analogy further, languages that are outside C' but not provably so - resemble Liouville
numbers. We exploit this idea further in [Be92].

Definition 6: Let L be a language, let C be a complexity class, and let My, Ms, ... be some
canonical enumeration of C'. The approximation rate of L by C, is the function:

Ry (1) = mazjci{min{|e|: L(z) # M;(x)}}
(Where || denotes the length of the string x).

Note that the definition of ¢ depends upon the canonical enumeration we chose. Just the
same, all the properties of RY that are relevant to our discussion are invariant with respect
to this choice.

5Due to a subtle weakness of the definition of ‘provably recursive function’, this lemma is not as significant
as 1t may sound. See the Appendix for an elaborated discussion.

PA, enjoys a property that guarantees that non-provability phenomena is inherently
due to the languages in question and not an artifact of their presentation. This property
is introduced and discussed in [KORS8T], they call it Representation Completeness. Let us
demonstrate (and implicitly define) the representation completeness of PA; by the following
Lemma 3 and Corollary 1. First we first need some notation.

Definition 5:

o A Standard Language is a language L for which the membership relation “x € L7
is definable by a Iy formula - a formula having only bounded (by a function of x)
quantifications.’

o A class of languages, C, s a Standard Complexity Class if there exists an easily com-
putable (e.g. linear time) enumeration {M; : i € N} where each M; is a standard code
of @ Turing machine endowed with a provably recursive (relative to PA) upper bound
on its running time, such that C = {L(M;) :¢ € N}. We call such an enumeration a
canonical enumeration for (.

Note that ‘in practice’, any language or complexity class one ever comes across complies
with the above definition.

Lemma 3: Let L be a standard language. If M is a TM whose running time is bounded
by some provably recursive f(n), and if L(M) = L then PA; = “L(M) = L".

Proof: Using standard coding techniques, one can express the claim: “There is a sequence
of successive configurations of M, < Cy,...,Cy >, with Cy being the starting configuration
of M on input x and C}. being an accepting final configuration of M” as a formula with free
variables k and . Thus the claim: “For every « - there is such a sequence of length < f(n)
iff © € L7 can be expressed as a II; formula, and hence, being a true such formula, is an

axiom of PA,. U]

Corollary 1: If My and My are TMs with running time bounded by some provably recursive
f(n), then L(My) = L(Ms) if and only if PA1 F “L(My) = L(My)”.

Corollary 2: [f P = NP then PAF “P=NP”,

This is true because if P = NP then there is a TM M with running time bounded by
n® (for some constant k) that recognizes SAT. Let M’ be a TM similar to M, except that
M’ has a ‘clock’ that stops it after n* steps (if it didn’t stop before). Clearly it is provable
in PA; that M’ is polynomial. Since SAT is a standard language then, by lemma 2, PA; F
“L(M’") = SAT”, and hence the claim. More generally -

Lemma 4: Whenever C' is a standard complexity class and L is a standard language,

LeC if and only of PALF “L e C7.

% As far as the results of this work go, we could have extended the definition to allow langnages definable
by II; formulas as well. But, not being able to come up with a natural example of a language that is not
‘standard’, we feel that Iy is the more natural choice.

3 Setting - Up the Ground

3.1 The Theory PA;

The natural, and commonly accepted, formal system for reflecting finitistic mathematical

reasoning, is Peano Arithmetic (or, equivalently, Set Theory without the axiom of infinity).

We therefore chose to state our final results in terms of provability with respect to PA.?
Still, as a working tool, we need a stronger theory, PA;, that we define below.

Definition 4:

1. We say that a formula is a 11y formula if it is of the form Yx¢ where ¢ is a formula
in the (first order) language of arithmetic and all its quantifiers are bounded. (In
the context of higher order logics, such formulas are referred to as 115). By ‘bounded
quantifiers’ we mean quantification of the form Va < g(y), where g is any provably
recursive function.*

2. PAy is the proof system having PAU{é : ¢ is a Il;formula that is true in N} as its
set of avioms. (Here N stands for the standard model of arithmetic).

It is not hard to see that PA; is not recursive (this can be seen, for an example, by noting
that the consistency of PA; itself can be formalized as a II; statement). Consequently PA;
is not a conceivable candidate for a workable framework for mathematical reasoning.

To motivate our use of a non-recursive proof system, consider the following example of a
non-provable statement:

Example 1: Let TH be any sound and recursive proof system for arithmetic. Define an
algorithm Aty by:

On input x, if x is a code of a proof in T H of a contradiction - reject x.
Otherwise - accept x.

Let Arg run over binary strings and use L(A) to denote the language accepted by A. As
TH is consistent L(Arg) = {0,1}*. On the other hand, as Godel’s theorem implies that
such T H cannot prove its own consistency, TH t/ “L(Ary) = {0,1}*".

This example can be easily modified to produce independence of whichever property that
comes to mind: The running time of an algorithm, the totality of a function etc. (And, in a
sense, is not too far from the independence results of [HH76].

Clearly, the non-provability exhibited here stems from our very specific choice of algo-
rithm. The same language, {0, 1}*, can be defined by an algorithm that raises no provability
problems.

3All of our results can be easily translated to similar theorems for any recursive formal system that
extends PA (in particular, to ZFC set theory).

‘Here we differ from the common definition of I1; formulas [Sm77] that allows only primitive recursive
bounds. Tt is not hard to realize that the relevant proof theoretic results (mainly Lemma 5 below) can be
strengthened to apply for our definition. This is shown explicitly in [BD91].

o [f a total recursive function f : N — N is provably recursive in PA then, for some
a < €, it is dominated by F,.

Furthermore, Fortune Leivant and O‘donnell [FLO83] prove that the set of functions that are
provably recursive in PA equals that set of functions that can be computed in (deterministic)
time, t(n), dominated by some F, in {F, : a < €}.

Definition 3:

e Wecall f: N — N a Standard Complexity Function (SCF), if it is provable in PA
that f is total (i.e. defined for every ¢ € N), monotonic, and unbounded.

o [or any total monotonic and unbounded f, we define f=' - the inverse of f - by:
-1 def . .
7 (n) = max{e: f(i) < n}.

Examples of standard complexity functions are f(n) = n*, f(n) = log(n), and f(n) = 2", as
well the functions {F, : @ < ¢} in the Wainer hierarchy and their inverses.

Lemma 2:
If f is a standard complexity function and g is a monotone function that is not dominated
by Wainer hierarchy, then there are infinitely many n’s satisfying:

Ym[(n <m < A(n) = (g7 (m) < f7'(m), f(m) < g(m))]

(We have chosen A(n) just for concreteness, the claim remains valid for any bound on m

which is an SCF function of n)

Proof:

Let us denote by % the function h(n) = max{ f(n), f~'(n) }. Since both f and f=!
are SC'F's, then so is h. Let F, be a function in the hierarchy that dominates both 2 and
the Ackermann Function. Since ¢ is not dominated by Wainer hierarchy, there are infinitely
many n’s satisfying : F,41(n) < g(n). Note that, for every n > 2, F,(Fa(n)) < Fay1(n). It
follows that for every m that satisfies n < m < A(n):

h(m) < B(A()) < Fa(Fa(n)) < Fapa(n) < g(n) < g(m)
and therefore,
g H(m) < A7 (m) < f(m) < h(m) < g(m).
]

Note, that we didn’t use any special property of A(n) in our proof. The same proof can
be applied for any other SCF' function.

and only if the approximation rate of L by C' is an extremely fast growing function (i.e. not
provably recursive).

We conclude the paper by a brief discussion of our notion of a language being extremely-
fast-approximable by a class of ‘easy’ languages (say, P). We show that, on one hand, such
languages exist in arbitrarily high levels of the worst-case-complexity hierarchy, but on the
other hand, these languages are ’easy’ for all practical purposes (e.g. cryptography).

2 Proof Theoretic Background

In this section we review some basic facts from the proof theory of Arithmetic. We refer the
reader to [Sm80, Sm83] for an elaborated and truly enjoyable discussion of this topic.

The basic idea goes back to Kreisel [Kr52]. For every recursive formal theory which is
sound for arithmetic there exist total recursive functions such that the theory cannot prove
their totality. Such functions can be characterized by their rate of growth.

Wainer [Wa70] supplies a useful measuring rod for the rate of growth of recursive functions
(from natural numbers to natural numbers) - the Wainer hierarchy. The Wainer hierarchy is
an extension, to infinite countable ordinal indices, of the more familiar Ackermann hierarchy
of functions:

Fi(n) = 2n
Fryr(n) = £ (n)
and, for a limit ordinal ¢,

Fy(n) = F{(n)

where F,gn) denotes the n'th iterate of F} and, for each limit ordinal 8, {é, : n € IN} is some
fixed recursive sequnce of ordinals increasing to 6. The famous Ackermann Function is F, -
quite low in this hierarchy.

Definition 1:

1. We say that a function f dominates a function g if for all large enough n's, g(n) <
fn).

2. € is the first ordinal o satisfying w® = «. (The exponentiation here is ordinal ex-
ponentiation and ¢y turns out to be a countable ordinal - the limit of the sequence
w,w W),

Note that for every o < 3, Iz dominates F,,. It is also worthwhile to recall that Ackermann
Function, F,,, dominates all primitive recursive functions.

Definition 2: A function [is provably recursive in a formal theory T if there is an algo-
rithm A that computes [for which T proves (using some fized recursive coding of algorithms)
that A halts on every input.

Lemma 1: [Wa70]

o For every ordinal o < €y, F,, the a'th function in the Wainer hierarchy, is provably
recursive in PA.

of a language L in a class ' cannot be decided in our strong system, then L is very close
to members of C' (in terms of its worst case complexity function). Focusing on a concrete
and well investigated theory, namely PA, allows us to strengthen the easiness condition of
[KORST].

We show that the currently known tools for proving independence, are not refined enough
to distinguish between our system and the standard Peano Arithmetic. We conclude that,
as long as no new proof theoretic method will be employed, proving independence from PA
of, say, P # NP, would imply the existence of an almost polynomial decision algorithm for
SAT.

We offer a new tool for measuring the distance between a language and a complexity
class. We show that it yields precise characterization of provability and that it inhibits
some practically jarring aspects of the worst case measure. The new technique enables us to
generalize our results to the membership problem of any language in any complexity class.

1.3 Outline of our proof

For the sake of clarity let us concentrate on the case of provability relative to Peano Arith-
metic. OQur results can be modified to handle provability relative to other proof systems (in
particular the ZFC axioms of set theory).

We augment the Peano Arithmetic axioms with the II; theory of the natural numbers
- the set of all II; formulas that are true in A" (the standard model of arithmetic). *
Let us denote the resulting theory by PA; and use PA to denote (non-augmented) Peano
Arithmetic. PA; is not a recursive theory and therefore too strong for being considered as a
conceivable formalization of mathematical reasoning. Still, it turns out to be a useful tool for
analyzing provability relative to Peano Arithmetic: If a statement ¢ is not provable in P A4
then, of course, it is not provable in PA. On the other hand, if ¢ is a natural mathematical
statement for which “¢ is independent of PA” is provable in any of the known methods for
establishing such results?, then ¢ is independent of PA; as well!

The next ingredient in our approach comes from the proof theory of Arithmetic. The
basic idea behind the Paris-Harrington independence proof may be viewed as a ‘fast growing
functions’ principle. This idea goes back to Kreisel who in [Kr52] proved that, as far as
provability in PA goes, recursive functions having very high rate of growth are not provably
total. It turns out that the totality of such functions is also independent of PA;. Further-
more, we shall show that, any complexity lower-bound statement that is independent of P A,
can be represented as a statement of that type (i.e. that some meaningful recursive function
is total).

The last component we need is a new way of measuring how close is a given language to a
complexity class. Given a class C' of languages and a language L we define the approzimation
rate of L by C. The central step in this work is theorem 4 stating that PA; t/ “L ¢ C” if

LOur definition of PA; differs slightly from the common definition. See section 3.1 for details.

?We use the term ‘a natural mathematical statement’ to rule out the conspicuous counter example to our
claim: By Godels’ theorem, the consistency of PA is a true Il; statement that is not provable in PA. So
far, Godel’s type of argument, as well as reductions to this non-provability theorem, have been successful
only when applied to self-referential or inherently proof-theoretic statements ¢.

1.1 Previous Work

Previous work on this issue can be roughly classified into the following categories:

1.

Results that are based on self-referential algorithms (or diagonalization). The work
of Hartmanis and Hopcroft [HH76] is a central example in this category. Results of
this type tend to be easily generalizable to any recursive proof system. On the other
hand, as such results can be easily extended to oracle complexity models, they are of
inherently limited range. Rather than referring to the complexity of a language they
refer to the complexity of a specific algorithm or to the complexity of languages in
relativised models of computation.

Another line of attack , is to show independence of natural problems relative to a weak
(and consequently of limited interest) proof systems. The work of Lipton [Li78] Joseph
and Young [JY81, JY85], and Leivant [Le82] can be viewed as taking this approach.

More recently, several researchers have succeeded in applying the basic idea behind
the Paris-Harrington result to computer theoretic questions. As shall be elaborated
below, once a (recursive) function grows extremely fast, its totality cannot be proved
in finite set theory. Fortune Leivant and O’donnell [FLO83], and Loebl and Nesetril
[LN88], have found problems in the areas of Semantics of Programming Languages and
of Data Structures (respectively) that give rise to such functions and, consequently, to
non-provable (as far as finitistic methods go) true statements in these fields. Hartmanis
[Ha85) and Kurtz O’donnell and Royer [KOR&7] similarly prove that, for every recursive
proof system, the existence of non-trivial languages that are not provably infinite.

. Kurtz O’donnell and Royer chose to attack the problem of provability by strengthening

a natural proof system (rather than taking the common approach of replacing it by
a weaker one). They discuss the extension of a proof system by adding to it a non-
recursive set of true axioms - the set of true II; statements. They present a sufficient
condition for the the non-provability, relative to such an extended system, of the in-
finiteness of a language. A novel contribution of [KORS87] is that they consider, for the
first time, the reverse direction as well. They prove that if P # NP is not provable in
such an extended system, then the (deterministic) complexity of SAT satisfies some
easiness condition.

1.2 Our Results

We wish to understand the issue of independence of natural complexity questions (such

as P = N P) with respect to proof systems that reflect the reasoning process of everyday
mathematical investigation. We follow the approach introduced in [KORS7] and consider
provability relative to the theory PA augmented by all true 11 statements. We prove a nec-
essary and sufficient condition for the independence of computational complexity questions

relative to this strong proof system.

Our sufficient condition is a generalization of the ideas underlying the third of the above-
mentioned approaches. Qur necessary condition indicates the inherent limitations of inde-
pendence proofs in the realm of computational complexity. We prove that if the membership

1 Introduction

Godel’s incompleteness theorem [Go31] has opened a new era in the history of mathematical
thought. In the face of an open conjecture we can try to prove it or try to refute it, but
Godel has brought to our awareness a third possibility - it may sometimes be the case that,
in the framework of what we consider as acceptable mathematical reasoning, the conjecture
is neither provable nor is it refutable. In such cases we say that the conjecture is independent
of the underlying mathematical theory.

Godel’s incompleteness theorem states that every formal theory that is recursive, sound
and sufficiently expressive, cannot be complete. In other words, once we fix our proof
technique, there is always a statement that both it and its negation are not provable in that
formal theory.

It took more than thirty years to come up with the first example of a genuine mathe-
matical question that is independent of mathematics (i.e. Set Theory). In [Co63] Cohen
proves the independence of the continuum hypothesis. Cohen introduces a special technique
for proving independence from the axioms of set theory - the ‘forcing’ technique. So far,
Cohen’s forcing is the only available framework for proving such results.

The forcing method has, however, some inherent limitations: There is a class of formulas,
called absolute formulas [Ku80], for which the forcing method cannot produce independence
proofs. In particular, forcing cannot prove the independence (from set theory) of any open
question in Number Theory.

It may be justified, when dealing with number theoretic statements, to investigate in-
dependence from number theoretic theories. Peano Arithmetic proof system (PA) may be
considered a reasonable candidate for reflecting the finitistic working tools of a mathemati-
cian, yet it is strictly weaker than full Set Theory. This approach was successfully applied by
Paris and Harrington [PH77] who, in 1977, proved the independence from Peano Arithmetic
of a combinatorial statement concerning finite sets of natural numbers.

The results of Paris and Harrington have raised some hopes that similar independence
results could be obtained for interesting statements in Computer Science. Questions con-
cerning computational complexity in the Turing Machine model can usually be coded as
questions about natural numbers. It is only natural to wonder whether our apparent help-
lessness in the face of questions like P Z NP is not the result of an inherent independence
of this statement (rather than an indication to an insufficient understanding of the issue).

The aim of this work is to investigate this rather exotic possibility. The bottom line
of our analysis can be roughly stated as follows: In order to prove a lower bound inde-
pendence result, with the tools currently available to logicians, one would basically have
to resolve the original question. In particular, the existence of a proof, by any currently
known method, of the independence from PA of the statement “P # NP7 is equivalent to
the existence of almost-polynomial upper bounds on the deterministic complexity of NP.
Such an independence result would imply, for an example, the nonexistence of (polynomial)
One-Way-Functions. (An analogous result holds for the independence of P = N P).

On the other hand we prove the existence of arbitrarily complex languages L for which
PAV “L is not a reqular language”. We also present an explicitly defined language exhibiting
such behavior.

On the Independence of P versus NP
(Revised Version)
Shai Ben-David * Shai Halevi

Dept. of Computer Science
Technion, Haifa 32000, Israel

Abstract

We investigate the possibility that the current failure to resolve basic complexity
theoretic questions stems from the independence of these questions with respect to the
formal theories underlying our mathematical reasoning.

We show that, any question in the field of computational complexity that is in-
dependent of a certain extension of the axioms of Peano Arithmetic, using currntly
available techniques, is ‘practically insignificant’. This implies that if P # N P can be
shown to be independent of Peano Arithmetic, using any currently known mathemat-
ical paradigm, then N P has extremely-close-to-polynomial deterministic time upper
bounds. In particular, in such a case, there is a DTIME(n’Og*(”)) algorithm that
computes S AT correctly on infinitely many huge intervals of input lengths.

We provide a complete characterization of the worst case behavior of languages
whose location in the complexity hierarchy is independent (with respect to sufficiently
strong proof systems, including Peano Arithmetic). Such languages are, on one hand
easily computable for long stretches of inputs, and, on the other hand, they are complex
infinitely often. (We also construct an explicit example of such a language).

Our results hold for both the Turing Machine and the Non-Uniform Circuit com-
plexity models.

*e-malil: shal@cs.technion.ac.il

