
Predicating Predictivity
Plus predicaments of error modeling

Sir David Spiegelhalter is a British statistician. He is a strong voice
for the public understanding of statistics. His work extends to all
walks of life, including risk, coincidences, murder, and sex.

Today we talk about extending one of his inventions.

His invention has to do with grading the performance of people
and models that make predictions. A scoring rule grades how
often predictions are right. But it may not tell how difficult the
situations are. It is easy to look good with predictions when they
start with a high chance of success. A weather forecaster predicting
sunny-versus-rainy will be right more often in Las Vegas than in
Boston. Quoting this FiveThirtyEight item:

If you want to have an easy life as a weather fore-
caster, you should get a job in Las Vegas, Phoenix or
Los Angeles. Predict that it won’t rain in one of those
cities, and you’ll be right about 90 percent of the time.

In a 1986 paper, for a particular scoring rule defined by Glenn Brier
in 1950, Spiegelhalter worked out how to equalize the forecaster
grading. He applied his Z-test not to weather like Brier did but
to medical prognoses and clinical trials.

What I am doing with a small group of graduate students in Buffalo
is trying to turn Spiegelhalter’s kind of Z-test around once more. If
a forecaster fares poorly, we will try to flag not the model but the
behavior of the subjects being modeled. In weather we would want
to tell when Mother Nature, not the models, has gone off the rails.
Well, we are actually looking for ways to tell when a human being
has left the bounds of human predictability for reasons that are
inhuman—such as cheating with a computer at chess. And maybe
it can shed more light on whether our computers can possibly cheat
with quantum mechanics.

Prediction Scores

Let’s consider situations t in which the number ` = `t is usually
more than 2, that is, usually more than “rain” or “no rain.” The
forecaster lays down projections ~q = ~qt = (q1, . . . , q`) for the chance
of each outcome. If outcome r happens, then the Brier score for
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that forecast is

(1) B~q(r) = (1− qr)2 +
∑
j 6=r

q2j .

If the forecaster was certain that r would happen and so put qr = 1,
all other qj = 0, then the score would be zero. Thus lower is better
for the Brier score.

If you put probability qr < 1 on the outcome that happened, then
you get penalized both for the difference and for the remaining
probability which you put on outcomes that did not happen. It is
possible to decompose the score in another way that changes the
emphasis:

B~q(r) = 1 +Q− 2qr where Q =
∑̀
j=1

q2j .

Then Q is a fixed measure of how you spread your forecasts around,
while all the variability in your score comes from how much stock
you placed in the outcome that happened. The worst case is having
put qr = 0, whereupon your Brier penalty is 2.

We would like our forecasts always to be perfect, but reality gives
us situations that are inherently nondeterministic—with unknown
“true probabilities” ~pt = (p1, . . . , p`). The vital point is that the
forecaster should not try to hit r = rt on the nose at every time t
but rather to match the true probabilities. Once we postulate ~p,
the expected Brier score is

E~p[B
~q] =

∑̀
i=1

piB
~q(i)

=
∑̀
i=1

pi(1− 2qi +Q)

= 1 +Q− 2
∑̀
i=1

piqi.

This is uniquely minimized by setting qi = pi for each i, which
defines B as a strictly proper scoring rule. Without the second
term

∑
j 6=r q

2
j in (1) the rule would not be proper for ` > 2. When

~q = ~p, Q becomes equal to P =
∑`
j=1 p

2
j . Thus P represents an

unavoidable prediction penalty from the intrinsic variance. If all
pi are equal, pi = 1

` , then the expected score cannot be less than
1− 1

` .

2



Log-Likelihood Scoring

Another popular scoring rule is the log-likelihood rule:

L~q(r) = log(
1

qr
).

Now if you put qr = 0 and outcome r happens, your penalty is
infinite. Your expected score is:

E~p[L
~q] =

∑̀
i=1

pi log(
1

qi
).

This is the cross entropy from the projected probabilities to the
true ones, which we discussed at the end of our recent post on
quantum supremacy. It hides a term analogous to P above. To
wit,

E~p[L
~q]−

∑̀
i=1

pi log(
1

pi
) =

∑̀
i=1

pi ln(
pi
qi

)

is the Kullback-Leibler divergence from ~q to ~p. This is nonnegative
and zero only when ~q = ~p, which also implies that the log-likelihood
rule is strictly proper. The subtracted-off entropy term thus rep-
resents an unavoidable penalty in L~q(r).

One way to generalize these scores is to put a cost function f(i) on
the outcomes. Then

B~qf (r) = f(r)(1− qr)2 +
∑
j 6=r

f(j)q2j

remains a proper scoring rule. However,

L~qf (r) = f(r) log(
1

qr
)

is generally no longer proper. To see why, suppose {f(i)pi} is again
a probability distribution. Then the expectation

E~p[L
~q] =

∑̀
i=1

pif(i) log(
1

qi
),

is minimized by setting qi = pif(i) rather than qi = pi for each i.
Nevertheless, the “multinomial” log-likelihood rule

L′f (r) = f(r) log(
1

qr
) +

∑
j 6=r

f(j) log(
1

1− qj
)

= f(r) ln(
1− qr
qr

) +
∑̀
j=1

f(j) log(
1

1− qj
)
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is once again strictly proper. The second term is again an un-
avoidable penalty, while ln( 1−qr

qr
) is the (negative) logit of the true

outcome. Note, both ln and log mean natural logarithm but we
use the latter to guarantee that the value is non-negative.

Spiegelhalter’s Z

Spiegelhalter’s z-score neatly drops out the unavoidable penalty
term by taking the difference of the score with the expectation.
Schematically it is defined as

Z[B] =
B − E[B]√

Var[B]
,

where Var[B] means the projected variance E~p[B
2]−(E~p[B])2. How-

ever, here is where it is important to notate the whole series of fore-
casting situations t = 1, . . . , T with outcomes rt for each t. The
actual statistic is

(2) Z~p[B
~q] =

∑T
t=1B

~qt(rt)− E~pt [B
~qt ]√∑T

t=1 Var~pt [B
~qt ]

.

The denominator presumes that the forecast situations are inde-
pendent so that the variances add. The numerator expands to be

T∑
t=1

(
2

`t∑
i=1

pi,tqi,t

)
− 2qr,t.

The original application is a confidence test of the “null hypothesis”
that the projections ~q are good. Thus we plug in pi,t = qi,t for all
t and i so that we test

Z~q[B
~q] = 2

∑T
t=1

(∑`t
i=1 q

2
i,t

)
− qr,t√∑T

t=1 Var~qt [B
~qt ]

.

To illustrate, suppose we do ten independent trials of an event
with four outcomes whose true probabilities are (0.1, 0.2, 0.3, 0.4).
The sum in parentheses is 10(0.01 + 0.04 + 0.09 + 0.16) = 3. If the
outcomes conform exactly to these probabilities then qr,t equals 0.1
once, 0.2 twice, 0.3 three times, and 0.4 four times. This exactly
cancels the 3, so ~q = ~p makes Z~q[B

~q] = 0, as expected. Most trials
will give a nonzero numerator, but in the long run, the numerator
divided by T tends toward zero and the denominator scales to
match it, thus keeping the Z-statistic normally distributed.
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A high Z, on the other hand—highly positive or highly negative—
indicates that the forecasting is way off. That (2) is an aggregate
statistic over independent trials justifies treating the Z-values as
standard scores. This applies also to Z-tests made similarly from
other scoring rules besides the Brier score. The test thus becomes
a verdict on the model. High Z-values on certain subsets of the
data may reveal biases.

Our idea is the opposite. Suppose we know that the forecasts are
true, or suppose they have biases that are known and correctable
over moderately large data sets. We may then be able to fit Z[B]
as an unbiased estimator (of zero) over large training sets. Then it
can become a judgment of whether the data has become unnatural.

Why This Z?

As I have detailed in numerous posts on this blog, my system for
detecting cheating with computers at chess already provides several
statistical z-scores. Why would I want another one?

The motive involves the presence of multiple strong chess-playing
programs, each with its own quirks and distribution of values for
moves. They are used in two different ways:

1. As inputs telling the relative values vi of moves mi, which
my model converts into its probability projections qi.

2. As output predicates telling how often the player chose the
move recommended by a specific program and/or quantifying
the magnitude of error for different played moves.

Having multiple engines helps point 1. My intent to blend the
values vi from different engines has been blunted by issues I dis-
cussed here. Thus I now have to train my model separately (and
expensively) for each (new version of each) program. I can then
blend the qi, but point 2 still remains at issue: My tests measure
concordance with a specific program. Originally the program Ry-
bka 3 was primary and Houdini 4B secondary. Now Stockfish 7 is
primary and Komodo 10.0 secondary—until I update to their lat-
est versions. The second engine is supposed to confirm a positive
result from the first one. This already means that my model is not
trying to detect exactly which program was used.

Nevertheless, my results often vary between testing engines. The
engines compete against each other and may be crafted to disagree
on certain kinds of moves. They agree with each other barely 75–
80% in my tests. I would like to factor these differences out.
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The Spiegelhalter Z-test appeals because its reference is not to a
particular chess program, but to the prediction quality of my model
itself—which per point 1 can be informed by many programs in
concert. It gives a way to predicate predictivity. A high value will
attest that the sequence of played moves falls outside the range of
predictability for human players of the same rated skill level.

The Method

To harness Z[F ] for some scoring rule F , we need to quantify the
nature of my model’s qi projections. In fact, my model has a clear
bias toward conservatism in judging the frequency of particular
non-optimal moves. This is discussed in my August post on my
model upgrade and shown graphically in an appended note on why
the conservative setting of a “gradient” parameter is needed to
preserve dynamical stability. The fitting offsets this in a way that
creates an opposite bias elsewhere. I hope to correct both biases
at the same stroke by a specific means of modeling how the qi err
with respect to the postulated true probabilities pi.

We postulate an original source of error terms εi all i.i.d. as
N (0, δ2), where δ governs the magnitude of Gaussian noise. This
noise can be transformed and related in various ways, e.g.:

1. qi = pi ± εi,

2. qi = pi(1± εi),

3. 1
qi

= 1
pi
± εi,

4. log( 1
qi

) = log( 1
pi

)± εi,

5. log( 1
qi

) = log( 1
pi

)(1± εi),

6. ln( qi
1−qi ) = ln( pi

1−pi )± εi.

There are further forms to consider and it is not yet clear from data
within my model which one most applies. We would be interested
in examples where these representations have been employed and
in observations about their natures.

Given any error terms, we can write each pi as a function of qi and
εi. One issue is having at most ` − 1 degrees of freedom among
ε1, . . . , ε`, owing to the constraint that the qi as well as pi sum
to 1. We handle this by choosing some fixed k as the “pivot” and
using the constraints to eliminate pk and qk, leaving the other error
terms free. In all cases, the proposed method of defining what we
notate as Z~q,~ε[F ] is:
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• Substitute the terms with qi, εi for each free pi into Z~p[F
~q].

• Compute the expectation over εi ∼ N (0, δ2) for the numera-
tor and denominator of (2), separately.

• Holding the other previously-fitted model parameters in place,
fit δ so that Z~q,~ε[F ] is zero over the training set (or sets, for
each level of Elo rating R, so δ becomes a function of R).

If the resulting Z-scores parameterized by δR make sense, the last
step will be adjusting them to conform to normal distribution, via
the resampling process mentioned recently here and earlier here.
We are not there yet. But observations from Spiegelhalter tests
with ~q = ~p (equivalently, with δR fixed to zero) suggest that the
resulting single, authoritative, “pure” predictivity test may rival
the sharpness of my current tests involving specific chess porgrams.

Error Quirks and Queries

To see a key wrinkle, consider the first error form. It is symmet-
rical: pi = qi ± εi. When we substitute qi + εi for pi and take
Eεi∼N (0,δ2)[· · · ], the symmetry of εi around 0 makes it drop out
of the numerator of (2), and out of everything in the denomina-
tor except one place where p2i becomes (q2i + 2εqi + ε2i ). There is
hence nothing for δ to fit and we are basically left with the original
Spiegelhalter Z.

In the second form, however, we get pi = qi · 1
1+εi

. If we presume δ

small enough to make the distribution of N (0, δ2) outside (−1, 1)
negligible, then we can use the series expansion to approximate

pi ≈ qi(1− εi + ε2i − ε3i + ε4i ).

Under normal expectation, the odd-power terms drop out (so their
signs don’t matter) and we get

Eεi∼N (0,δ2)[qi(1− εi + ε2i − ε3i + ε4i )] = qi(1 + δ2 + 3δ4).

This credits pi as being greater than qi. Provided the projections
for the substituted indices i were generally slightly conservative,
this has hope of correcting them.

Already, however, we have traipsed over some pitfalls of method-
ology. One is that the normal expectation

Eε∼N (0,δ2)[
1

1 + ε
] = +∞,
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regardless of how small δ is. For any δ, regions around the pole
ε = −1 get some fixed finite probability. Another is the simple
paradox of our second form saying:

qi is an unbiased estimator of pi, but pi is not an
unbiased (or even finite) estimator of qi.

A third curiosity comes from the fourth error form. It gives qi =
pie

εi , so pi = qie
−εi . We have

Eε∼N (0,δ2)[e
bε] = e0.5b

2δ2

exactly, without approximation. Again the sign of εi does not
matter. So we get

E~ε[pi] = qie
0.5δ2 > qi.

But by the original fourth equation we get

E~ε[qi] = pie
0.5δ2 > pi.

So we have E[qi] > pi and E[pi] > qi, with both expectations being
over the same noise terms. This is like the famous Lake Wobegon
syndrome. What it indicates is the need for care in where and how
to apply these error representations.

Open Problems

Have you seen this idea of directly testing (un)predictability in the
literature? Might it improve the currently much-debated statistical
tests for quantum supremacy?

Which error model seems most likely to apply? Where have the
paradoxes in our last section been noted?
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