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Quantum Computers

“A Particular Wave of the Future. . . ”

Apparently capable of out-performing current computers vastly at
certain tasks. . .

. . . most notably Factoring, Discete Logarithm, and simulating
quantum systems.

If, that is, we can build them scalably, and if those tasks are not
classically easy.

Central notion: Quantum Circuits.

Hardly the only player—quantum adiabatic machines are closer to
built and quantum communication systems are already deployed.
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Boolean Circuits Have. . .

n inputs x1, . . . , xn ∈ {0, 1}n

r ≥ 1 outputs z1, . . . , zr

Maybe h-many nondeterministic inputs y1, . . . , yh?

m gates g1, . . . , gm (wlog. all NAND)

Up to 2m+ r wires (if fan-in ≤ 2)

Each wire has a definite 0-1 value.

Bits have no common identity across wires, but we can create a
universal layout for Boolean circuits in which they do retain
identity. . .
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Quantum Circuits: similar picture, 90◦ flipped.

Must be reversible. In certain circumstances values y1, y2, . . . can be
copied to extra lines as “f(x).” Then reversing the gates re-creates the
input x so the whole mapping is invertible (“copy-uncompute trick”).
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n input qubits x1, . . . , xn ∈ {0, 1}n (What’s a qubit?)

r ≥ 1 output qubits z1, . . . , zr (think r = 1 or r = n)

s− n ancilla qubits

m-many quantum gates (arities can be 1,2,3)

Maybe h of them are Hadamard gates, which supply
nondeterminism.

Qubits retain identity as wires transit gates.

Each wire need not have a definite 0-1 value, owing to
entanglement.

Under the hood are S = 2s complex entries of a unit state vector.
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A qubit is a physical entity that combines as described by a 2-vector
(a, b) = ae0 + be1 over C and yields two observations: e0 with
probability |a|2 or e1 with probability |b|2.
A qutrit yields 3 results and is (a, b, c) where |a|2 + |b|2 + |c|2 = 1.
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Quantum Gates

A k-ary gate can be represented by a K ×K unitary matrix,
K = 2k.

Common gates for k = 1, K = 2:

I =

[
1 0
0 1

]
identity

X =

[
0 1
1 0

]
negation, aka. NOT

H = 1√
2

[
1 1
1 −1

]
Hadamard gate.

Only non-permutation gate needed for universality.

But also common: Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
.
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Binary Gates

With k = 2 qubits, K = 4. “Controlled Not” showing quantum
coordinates:

CNOT =

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Permutation (1 2 4 3), swap (3 4). Also called CX.

CNOT ◦ (H⊗ I) =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


Applied to e00 = (1, 0, 0, 0)T gives 1√

2
(e00 + e11). EPR Entanglement.
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Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.



Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.



Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.



Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.



Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.



Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.



Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

TOF = diag(1, 1, 1, 1, 1, 1), then

[
0 1
1 0

]
.

Fixes 000, . . . , 101; swaps 110↔ 111.

Control-Control-NOT, hence also called CCX.

TOF(a, b, 1) = (−,−, a NAND b), Thus TOF is classically universal.

H + TOF is quantum universal.

H + CNOT is not quantum universal; it recognizes a proper subclass
of P.



Tracking Quantum Circuits By Polynomials

Example Quantum Circuit

1 H⊗ I⊗ H⊗ I⊗(s−3).

2 CNOT⊗ I⊗(s−2). First three lines have “CXI.”

3 “CIX”—semantically but not syntactically ⊗ of I and CNOT.

4 After the S in stage 4, a TOF with controls on 1,3 and target on 2.
The whole C computes a unitary UC .
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Input-Output and Measurement

Input: Ex = ex0s−n = ex1 ⊗ ex2 ⊗ · · · ⊗ exn ⊗ e
⊗(s−n)
0 .

Output: A state vector (z0, . . . , zS−1), S = 2s.

Measure all lines: For any outcome b ∈ {0, 1}s,
Pr[C(x)→ b] = |zb|2 = |〈ExUCeb〉|2.
(Show how DavyW applet does this.)

For outcome d ∈ {0, 1}r on r-many designated qubit lines,
Pr[C(x)→ d] =

∑
bwd |zb|2.

Can project as amplitudes: C(x) 7→ (z′0, . . . , z
′
2r−1) where |zd|2 is

the probability of outcome d ∈ {0, 1}r.
Call this amplitude zd as A[C(x) 7→ d].
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BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum
circuits Cn for each n such that forall n and inputs x ∈ {0, 1}n,
designating qubit 1 for yes/no output:

x ∈ L =⇒ Pr[Cn(x) 7→ 1] >
3

4
,

x /∈ L =⇒ Pr[Cn(x) 7→ 1] <
1

4
,

The language L = {(x,w) : w is an initial part of the unique prime
factorization of x} captures the task of factoring x.

So the fact that L ∈ BQP says that QCs can efficiently factor.

Goal: calculate the amplitude of Cn(x) 7→ 1, explicitly or implicitly.

But no classical way known without paying ≈ 2n time overhead as
for factoring.
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Tracking Quantum Circuits By Polynomials

Points of the Polynomial Simulation

Existing general simulations pay 2nm or 2sm overhead right away.

Idea: Paying only O(s ·m) we can build a polynomial P = PC that
encodes all info of C algebraically.

The amplitude(s) we seek are calculable from the numbers of
solutions to certain equations P (y ; x̂) = ẑ.

Call that number e.g. NP,x,z[1]. Opposite: NP,x,z[0]

For general P this number is NP-hard to compute. “No Free
Lunch.” It is complete for the solution-counting class #P.

But in many cases, #SAT solvers may be effective.

Computation by solver more “offline” than managing 2n-sized
arrays.

PC may yield other algebraic and physical info about C, including
about entanglement.
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Tracking Quantum Circuits By Polynomials

The Basic Theorem

Theorem (Dawson et al.. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently
compute a polynomial PC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr) and a
constant R (here, R =

√
2h) such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R
(NP,x,z[1]−NP,x,z[0]).

Thus BQP reduces to the difference between two #P functions.

Note heavy promise: 0 ≤ N [1]−N [0] ≤ R =
√

2h.

Means all but a trace of pairs y, y′ ∈ {0, 1}h cancel.

Hence cannot approximate the difference by approximating each
term. Need exact solution counting.
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Hence cannot approximate the difference by approximating each
term. Need exact solution counting.
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My Extensions

Say a gate is balanced if all nonzero entries reiθ of its matrix have
equal magnitude |r|.
A circuit C is balanced if every gate in C is balanced.

K(C) = the least K such that all θ in entries of gates in C are
multiples of 2π/K. “Min-Phase”

Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism e(ωj).

Theorem

Can arrange PC =
∏

gates g Pg such that for all x and z,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNPC ,x,z[e(ω
j)] =

1

R

∑
y

ωPC(x,y,z).
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How it Works: The “Quantum Grille”

Consider a general 2× 2 matrix A. Assign an indicator variable u to its
input and y to its output:

(1− y) y

(1− u) a11 a12
u a21 a22

PA = a11 + (a21 − a11)u+ (a12 − a11)y + (a11 − a12 − a21 + a22)uy.

Given u, y ∈ {0, 1}, only one path is allowed—others zeroed out.

Carries out Feynman’s “Sum Over Paths” construction.

Works over any field or ring that embeds 0, 1,−1.

If gate is deterministic, can substitute y by expression in u.

Every qubit at every stage has a well-defined local “algebraic value.”
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How it Works: Two-Qubit Gate

Now let A be a general 4× 4 matrix. Assign indicator variables u1, u2 to
the two incoming qubits and y1, y2 to their outgoing selves:

(1− y1)(1− y2) (1− y1)y2 y1(1− y2) y1y2
(1− u1)(1− u2) a11 a12 a13 a14

(1− u1)u2 a21 a22 a23 a24
u1(1− u2) a31 a32 a33 a34

u1u2 a41 a42 a43 a44

Similar for 8× 8 etc. Initially there are a lot of terms.

However, with substitution for permutation gates, the entire
polynomial collapses to the constant 1!

The effect on PC is then how the substituted terms are input to
subsequent Hadamard and other kinds of gates.
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How it Works: Qutrit Case

Let qutrit values be 0, 1,−1 indexed by the basis vectors e0 = (1, 0, 0)T ,
e1 = (0, 1, 0)T , and e2 = (0, 0, 1)T .

We need indicator polynomials in u
and y that have the same nonzero value (here, 2) only when u, y have
the corresponding values. Given a general 3× 3 matrix A, it goes:

2− 2y2 y2 + y y2 − y
2− 2u2 a11 a12 a13
u2 + u a21 a22 a23
u2 − u a31 a32 a33

Now PA has 36 terms. But it simplifies for certain matrices:

A =
1√
3

1 1 1
1 ω ω2

1 ω2 ω

 ; PA = 4 + 2
√

3iuy + 2u2y2.

Here ω = 1
2(−1 +

√
3i), and the “H3 multiplier” is 2/

√
3.
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Tracking Quantum Circuits By Polynomials

Multiplicative and Additive Cases

PC is simply the product of Pg over all gates g,

possibly after
substitutions for input and output variables and in-between.

For min-phase K, works over any ring that embeds (0, e2πij/K).

However, degree is high: Θ(s). We would prefer to add terms Pg
and work e.g. over ZK .

But where can the zero-values for invalid paths go?

My trick: Allocate new “validity indicator” variables w, . . .

Given a constraint c with values 0 = OK, 1 = fail, add

qc = w0c+ 2w1c+ 4w2c+ · · ·+ 2k−1wk−1c.

Then c = 1 =⇒ binary assignments to w0, . . . , wk−1 run through
all K values =⇒ the entire net contribution over ~u, ~y, ~w cancels.

Whereas c = 0 zeroes all such terms, so he only effect is to inflate R.
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Additive Extension

Theorem

Given any C of minphase K, we can efficiently compute a polynomial
QC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zr, w1, . . . , wt) over ZK and a constant
R such that for all x ∈ {0, 1}n and z ∈ {0, 1}r,

A[C(x) 7→ z] =
1

R

K−1∑
j=0

ωjNQC ,x,z[j]

=
1

R

∑
y,w

ωQC(x,y,z,w),

where QC =
∑

gates g qg +
∑

constraints c qc has bounded degree.

Thus we can do all calculations using QC over ZK .
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Computing the Polynomials

“Annotate” every juncture of qubit i with variable yj or term ui.

Initially xi and 0 terms, PC = 1, QC = 0.

ui—H—: new variable yj ,

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .
No change to PC or QC , as with any permutation gate.

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved. Similar considerations in paper by
Bacon-van Dam-Russell, 2008 (unpub., morphed into “least action”
talk. . . ).
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Equality Constraints

To enforce a desired output value zi on qubit i with final term ui:

PC ∗ = (1 + 2uizi − ui − zi)
QC += wj(ui + zi − 2uizi).

In characteristic 2, QC remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski (et al.))

For quadratic p(x1, . . . , xn) over ZK , and all a < K, Np[a] is computable
in poly(nK) time.

Open: replace K by logK in the time? Affirmative for A[C(x) 7→ z].
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Gottesman-Knill: alternative methodology

To represent ui—S— we need K = 4.

H gives QC += 2uiyj .

CNOT: Nonlinear term has a 2 which will cancel the 2 from
Hadamard.

Equality constraint wj(ui + zi − 2uizi): OK with [G-K], [CCLL]
because wj appears only here.

S: ui left alone but QC += u2i .

Inductively every term in QC has form y2j or 2yiyj .

These terms are invariant under 0↔ 2, 1↔ 3.

Hence [CCLL] gives poly-time simulation by soution counting in Z4.
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Open Questions

Solution counting is #P-complete for degree 3 over ZK in general.

Are some “structured” subcases of degree 3 tractable? Can they
come from families of QC’s?

What else is (physically!) meaningful about polynomials in the
circuit’s partition function?

Invariants based on Strassen’s geometric degree γ(f) concept,
others?

Baur-Strassen showed that log2 γ(f) lower-bounds the arithmetical
complexity of f , indeed the number of binary multiplication gates.

Relevance to complexity of quantum circuits C. . .

Possibly quantify the “entangling capacity” of C?

Delineate algebraic properties of qutrit circuits. . .
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