
A Matroid-Quantum Connection
With tighter links between notions of rank?

James Oxley and Geoff Whittle are mathematicians at LSU and
Victoria University (Wellington, New Zealand), respectively. They
have written many joint papers on matroid theory, but none on
quantum computing.

Today we observe that they really have indirectly written a paper
on quantum computing.

Their paper, “A Characterization of Tutte Invariants of 2-Polymatroids,”
has implications for quantum complexity theory. It introduced a
polynomial SG(x, y) where G is a graph and x, y are numbers. Like
many polynomials defined on graphs this one is in general hard to
compute—it is #P-hard, so if it is polynomial time computable,
then surprising stuff happens.

The same paper observes that SG(x, y) is easy to compute when

uv = 1 for rational u, v.

However, a 2006 paper by Steve Noble proves that all other rational
cases are #P-hard. Our work finds easy cases in another family
where v = ±

√
2i and u is a rational multiple of

√
2i. This result

goes through quantum complexity theory.

It is interesting to note that quantum computations welcome com-
plex numbers such as

√
2i. In mathematics insights to behavior of

real functions are often found when we extend them to the complex
functions. A beautiful example to compare is that the behavior of

f(x) =
1

1 + x2

is best understood by noting that 1 + x2 can be zero at x = i.

Matroids and Polymatroids

In order to best understand the above results it is helpful to look at
matroids and generalizations. Matroids are a bit scary, since they
seem quite abstract. But that is wrong. The matroid concept is a
natural generalization of the notion of rank in an ordinary vector
space.

Let’s take a look. A matroid is defined by a set U and a function
f from finite subsets of U to N that obeys the following rules:

1. f(∅) = 0;

1

http://homepages.mcs.vuw.ac.nz/~whittle/pubs/Tutte_invariants_of_2-polymatroids.pdf
https://bura.brunel.ac.uk/bitstream/2438/818/1/polymatroid.pdf

2. for all a ∈ U , f({a}) ≤ 1;

3. if A ⊆ B then f(A) ≤ f(B); and

4. if A ⊆ B and c /∈ B then f(A ∪ {c})− f(A) ≥ f(B ∪ {c})−
f(B).

The notion of rank in an ordinary vector space obeys these axioms.
The rules are:

1. The empty set has rank 0;

2. Each vector has rank at most 1;

3. The rank of a set of vectors can increase only by adding more
vectors;

4. Suppose that adding c to a set B increases the rank. Then
c also increases the rank of any subset of B. Or if c is inde-
pendent of a set of vectors B, then it is independent of any
subset of B.

The definition of a polymatroid simply wipes out rule 2. OK, a
k-polymatroid replaces it by the rule that for all singleton sets {a}
have f({a}) ≤ k. An important kind of 2-polymatroid springs from
the following idea:

The “f -rank” of a subset A of the edges in a graph
G is the number of vertices collectively touched by edges
in A.

In a simple undirected graph, every edge has f -rank 2. In graphs
with self-loops, however, the loops have rank 1. We can also allow
the universe U to include members of f -rank 0. Those are visu-
alized as loops without a vertex and called circles. We could also
visualize edges of rank 1 that stick out from a vertex v into empty
space, but those are formally the same as loops at v. This defines
a graphic(al) 2-polymatroid M = (U, f).

The theory of polymatroids ignores the notion of “vertex” apart
from the definition of the rank function f . Hence all graphs com-
posed of m isolated vertices define the empty 2-polymatroid. To
preserve the distinction, we define an m-graph to be a graph with
circles allowed. The empty m-graph is denoted by � and called a
“wisp.” Every m-graph specializes to a unique graphical polyma-
troid but we can include isolated nodes when thinking of it as a
graph (plus circles).

2

Explosion and Contraction Again

We revisit the definition of “exploding” an edge e = (u, v) in a
graph G from the previous post in this series:

• If there are an odd number of edges incident only to u and/or
v, then u and v become a circle and a wisp, else they become
two wisps.

• Any other edge incident to u or v from another vertex t be-
comes a loop at t.

If we ignore vertices, then the rank function f ′ of the resulting m-
graph G′ is such that for all subsets A′ of its edge set E′ = E \{e},

(1) f ′(A) = f(A ∪ {e})− f({e}).

One can verify that the “explosion” description obeys (1). Glancing
at our picture helps—we have varied the one in the previous post
by showing how a loop at one exploded node becomes a circle:

The equation (1), however, is more fundamentally natural. The
simple extension

f ′(A) = f(A ∪ T)− f(T)

defines the matroid contraction by any subset T of E. When T =
{e}, it supersedes the graph-theory notion of contraction G/e in
matroid contexts. Since we are talking about both, we will write
G\\e for the matroid version. The \\ notation conveys that the
edge e gets deleted emphatically.

3

https://rjlipton.wordpress.com/2019/06/17/contraction-and-explosion/

The Polynomial QG(x)

In a previous post we derived a recurrence for the amplitude a(G) in
terms of explosion. The presence of circles and use of the function
f(e) now allows us to write it as:

a(G) = a(G \ e)− 1

f(e)
a(G\\e).

We can omit the “(−1)r” from the previous version because the
circles keep track of this. The rule is valid even when e is a self-
loop, using f(e) = 1. The following is thus a complete basis:

• For a wisp � or isolated node •, a(�) = a(•) = 1.

• For a circle ©, a(©) = −1.

• IfG is the disjoint union ofG1 andG2, then a(G) = a(G1)a(G2).

To get more mileage out of this, we want to emulate William Tutte’s
idea and define a polynomial QG(x) whose evaluation at x = 1
gives a(G), and whose other evaluations may give more informa-
tion. Without further ado:

Definition 0.1. For an m-graph G, define its amplitude poly-
nomial QG(x) inductively by:

• QG(x) = (−1)kx`, if G consists of ` isolated nodes, k circles,
and any number of wisps.

• For any edge e,

(2) QG(x) = QG\e −
1

f(e)
QG\\e.

Recall f(e) = 1 if e is a loop, else f(e) = 2. When G consists of a
single node with a loop, the recursion gives Qloop = x − 1. When
it is a single edge e between two nodes, we get Qe(x) = x2 − 1

2 .

If we have a single node v with two loops, something portentous
happens. Exploding one of the loops e leaves a circle. Removing e
still leaves one loop. So we get:

QG(x) = Qloop(x)−Q©(x) = x− 1− (−1) = x.

This agrees with the value on one isolated node. Similarly, if G
has just a double edge between two nodes u and v, then one edge

4

https://rjlipton.wordpress.com/2019/06/17/contraction-and-explosion/

e becomes a circle upon exploding the other edge, so recursing on
the other edge makes

QG(x) = Qe(x)− 1

2
Q© = x2 − 1

2
+

1

2
= x2.

Thus the double edge gives the same result as having two isolated
nodes. The upshot is that equation (2) naturally treats edges mod-
ulo two. We can recurse on a non-edge as if it were a double-edge,
and the circle left by the explosion (i.e., by the matroid contraction)
becomes a −1 multiplier on the entire remainder of that branch of
the recursion. The circle thus becomes a placeholder for calcu-
lating phase flips and cancellations, which is why we believe the
matroid notions are useful in analyzing quantum processes.

It may not be obvious, however, that QG(x) is well-defined when
G has more than one edge. That is, does it come out the same for
any order of choosing edges e for the recursion? We will prove this
by connecting QG to the polynomial SG(u, v) mentioned above.

Relation to the Rank-Generating Func-
tion SG(x, y)

The original non-recursive definition of the rank-generating func-
tion of a graphical 2-polymatroid G = (E, f) is:

(3) SG(u, v) =
∑
A⊆E

uf(E)−f(A)v2|A|−f(A).

We compute some basic cases:

1. For the empty graph �, or any graph G with only isolated
nodes, we have only the term A = E = ∅, so SG(u, v) = 1.

2. For a circle ©, we still have f(©) = 0 even though E 6=
∅. The term A = ∅ still gives 1, but A = E now gives
u0−0v2−0 = v2. Thus S©(u, v) = 1 + v2.

3. For the graph G consisting loop at a single node, we have
f(E) = 1, so the term for A = ∅ becomes u1−0v0−0 = u. And
the term for A = E is u1−1v2−1 = v. So SG(u, v) = u+ v.

4. For G with a single edge between two nodes, SG(u, v) =
u2−0v0−0 + u2−2v2−2 = u2 + 1.

Note the symmetry in u and v between cases 2 and 4 in particu-
lar, which could be brought out more by discussing how (graphical

5

poly-)matroids foster higher notions of duality than graphs do. Our
theorem breaks this symmetry, but perhaps there is a deeper un-
derlying law that would restore it:

Theorem 0.2. For any m-graph G with n nodes, of which k are
isolated, and all x ∈ C, taking α = −

√
2i,

(4) QG(x) =

(
1

α

)n
SG(αx,−α)(αx)k.

Proof. Call RG(x) the right-hand side of (4). Note first that if G
consists only of ` isolated nodes then SG(·, ·) = 1 so the right-hand
side becomes (

1

α

)`
(αx)` = x` = QG(x).

Now we verify the other base cases:

1. R�(x) = (1/alpha)0 · 1 · (αx)0 = 1 = Q�(x).

2. R© = 1 · (1 + (−α)2) · 1 = 1− 2 = −1 = Q©(x).

3. Rloop = 1
α (αx− α) = x− 1 = Qloop(x).

4. ForG with a single edge between two nodes, RG(x) = (1
α

2
)((αx)2+

1) = x2 + 1
α2 = x2 − 1

2 = QG(x).

To verify the recursion, we note facts observed by Oxley and Whit-
tle as consequences of (3):

(a) If e is a loop at a vertex with other incident edges, so f(e) = 1
and f(E \ {e}) = f(E), then

SG(u, v) = SG\e(u, v) + vSG\\e(u, v).

(b) If e is a pendant edge, i.e., between a node of degree 1 and a
node of larger degree, so f(e) = 2 and f(E \{e}) = f(E)−1,
then

SG(u, v) = uSG\e(u, v) + SG\\e(u, v).

(c) If e is an edge between nodes of degree at least 2, so f(e) = 2
and f(E \ {e}) = f(E), then

SG(u, v) = SG\e(u, v) + SG\\e(u, v).

6

Every connected graph other than those we put in our basis has
an edge e that falls into one of these three cases. So we can prove
(4) by induction on them. The details convey why we need to use
the particular value α = −

√
2i but are otherwise straightforward

and tedious, so we’ve put them in a longer PDF version. Since the
equation (3) for SG involves no recursion, this also proves that the
recursive definition of QG(x) is confluent.

Note how the sum in the case (c) echoes the sum defining the
Tutte polynomial, but with “explosion” in place of ordinary graph
contraction. A more salient difference is that whereas the Tutte
polynomial is the same on all n-vertex trees, QG(x) differs on them.

What Does It All Mean?

As remarked in Noble’s paper, Oxley and Whittle noted the signif-
icance of a host of specializations of the SG(u, v) polynomial. We
suppose G has n nodes with ` isolated, so f(E) = n − `, and we
put m = |E|. The first two presume ` = 0.

1. SG(0, 0) is the number of perfect matchings of G.

2. SG(0, 1) is the number of spanning subsets of E (not neces-
sarily spanning trees).

3. SG(1, 0) is the number of (partial) matchings of G.

4. SG(−u,−v) = (−1)n−`SG(u, v).

5. SG(1
x , x) = (1 + x2)mx`−n (for x 6= 0).

6. The generating function
∑
k≥0mkx

k for the number mk of

matchings of size k equals x(n−`)/2SG(1√
x
, 0) (valid for real

x 6= 0).

7. The generating function
∑
k≥0 rkx

k for the number rk of sub-

sets of E spanning k vertices equals xn−`SG(1
x , 1) (again valid

for real x 6= 0).

Also interesting is that if ` = 0 and we delete each of the m edges
independently with probability (1 − p), then the probability that
the deletions did not cause any isolated vertices is

(1− p)m−n/2pn/2SG(0,

√
p

1− p
).

7

Of course, this is classical probability. What interests us here is
the import of SG for quantum amplitude and probability. We have
already observed in previous posts that QG(1) gives the amplitude
for an outcome in a special kind of quantum circuit. This means
that SG(α,−α) gives the same information, where α2 = −2.

We are curious about is the significance of SG(αx,−α) for other
values of x besides x = 1. The complex value α = −

√
2i takes us

outside the real-valued domain of Noble’s paper. His proof that
most real cases are #P-hard to compute does not extend because
α2 = −2, which causes a denominator in his proof to vanish. Thus
SG(αx,−α) and hence QG(x) may be polynomial-time computable
for various other real x.

The specializationQG(x) = SG(αx,−α) (times other easily-computed
factors) does not seem to intersect with any of the above cases.
Hence the field is wide open for finding new interpretations of it.
Whatever we find, however, is bound to relate to the analysis of
quantum circuits. It might help fulfill the aim in our post drawing
analogy to Gustav Kirchhoff’s laws for electrical circuits.

Open Problems

How useful is the matroid-based framework for analyzing graph
entities associated to quantum circuits?

We had thought to extend it by analogy with the Tutte polyno-
mial T (x, y) having base monomials xqyr for graphs composed of q
“bridge” edges and r loop edges at otherwise-isolated nodes. One
can base a polynomial RG(x, y, z, w) on monomials

x`yrzswt

for G composed of ` isolated nodes, r disjoint single-node loops, s
circles, and t “wisps.” The recursion is the same:

RG(x, y, z, w) = RG\e(x, y, z, w)− 1

f(e)
RG\\e(x, y, z, w).

The point is that in the explosion case, the inclusion of the factor
w2 if the explosion leaves two wisps, wz if it leaves a wisp and
a circle, or z2 for two circles, keeps RG homogeneous of degree
n for an n-vertex graph. The conditions for this recursion to be
confluent, however, essentially leave something equivalent to QG(x)
with w as a homogenizing variable. In particular, this idea appears
not to yield a two-variable polynomial that gives more leverage.

8

https://rjlipton.wordpress.com/2019/06/04/a-quantum-connection-for-matrix-rank/
https://rjlipton.wordpress.com/2019/06/10/net-zero-graphs/
https://rjlipton.wordpress.com/2019/06/10/net-zero-graphs/

Extra: Rest of the Main Proof

Proof. The game is to instantiate the three recursion cases of SG(u, v):

SG(u, v) = SG\e(u, v) + vSG\\e(u, v) (when e is a loop)

SG(u, v) = uSG\e(u, v) + SG\\e(u, v) (when e is a pendant edge)

SG(u, v) = SG\e(u, v) + SG\\e(u, v) (when e is a normal edge)

with u = αx and v = −α, where α = −
√

2i. According to these
three respective cases (a,b,c) we analyze as follows.

(a) No isolated node is introduced either by removing or explod-
ing e, so the (αx)` term factors through and we can ignore
it. Forming G\\e reduces n by 1. Thus we get:

QG(x) = QG\e(x)−QG\\e(x)

= (
1

α
)nSG\e(αx,−α)− (

1

α
)n−1αSG\\e(αx,−α)

= (
1

α
)n[SG\e(αx,−α) + (−α)SG\\e(αx,−α)]

= (
1

α
)nSG(αx,−α).

(b) Removing e causes one more isolated node, but while explod-
ing e reduces n by 2, it does not isolate any nodes, so:

QG(x) = QG\e(x)− 1

2
QG\\e(x)

= (
1

α
)nSG\e(αx,−α)αx− 1

2
(

1

α
)n−2αSG\\e(αx,−α)

= (
1

α
)n[SG\e(αx,−α)αx− 1

2
α2SG\\e(αx,−α)]

= (
1

α
)n[(αx)SG(αx,−α) + SG\\e(αx,−α)]

= (
1

α
)nSG(αx,−α).

(c) Here removing e causes no more isolated nodes. Nor does
exploding e, though we should note that exploding one edge
of the three-node triangle graph creates a double-loop at the
opposite vertex w. This is equivalent to isolating w, but the
equivalence is already handled by our treatment of the base
cases and by multiplicativity for disjoint components. So we

9

can calculate:

QG(x) = QG\e(x)− 1

2
QG\\e(x)

= (
1

α
)nSG\e(αx,−α)− 1

2
(

1

α
)n−2αSG\\e(αx,−α)

= (
1

α
)n[SG\e(αx,−α)αx− 1

2
α2SG\\e(αx,−α)]

= (
1

α
)n[(αx)SG(αx,−α) + SG\\e(αx,−α)]

= (
1

α
)nSG(αx,−α).

This completes the proof.

Extra: Direct Proof of a(G) as a General-
ized Tutte Invariant

We show how to represent the amplitude a(G) of a graph (or m-
graph) G as a generalized Tutte invariant. We could infer this from
SG(u, v) via our characterization of QG(x) but we show it directly
for a(G). We want to capture the numerator c0 − c1, where c0 is
the count of colorings that make an even number of B-B edges and
c1 gives the count of colorings that make an odd number of B-B
edges.

With the rank function fG defined as above, We show that a(G)
falls into the first category of Theorem 4.1 in Noble’s paper (which
is Proposition 3.8 in Oxley and Whittle’s with parameters

(r, s, t; a, b, c, d;m,n) = (1/2,−1, 0; 1,−1, 1,−1/2; 1,−1/2).

This gives

a(G) =

(
−1

2

)n/2
S(fG;−

√
2i,
√

2i),

where
S(fG;x, y) =

∑
A⊆E

xf(E)−f(A)y2|A|−f(A).

This in turn further simplifies to

a(G) =
∑
A⊆E

(−2)|A|

2fG(A)
.

Noble shows that computing S(fG;x, y) is #P-hard for any con-
stant rational x, y whenever xy 6= 1. However, our complex irra-
tional point (−

√
2i,
√

2i) has xy = 2 and evades his proof because
having y2 = −2 makes a denominator vanish.

10

https://bura.brunel.ac.uk/bitstream/2438/818/1/polymatroid.pdf
http://homepages.mcs.vuw.ac.nz/~whittle/pubs/Tutte_invariants_of_2-polymatroids.pdf

Following Noble’s paper, let M denotes the class of all graphic 2-
polymatroids and call an edge e an m-separator if the endpoints of
e and the set of endpoints of edges in E \ e are disjoint—i.e., if e
is an isolated edge.

Then φ : M → C is said to be a generalized Tutte invariant (for
graphic 2-polymatroids) if there exist constants (r, s, t, a, b, c, d,m, n) ∈
C9 such that

φ(U2,1) = r, φ(U0,1) = s, φ(U1,1) = t,

and for any graphic 2-polymatroid (E, f),

φ(f) = φ(f \ (E \ e))φ(f \ e) if e is a separator of f ;

and if e is not an m-separator,

φ(f) =

 aφ(f \ e) + bφ(f/e), if f(E \ e) = f(E) and f(e) = 1;
cφ(f \ e) + dφ(f/e), if f(E \ e) = f(E)− 1 and f(e) = 2;
mφ(f \ e) + nφ(f/e), if f(E \ e) = f(E) and f(e) = 2.

Note how this definition tracks the recursion cases for SG in the
above full proof. We imitate the two-term recursion on edge dele-
tion and edge explosion for c(G) = c0−c1 (so that a(G) = c(G)/2|V |):

c(G) = c(G)
u, v are both black

+ c(G)
at least one of u, v is white

= c(G)
u, v are both black

+ c(G \ e)
at least one of u, v is white

= c(G \ e)
at least one of u, v is white

− c(G \ e)
u, v are both black

= c(G \ e)− 2c(G \ e)
u, v are both black

= c(G \ e)− 2c(G\\e),

and in turn

a(G) =
c(G \ e)

2|V |
− 2

4
· c(G/e)

2|V |−2
= a(G \ e)− 1

2
a(G\\e).

If e is a self-loop, we can use a similar argument to derive

a(G) = a(G \ e)− a(G\\e).

Now we can start working out those constants for φ(G) = a(G).
Recall that the rank value f(A) in a graph G is the number of
distinct endpoints of edges in set A.

r = a(e) =
1

2
s = a(©) = −1

t = a(loop) = 0.

11

If e is not a separator, we only have two cases to consider–if e is a
self-loop or an edge connecting two vertices:

• if f(E\e) = f(E) and f(e) = 1, then this edge e is a self-loop
and from above we have a = 1, b = −1;

• if f(E \ e) = f(E)− 1 and f(e) = 2, or f(E \ e) = f(E) and
f(e) = 2, then e is an ordinary edge making c = m = 1 and
d = n = − 1

2 .

Overall, this gives the set of parameters and hence the desired Tutte
representation for a(G) as stated above.

12

