
A view of complexity theory, with a “concrete” open
problem

Kenneth W. Regan

July 11, 2007

Computational complexity theory is the study of information flow and the effort required
for it to reach desired conclusions. Computational models like cellular automata, Boolean or
algebraic circuits, and other kinds of fixed networks exemplify this well, since they do not have
“moving parts” like Turing machine tape heads, so the flow’s locations are fixed. Measures of
effort include the time for the flow, the amount of space or hardware needed, and subtler consid-
erations such as time/space to prepare the network, or energy to overcome possible dissipation
during its operation. These models and measures have fairly tight relations to Turing machines
and their familiar complexity measures.

For an example and open problem, consider the general task of moving all “garbage bits”
to the end of a string, leaving the “good bits” in their original sequence. We can model this
as computing the function f : { 0, 1, 2 }∗ −→ { 0, 1, 2 }∗ exemplified by f(1020212) = 1001222,
f(2200) = 0022, f(101) = 101, etc., with 0, 1 as “good bits” and 2 as “garbage.” A rigorous
inductive definition, using e for the empty string, is f(e) = e, f(0x) = 0f(x), f(1x) = 1f(x),
and f(2x) = f(x)2. This is the “topological sort” of the partial order B = { 0 < 2, 1 < 2 } that
is stable, meaning that subsequences of incomparable elements are preserved. The problem is,
can we design circuits Cn, each computing f(x) on strings x of length n, that have size O(n)?

The circuits Cn have input gates labeled x1, . . . , xn which receive the corresponding “trits”
(0, 1, or 2) of the input string x, and output gates y1, . . . , yn giving y = f(x). The first question
is, what interior computational gates can Cn have? A comparator gate g for a partial order
(P,<) has two input and two output wires, maps (a, b) either to (a, b) or (b, a), and never maps
to (d, c) when c < d. The unique stable comparator gP maps (a, b) to (a, b) unless b < a. The
following slightly extends the famous 0-1 law for comparator networks:

Theorem 1. If a circuit Cn of comparator gates computes f(x) correctly for all x ∈ { 0, 2}n (not
even including any 1s), then for every partial order (P,<), the circuit CP with each comparator
replaced by gP computes the stable topological sort of P .

Proof. First suppose CP errs for a total order (P,<). Then there are x, y ∈ P n such that
CP (x) = y, but for some j, yj + 1 < yj. Take the permutation p such that xi = yp(i) for all
indices i. Define a binary string y′ ∈ { 0, 2 }∗ by y′i = 0 if yi < yj, y

′
i = 2 otherwise, and x′ by

x′i = y′p(i) for all i. Then Cn(x′) = y′ (exercise: prove this by induction taking gates one at a
time), contradicting that the original Cn was correct on { 0, 2 }∗.

For (P,<) not a total order, an error CP (x) = y (which might violate only stability) is also
an error in the total order (Px, <

′) with Px = { (a, i) : xi = a } and (a, i) <′ (b, j) if a < b or a
is not comparable to b and i < j. []

1

Corollary 2. Circuits Cn of comparator gates computing f require size n log2(n)−O(n). []

This follows by applying the standard sorting lower bound to CP . It’s interesting that we did
not need 1s in x to argue stability, and the lower bound allows gates g in Cn to be arbitrary
when either input is 1.

For general circuits, however, the argument doesn’t hold, and all bets are off! To see why,
consider sorting the total order { 0 < 1 < 2 }. Clever O(n)-size circuits can count the numbers
a, b, c of 0s, 1s, and 2s in the input string x, respectively, and then assemble the correct output
y = 0a1b2c. For the basic idea see [Muller-Preparata, JACM 1975], and various sources on the
“Dutch National Flag Problem.” Applying this counting idea to our poset B reduces our task
to “nice” strings z of length N = 2k with exactly N/2 2s.

Theorem 3. If s(N)-size circuits DN can compute f(z) for “nice” z, then f has circuits of size
at most s(4n) +O(n).

Proof. We can build O(n)-size circuits En that on inputs x of length n count b, c as above and
find k such that m = 2k−1 is the least power of 2 above n. Make En(x) output z = x1m+c−n2m−c,
which gives |z| = N < 4n. Then compute y′ = DN(z) and re-use the computed b, c,m to pluck
off the n bits of f(x). []

This reduction to nice z enhances the “flow” metaphor. The m-many 2s in z can be advance-
routed to the last m places of y′, so the whole issue is how the m-many 0s and 1s in z flow together
into the first m places of y′. Must this flow progress (without loss of circuit-size generality)
by “squeezing out 2s” in an intuitively plane-filling fashion, allowing “mileposts” whose forced
spacing might mandate having n log2(n)−O(n) gates? Or can linear-size networks rise above the
planar view? No one I’ve asked has known, and lack of them frustrates a desired general linear-
size circuit simulation of my “Block Move” model. Issues of “self-routing superconcentrators”
(see N. Pippenger, STOC’93) may be involved. Nor do I know nicer descriptions of O(nlogn)-
sized circuits than “use ancillas to tag bits of x and work in Px as in the proof of Theorem 1,
employing ideas of Theorem 3 and/or mapping into the O(nlogn)-sized Ajtai-Komlos-Szemeredi
networks” (STOC’83). Those seeking an o(nlogn) upper bound may be my guest, but those
believing a super-linear circuit lower bound must reflect that no such bounds are known for
string functions whose graphs belong to NP or to E.

The above inductive definition of f yields a linear-time algorithm on any model that sim-
ulates each operation of a double-ended queue in O(1) time. But is booting a 2 to the rear in
f(2x) = f(x)2 really in constant time, even amortized? True, our technical issues shrink away
on passing from linear to polynomial time, so all this may seem to have nothing to do with P ver-
sus NP. But au-contraire the Baker-Gill-Solovay “oracle” obstacle may mean nothing more than
that standard “diag-sim” and timing techniques are insensitive to internal information flow. The
“Natural Proofs” obstacle may ultimately say only that network-preparation/“nonuniformity”
is a subtly powerful consideration. Honing tools for information-flow analysis on incrementally
more-general cases that yield super-linear lower bounds may be the walk to walk before trying
to run.

2

