Tracking Quantum Circuits By Polynomials ACSS 2016, Kolkata

Kenneth W. Regan¹ University at Buffalo (SUNY)

13 August, 2016

¹Includes joint work with Amlan Chakrabarti, U. Calcutta, and prospectively students...

Quantum Computers

"A Particular Wave of the Future..."

Quantum Computers

"A Particular Wave of the Future..."

• Apparently capable of out-performing current computers vastly at certain tasks...

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Quantum Computers

"A Particular Wave of the Future..."

• Apparently capable of out-performing current computers vastly at certain tasks...

うして ふゆう ふほう ふほう ふしつ

• ... most notably Factoring, Discete Logarithm, and simulating quantum systems.

Quantum Computers

"A Particular Wave of the Future..."

• Apparently capable of out-performing current computers vastly at certain tasks...

うして ふゆう ふほう ふほう ふしつ

- ... most notably Factoring, Discete Logarithm, and simulating quantum systems.
- If, that is, we can build them *scalably*,

Quantum Computers

"A Particular Wave of the Future..."

- Apparently capable of out-performing current computers vastly at certain tasks...
- ... most notably Factoring, Discete Logarithm, and simulating quantum systems.
- If, that is, we can build them *scalably*, and if those tasks are not classically easy.

うして ふゆう ふほう ふほう ふしつ

Quantum Computers

"A Particular Wave of the Future..."

- Apparently capable of out-performing current computers vastly at certain tasks...
- ... most notably Factoring, Discete Logarithm, and simulating quantum systems.
- If, that is, we can build them *scalably*, and if those tasks are not classically easy.

うして ふゆう ふほう ふほう ふしつ

• Central notion: Quantum Circuits.

Quantum Computers

"A Particular Wave of the Future..."

- Apparently capable of out-performing current computers vastly at certain tasks...
- ... most notably Factoring, Discete Logarithm, and simulating quantum systems.
- If, that is, we can build them *scalably*, and if those tasks are not classically easy.
- Central notion: Quantum Circuits.
- Hardly the only player—quantum adiabatic machines are closer to built and quantum communication systems are already deployed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r

- *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?

- *n* inputs $x_1, ..., x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• m gates g_1, \ldots, g_m (wlog. all NAND)

- *n* inputs $x_1, \ldots, x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- m gates g_1, \ldots, g_m (wlog. all NAND)
- Up to 2m + r wires (if fan-in ≤ 2)

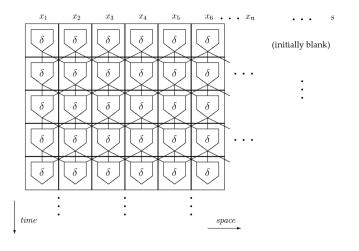
- *n* inputs $x_1, \ldots, x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- m gates g_1, \ldots, g_m (wlog. all NAND)
- Up to 2m + r wires (if fan-in ≤ 2)
- Each wire has a definite 0-1 value.

- *n* inputs $x_1, \ldots, x_n \in \{0, 1\}^n$
- $r \geq 1$ outputs z_1, \ldots, z_r
- Maybe *h*-many nondeterministic inputs y_1, \ldots, y_h ?
- m gates g_1, \ldots, g_m (wlog. all NAND)
- Up to 2m + r wires (if fan-in ≤ 2)
- Each wire has a definite 0-1 value.
- Bits have no common identity across wires, but we can create a universal layout for Boolean circuits in which they *do* retain identity...

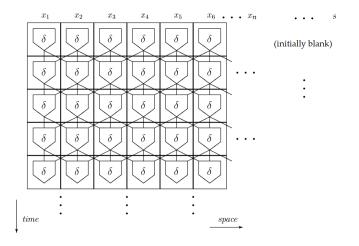
Turing "Cue Bits"



Space s, so n - s "ancillary" cells.

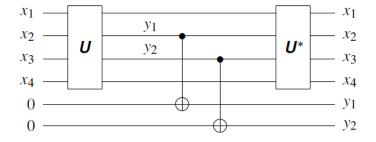
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Turing "Cue Bits"



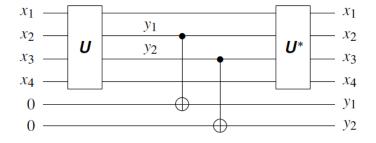
Space s, so n-s "ancillary" cells. Can also be made *reversible*.

Quantum Circuits: similar picture, 90° flipped.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Quantum Circuits: similar picture, 90° flipped.



Must be reversible. In certain circumstances values y_1, y_2, \ldots can be copied to extra lines as "f(x)." Then reversing the gates re-creates the input x so the whole mapping is invertible ("copy-uncompute trick").

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• *n* input **qubits** $x_1, ..., x_n \in \{0, 1\}^n$

• *n* input qubits $x_1, \ldots, x_n \in \{0, 1\}^n$ (What's a qubit?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

• *n* input qubits $x_1, \ldots, x_n \in \{0, 1\}^n$ (What's a qubit?)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)

• *n* input qubits $x_1, \ldots, x_n \in \{0, 1\}^n$ (What's a qubit?)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- *s n* **ancilla** qubits

• *n* input qubits $x_1, \ldots, x_n \in \{0, 1\}^n$ (What's a qubit?)

うして ふゆう ふほう ふほう ふしつ

- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- *s n* **ancilla** qubits
- *m*-many quantum gates (arities can be 1,2,3)

- n input qubits $x_1, \ldots, x_n \in \{0, 1\}^n$ (What's a qubit?)
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- s n ancilla qubits
- *m*-many quantum gates (arities can be 1,2,3)
- Maybe *h* of them are **Hadamard gates**, which supply nondeterminism.

ション ふゆ マ キャット マックタン

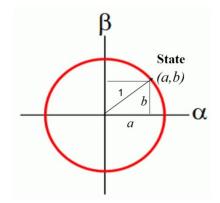
- *n* input qubits $x_1, \ldots, x_n \in \{0, 1\}^n$ (What's a qubit?)
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- s n ancilla qubits
- *m*-many quantum gates (arities can be 1,2,3)
- Maybe *h* of them are **Hadamard gates**, which supply nondeterminism.

• Qubits retain identity as wires transit gates.

- *n* input qubits $x_1, \ldots, x_n \in \{0, 1\}^n$ (What's a qubit?)
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- s n ancilla qubits
- *m*-many quantum gates (arities can be 1,2,3)
- Maybe *h* of them are **Hadamard gates**, which supply nondeterminism.
- Qubits retain identity as wires transit gates.
- Each wire need **not** have a definite 0-1 value, owing to **entanglement**.

- n input qubits $x_1, \ldots, x_n \in \{0, 1\}^n$ (What's a qubit?)
- $r \ge 1$ output qubits z_1, \ldots, z_r (think r = 1 or r = n)
- *s n* **ancilla** qubits
- *m*-many quantum gates (arities can be 1,2,3)
- Maybe *h* of them are **Hadamard gates**, which supply nondeterminism.
- Qubits retain identity as wires transit gates.
- Each wire need **not** have a definite 0-1 value, owing to **entanglement**.
- Under the hood are $S = 2^s$ complex entries of a unit state vector.

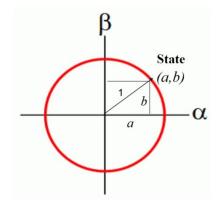
A Qubit



Probability of observing Alpha is a-squared, Beta is b-squared. By Pythagoras, these add to 1.

(=) (

A Qubit

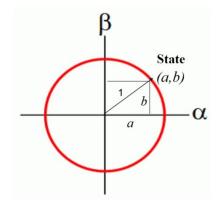


Probability of observing Alpha is a-squared, Beta is b-squared. By Pythagoras, these add to 1.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

A qubit is a physical entity that combines as described by a 2-vector (a, b) = ae₀ + be₁ over C and yields two observations: e₀ with probability |a|² or e₁ with probability |b|².

A Qubit



Probability of observing Alpha is *a*-squared, Beta is *b*-squared. By Pythagoras, these add to 1.

- A qubit is a physical entity that combines as described by a 2-vector (a, b) = ae₀ + be₁ over C and yields two observations: e₀ with probability |a|² or e₁ with probability |b|².
- A qutrit yields 3 results and is (a, b, c) where $|a|^2 + |b|^2 + |c|^2 = 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quantum Gates

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

ション ふゆ く は く は く む く む く し く

• Common gates for k = 1, K = 2:

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Common gates for k = 1, K = 2:
- $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

うして ふゆう ふほう ふほう ふしつ

• Common gates for k = 1, K = 2: • $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity • $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ negation, aka. NOT

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

うして ふゆう ふほう ふほう ふしつ

• Common gates for k = 1, K = 2: • $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity • $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ negation, aka. NOT • $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ Hadamard gate.

• A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.

うして ふゆう ふほう ふほう ふしつ

- Common gates for k = 1, K = 2:
- $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity • $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ negation, aka. NOT • $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ Hadamard gate.
- Only non-permutation gate needed for universality.

- A k-ary gate can be represented by a $K \times K$ unitary matrix, $K = 2^k$.
- Common gates for k = 1, K = 2:
- $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity • $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ negation, aka. NOT • $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ Hadamard gate.
- Only non-permutation gate needed for universality.

• But also common:
$$\mathbf{Y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
, $\mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\mathbf{S} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.

うして ふゆう ふほう ふほう ふしつ

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00		10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
	11	0	0	0 0 0 1	0

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

					11
	00	1	0	0	0
CNOT =	01	0	1	0 0 0 1	0
	10	0	0	0	1
	11	0	0	1	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Permutation $(1 \ 2 \ 4 \ 3),$

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
CNOT =	11	0	0	1	0

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$.

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
	11	0	0	1	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$. Also called CX.

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
CNOT =	11	0	0	1	0

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$. Also called CX.

$$\mathsf{CNOT} \circ (\mathsf{H} \otimes \mathsf{I}) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 0 & 1 & 0 & -1\\ 1 & 0 & -1 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
CNOT =	11	0	0	1	0

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$. Also called CX.

$$\mathsf{CNOT} \circ (\mathsf{H} \otimes \mathsf{I}) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

Applied to $e_{00} = (1, 0, 0, 0)^T$ gives $\frac{1}{\sqrt{2}}(e_{00} + e_{11}).$

With k = 2 qubits, K = 4. "Controlled Not" showing quantum coordinates:

		00	01	10	11
	00	1	0	0	0
CNOT =	01	0	1	0	0
	10	0	0	0	1
CNOT =	11	0	0	1	0

Permutation $(1 \ 2 \ 4 \ 3)$, swap $(3 \ 4)$. Also called CX.

$$\mathsf{CNOT} \circ (\mathsf{H} \otimes \mathsf{I}) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 0 & 1 & 0 & -1\\ 1 & 0 & -1 & 0 \end{bmatrix}$$

Applied to $e_{00} = (1, 0, 0, 0)^T$ gives $\frac{1}{\sqrt{2}}(e_{00} + e_{11})$. **EPR Entanglement**.

Tracking Quantum Circuits By Polynomials

Ternary Toffoli Gate: K = 8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.
- Control-Control-NOT, hence also called CCX.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

• Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.

- Control-Control-NOT, hence also called CCX.
- $\mathsf{TOF}(a, b, 1) = (-, -, a \text{ NAND } b)$, Thus TOF is classically universal.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.
- Control-Control-NOT, hence also called CCX.
- $\mathsf{TOF}(a, b, 1) = (-, -, a \text{ NAND } b)$, Thus TOF is classically universal.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

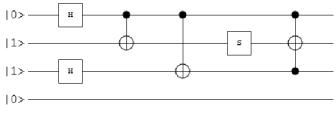
• H + TOF is quantum universal.

•
$$\mathsf{TOF} = diag(1, 1, 1, 1, 1, 1)$$
, then $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

• Fixes $000, \ldots, 101$; swaps $110 \leftrightarrow 111$.

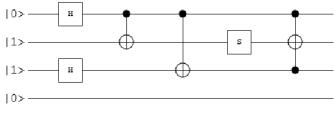
- Control-Control-NOT, hence also called CCX.
- $\mathsf{TOF}(a, b, 1) = (-, -, a \text{ NAND } b)$, Thus TOF is classically universal.
- H + TOF is quantum universal.
- H + CNOT is not quantum universal; it recognizes a proper subclass of P.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆



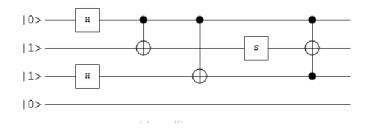
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Z 1 115



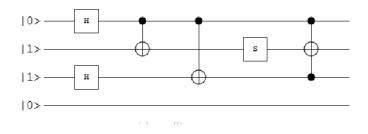
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Z 1 115



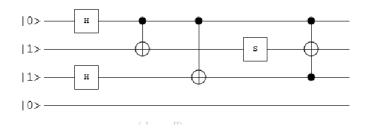
ション ふゆ く は く は く む く む く し く

● H ⊗ I ⊗ H ⊗ I^{⊗(s-3)}. **●** CNOT ⊗ I^{⊗(s-2)}. First three lines have "CXI."



- **2** CNOT $\otimes I^{\otimes (s-2)}$. First three lines have "CXI."
- **③** "CIX"—semantically but not syntactically \otimes of I and CNOT.

うして ふゆう ふほう ふほう ふしつ



- **2** CNOT $\otimes I^{\otimes (s-2)}$. First three lines have "CXI."
- **③** "CIX"—semantically but not syntactically \otimes of I and CNOT.
- After the S in stage 4, a TOF with controls on 1,3 and target on 2. The whole C computes a unitary U_C .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Input: $E_x = e_{x0^{s-n}}$

• Input:
$$E_x = e_{x0^{s-n}} = e_{x_1} \otimes e_{x_2} \otimes \cdots \otimes e_{x_n} \otimes e_0^{\otimes (s-n)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Input: $E_x = e_{x0^{s-n}} = e_{x_1} \otimes e_{x_2} \otimes \cdots \otimes e_{x_n} \otimes e_0^{\otimes (s-n)}$.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.

• Input: $E_x = e_{x0^{s-n}} = e_{x_1} \otimes e_{x_2} \otimes \cdots \otimes e_{x_n} \otimes e_0^{\otimes (s-n)}$.

うして ふゆう ふほう ふほう ふしつ

- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.

• Input: $E_x = e_{x0^{s-n}} = e_{x_1} \otimes e_{x_2} \otimes \cdots \otimes e_{x_n} \otimes e_0^{\otimes (s-n)}$.

うして ふゆう ふほう ふほう ふしつ

- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.
- (Show how DavyW applet does this.)

- Input: $E_x = e_{x0^{s-n}} = e_{x_1} \otimes e_{x_2} \otimes \cdots \otimes e_{x_n} \otimes e_0^{\otimes (s-n)}$.
- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.
- (Show how DavyW applet does this.)
- For outcome $d \in \{0,1\}^r$ on r-many designated qubit lines, $\Pr[C(x) \to d] = \sum_{b \supseteq d} |z_b|^2.$

- Input: $E_x = e_{x0^{s-n}} = e_{x_1} \otimes e_{x_2} \otimes \cdots \otimes e_{x_n} \otimes e_0^{\otimes (s-n)}$.
- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.
- (Show how DavyW applet does this.)
- For outcome $d \in \{0,1\}^r$ on r-many designated qubit lines, $\Pr[C(x) \to d] = \sum_{b \supseteq d} |z_b|^2.$
- Can project as amplitudes: $C(x) \mapsto (z'_0, \ldots, z'_{2^r-1})$ where $|z_d|^2$ is the probability of outcome $d \in \{0, 1\}^r$.

- Input: $E_x = e_{x0^{s-n}} = e_{x_1} \otimes e_{x_2} \otimes \cdots \otimes e_{x_n} \otimes e_0^{\otimes (s-n)}$.
- Output: A state vector $(z_0, \ldots, z_{S-1}), S = 2^s$.
- Measure all lines: For any outcome $b \in \{0, 1\}^s$, $\Pr[C(x) \to b] = |z_b|^2 = |\langle E_x U_C e_b \rangle|^2$.
- (Show how DavyW applet does this.)
- For outcome $d \in \{0,1\}^r$ on r-many designated qubit lines, $\Pr[C(x) \to d] = \sum_{b \supseteq d} |z_b|^2.$
- Can project as amplitudes: $C(x) \mapsto (z'_0, \ldots, z'_{2^r-1})$ where $|z_d|^2$ is the probability of outcome $d \in \{0, 1\}^r$.

• Call this amplitude z_d as $A[C(x) \mapsto d]$.

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0,1\}^n$, designating qubit 1 for yes/no output:

$$\begin{aligned} x \in L &\implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4}, \\ x \notin L &\implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4}, \end{aligned}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

BQP

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0,1\}^n$, designating qubit 1 for yes/no output:

$$\begin{aligned} x \in L &\implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4}, \\ x \notin L &\implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4}, \end{aligned}$$

• The language $L = \{(x, w) : w \text{ is an initial part of the unique prime factorization of } x\}$ captures the *task* of factoring x.

うして ふゆう ふほう ふほう ふしつ

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0,1\}^n$, designating qubit 1 for yes/no output:

$$x \in L \implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4},$$

$$x \notin L \implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4},$$

• The language $L = \{(x, w) : w \text{ is an initial part of the unique prime factorization of } x\}$ captures the *task* of factoring x.

• So the fact that $L \in \mathsf{BQP}$ says that QCs can efficiently factor.

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0,1\}^n$, designating qubit 1 for yes/no output:

$$x \in L \implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4},$$

$$x \notin L \implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4},$$

- The language $L = \{(x, w) : w \text{ is an initial part of the unique prime factorization of } x\}$ captures the *task* of factoring x.
- So the fact that $L \in \mathsf{BQP}$ says that QCs can efficiently factor.
- Goal: calculate the *amplitude* of $C_n(x) \mapsto 1$,

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0,1\}^n$, designating qubit 1 for yes/no output:

$$x \in L \implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4},$$

$$x \notin L \implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4},$$

- The language $L = \{(x, w) : w \text{ is an initial part of the unique prime factorization of } x\}$ captures the *task* of factoring x.
- So the fact that $L \in \mathsf{BQP}$ says that QCs can efficiently factor.
- Goal: calculate the *amplitude* of $C_n(x) \mapsto 1$, explicitly or implicitly.

Definition

A language L belongs to BQP if there are poly-time uniform quantum circuits C_n for each n such that forall n and inputs $x \in \{0,1\}^n$, designating qubit 1 for yes/no output:

$$x \in L \implies \Pr[C_n(x) \mapsto 1] > \frac{3}{4},$$

$$x \notin L \implies \Pr[C_n(x) \mapsto 1] < \frac{1}{4},$$

- The language $L = \{(x, w) : w \text{ is an initial part of the unique prime factorization of } x\}$ captures the *task* of factoring x.
- So the fact that $L \in \mathsf{BQP}$ says that QCs can efficiently factor.
- Goal: calculate the *amplitude* of $C_n(x) \mapsto 1$, explicitly or implicitly.
- But no classical way known without paying $\approx 2^n$ time overhead as for factoring.

• Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.

ション ふゆ マ キャット しょう くしゃ

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.

うして ふゆう ふほう ふほう ふしつ

• The amplitude(s) we seek are calculable from the numbers of solutions to certain equations $P(y; \hat{x}) = \hat{z}$.

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.

- The amplitude(s) we seek are calculable from the numbers of solutions to certain equations $P(y; \hat{x}) = \hat{z}$.
- Call that number e.g. $N_{P,x,z}[1]$.

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.

- The amplitude(s) we seek are calculable from the numbers of solutions to certain equations $P(y; \hat{x}) = \hat{z}$.
- Call that number e.g. $N_{P,x,z}[1]$. Opposite: $N_{P,x,z}[0]$

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.

- The amplitude(s) we seek are calculable from the numbers of solutions to certain equations $P(y; \hat{x}) = \hat{z}$.
- Call that number e.g. $N_{P,x,z}[1]$. Opposite: $N_{P,x,z}[0]$
- For general P this number is $\mathsf{NP}\text{-hard}$ to compute. "No Free Lunch."

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.

- The amplitude(s) we seek are calculable from the numbers of solutions to certain equations $P(y; \hat{x}) = \hat{z}$.
- Call that number e.g. $N_{P,x,z}[1]$. Opposite: $N_{P,x,z}[0]$
- For general *P* this number is NP-hard to compute. "No Free Lunch." It is complete for the solution-counting class **#P**.

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.

- The amplitude(s) we seek are calculable from the numbers of solutions to certain equations $P(y; \hat{x}) = \hat{z}$.
- Call that number e.g. $N_{P,x,z}[1]$. Opposite: $N_{P,x,z}[0]$
- For general *P* this number is NP-hard to compute. "No Free Lunch." It is complete for the solution-counting class **#P**.
- But in many cases, **#SAT solvers** may be effective.

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.
- The amplitude(s) we seek are calculable from the numbers of solutions to certain equations $P(y; \hat{x}) = \hat{z}$.
- Call that number e.g. $N_{P,x,z}[1]$. Opposite: $N_{P,x,z}[0]$
- For general *P* this number is NP-hard to compute. "No Free Lunch." It is complete for the solution-counting class **#P**.
- But in many cases, **#SAT solvers** may be effective.
- Computation by solver more "offline" than managing 2^n -sized arrays.

- Existing general simulations pay $2^n m$ or $2^s m$ overhead right away.
- Idea: Paying only $O(s \cdot m)$ we can build a polynomial $P = P_C$ that encodes all info of C algebraically.
- The amplitude(s) we seek are calculable from the numbers of solutions to certain equations $P(y; \hat{x}) = \hat{z}$.
- Call that number e.g. $N_{P,x,z}[1]$. Opposite: $N_{P,x,z}[0]$
- For general *P* this number is NP-hard to compute. "No Free Lunch." It is complete for the solution-counting class **#P**.
- But in many cases, **#SAT solvers** may be effective.
- Computation by solver more "offline" than managing 2^n -sized arrays.
- P_C may yield other algebraic and physical info about C, including about entanglement.

Theorem (Dawson et al. 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} (N_{P,x,z}[1] - N_{P,x,z}[0]).$$

(日) (四) (日) (日) (日)

Theorem (Dawson et al., 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} (N_{P,x,z}[1] - N_{P,x,z}[0]).$$

• Thus BQP reduces to the difference between two #P functions.

うつう 山田 エル・エー・ 山田 うらう

Theorem (Dawson et al., 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} (N_{P,x,z}[1] - N_{P,x,z}[0]).$$

• Thus BQP reduces to the difference between two #P functions.

うして ふゆう ふほう ふほう ふしつ

• Note heavy promise: $0 \le N[1] - N[0] \le R = \sqrt{2^h}$.

Theorem (Dawson et al., 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} (N_{P,x,z}[1] - N_{P,x,z}[0]).$$

• Thus BQP reduces to the difference between two #P functions.

- Note heavy promise: $0 \le N[1] N[0] \le R = \sqrt{2^h}$.
- Means all but a trace of pairs $y, y' \in \{0, 1\}^h$ cancel.

Theorem (Dawson et al., 2004, implicitly before?)

Given C built from TOF gates and h-many H gates, we can efficiently compute a polynomial $P_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r)$ and a constant R (here, $R = \sqrt{2^h}$) such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} (N_{P,x,z}[1] - N_{P,x,z}[0]).$$

- Thus BQP reduces to the difference between two #P functions.
- Note heavy promise: $0 \le N[1] N[0] \le R = \sqrt{2^h}$.
- Means all but a trace of pairs $y, y' \in \{0, 1\}^h$ cancel.
- Hence cannot approximate the difference by approximating each term. Need exact solution counting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

My Extensions

• Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

• Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• A circuit C is balanced if every gate in C is balanced.

- Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.
- A circuit C is balanced if every gate in C is balanced.
- K(C) = the least K such that all θ in entries of gates in C are multiples of $2\pi/K$. "Min-Phase"

うして ふゆう ふほう ふほう ふしつ

- Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.
- A circuit C is balanced if every gate in C is balanced.
- K(C) = the least K such that all θ in entries of gates in C are multiples of $2\pi/K$. "Min-Phase"
- Let G be a field or ring such that G^* embeds the K-th roots of unity ω^j by a multiplicative homomorphism $e(\omega^j)$.

Theorem

Can arrange
$$P_C = \prod_{gates g} P_g$$
 such that for all x and z,

$$A[C(x) \mapsto z] = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j N_{P_C,x,z}[e(\omega^j)]$$

- Say a gate is *balanced* if all nonzero entries $re^{i\theta}$ of its matrix have equal magnitude |r|.
- A circuit C is balanced if every gate in C is balanced.
- K(C) = the least K such that all θ in entries of gates in C are multiples of $2\pi/K$. "Min-Phase"
- Let G be a field or ring such that G^* embeds the K-th roots of unity ω^j by a multiplicative homomorphism $e(\omega^j)$.

Theorem

Can arrange
$$P_C = \prod_{gates g} P_g$$
 such that for all x and z,

$$A[C(x) \mapsto z] = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j N_{P_C,x,z}[e(\omega^j)] = \frac{1}{R} \sum_y \omega^{P_C(x,y,z)}.$$

Consider a general 2×2 matrix A. Assign an indicator variable u to its input and y to its output:

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Consider a general 2×2 matrix A. Assign an indicator variable u to its input and y to its output:

 $P_A = a_{11} + (a_{21} - a_{11})u + (a_{12} - a_{11})y + (a_{11} - a_{12} - a_{21} + a_{22})uy.$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Consider a general 2×2 matrix A. Assign an indicator variable u to its input and y to its output:

 $P_A = a_{11} + (a_{21} - a_{11})u + (a_{12} - a_{11})y + (a_{11} - a_{12} - a_{21} + a_{22})uy.$

• Given $u, y \in \{0, 1\}$, only one path is allowed—others zeroed out.

Consider a general 2×2 matrix A. Assign an indicator variable u to its input and y to its output:

 $P_A = a_{11} + (a_{21} - a_{11})u + (a_{12} - a_{11})y + (a_{11} - a_{12} - a_{21} + a_{22})uy.$

• Given $u, y \in \{0, 1\}$, only one path is allowed—others zeroed out.

• Carries out Feynman's "Sum Over Paths" construction.

Consider a general 2×2 matrix A. Assign an indicator variable u to its input and y to its output:

 $P_A = a_{11} + (a_{21} - a_{11})u + (a_{12} - a_{11})y + (a_{11} - a_{12} - a_{21} + a_{22})uy.$

• Given $u, y \in \{0, 1\}$, only one path is allowed—others zeroed out.

- Carries out Feynman's "Sum Over Paths" construction.
- Works over any field or ring that embeds 0, 1, -1.

Consider a general 2×2 matrix A. Assign an indicator variable u to its input and y to its output:

 $P_A = a_{11} + (a_{21} - a_{11})u + (a_{12} - a_{11})y + (a_{11} - a_{12} - a_{21} + a_{22})uy.$

- Given $u, y \in \{0, 1\}$, only one path is allowed—others zeroed out.
- Carries out Feynman's "Sum Over Paths" construction.
- Works over any field or ring that embeds 0, 1, -1.
- If gate is deterministic, can *substitute* y by expression in u.

Consider a general 2×2 matrix A. Assign an indicator variable u to its input and y to its output:

 $P_A = a_{11} + (a_{21} - a_{11})u + (a_{12} - a_{11})y + (a_{11} - a_{12} - a_{21} + a_{22})uy.$

- Given $u, y \in \{0, 1\}$, only one path is allowed—others zeroed out.
- Carries out Feynman's "Sum Over Paths" construction.
- Works over any field or ring that embeds 0, 1, -1.
- If gate is deterministic, can *substitute* y by expression in u.
- Every qubit at every stage has a well-defined *local* "algebraic value."

Now let A be a general 4×4 matrix. Assign indicator variables u_1, u_2 to the two incoming qubits and y_1, y_2 to their outgoing selves:

	$(1-y_1)(1-y_2)$	$(1-y_1)y_2$	$y_1(1-y_2)$	y_1y_2
$(1-u_1)(1-u_2)$	a_{11}	a_{12}	a_{13}	a_{14}
$(1-u_1)u_2$	a_{21}	a_{22}	a_{23}	a_{24}
$u_1(1-u_2)$	a_{31}	a_{32}	a_{33}	a_{34}
u_1u_2	a_{41}	a_{42}	a_{43}	a_{44}

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Now let A be a general 4×4 matrix. Assign indicator variables u_1, u_2 to the two incoming qubits and y_1, y_2 to their outgoing selves:

	$(1-y_1)(1-y_2)$	$(1-y_1)y_2$	$y_1(1-y_2)$	y_1y_2
$(1-u_1)(1-u_2)$	<i>a</i> ₁₁	a_{12}	a_{13}	a_{14}
$(1-u_1)u_2$	a_{21}	a_{22}	a_{23}	a_{24}
$u_1(1-u_2)$	a_{31}	a_{32}	a_{33}	a_{34}
u_1u_2	a_{41}	a_{42}	a_{43}	a_{44}

• Similar for 8×8 etc. Initially there are a lot of terms.

Now let A be a general 4×4 matrix. Assign indicator variables u_1, u_2 to the two incoming qubits and y_1, y_2 to their outgoing selves:

	$(1-y_1)(1-y_2)$	$(1-y_1)y_2$	$y_1(1-y_2)$	y_1y_2
$(1-u_1)(1-u_2)$	<i>a</i> ₁₁	a_{12}	a_{13}	a_{14}
$(1-u_1)u_2$	a_{21}	a_{22}	a_{23}	a_{24}
$u_1(1-u_2)$	a_{31}	a_{32}	a_{33}	a_{34}
u_1u_2	a_{41}	a_{42}	a_{43}	a_{44}

• Similar for 8×8 etc. Initially there are a lot of terms.

• However, with substitution for permutation gates, the entire polynomial collapses to the constant 1

Now let A be a general 4×4 matrix. Assign indicator variables u_1, u_2 to the two incoming qubits and y_1, y_2 to their outgoing selves:

	$(1-y_1)(1-y_2)$	$(1-y_1)y_2$	$y_1(1-y_2)$	y_1y_2
$(1-u_1)(1-u_2)$	<i>a</i> ₁₁	a_{12}	a_{13}	a_{14}
$(1-u_1)u_2$	a_{21}	a_{22}	a_{23}	a_{24}
$u_1(1-u_2)$	a_{31}	a_{32}	a_{33}	a_{34}
u_1u_2	a_{41}	a_{42}	a_{43}	a_{44}

• Similar for 8×8 etc. Initially there are a lot of terms.

• However, with substitution for permutation gates, the entire polynomial collapses to the constant 1!

How it Works: Two-Qubit Gate

Now let A be a general 4×4 matrix. Assign indicator variables u_1, u_2 to the two incoming qubits and y_1, y_2 to their outgoing selves:

	$(1-y_1)(1-y_2)$	$(1-y_1)y_2$	$y_1(1-y_2)$	y_1y_2
$(1-u_1)(1-u_2)$	<i>a</i> ₁₁	a_{12}	a_{13}	a_{14}
$(1-u_1)u_2$	a_{21}	a_{22}	a_{23}	a_{24}
$u_1(1-u_2)$	a_{31}	a_{32}	a_{33}	a_{34}
u_1u_2	a_{41}	a_{42}	a_{43}	a_{44}

- Similar for 8×8 etc. Initially there are a lot of terms.
- However, with substitution for permutation gates, the entire polynomial collapses to the constant 1!
- The effect on P_C is then how the substituted terms are input to subsequent Hadamard and other kinds of gates.

Let qutrit values be 0, 1, -1 indexed by the basis vectors $e_0 = (1, 0, 0)^T$, $e_1 = (0, 1, 0)^T$, and $e_2 = (0, 0, 1)^T$.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Let qutrit values be 0, 1, -1 indexed by the basis vectors $e_0 = (1, 0, 0)^T$, $e_1 = (0, 1, 0)^T$, and $e_2 = (0, 0, 1)^T$. We need indicator polynomials in u and y that have the same nonzero value (here, 2) only when u, y have the corresponding values.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Let qutrit values be 0, 1, -1 indexed by the basis vectors $e_0 = (1, 0, 0)^T$, $e_1 = (0, 1, 0)^T$, and $e_2 = (0, 0, 1)^T$. We need indicator polynomials in u and y that have the same nonzero value (here, 2) only when u, y have the corresponding values. Given a general 3×3 matrix A, it goes:

	$2 - 2y^2$	$y^2 + y$	$y^2 - y$
$2 - 2u^2$	a_{11}	a_{12}	a_{13}
$u^2 + u$	a_{21}	a_{22}	a_{23}
$u^2 - u$	a_{31}	a_{32}	a_{33}

Now P_A has 36 terms.

Let qutrit values be 0, 1, -1 indexed by the basis vectors $e_0 = (1, 0, 0)^T$, $e_1 = (0, 1, 0)^T$, and $e_2 = (0, 0, 1)^T$. We need indicator polynomials in u and y that have the same nonzero value (here, 2) only when u, y have the corresponding values. Given a general 3×3 matrix A, it goes:

	$2 - 2y^2$	$y^2 + y$	$y^2 - y$
$2 - 2u^2$	a_{11}	a_{12}	a_{13}
$u^2 + u$	a_{21}	a_{22}	a_{23}
$u^2 - u$	a_{31}	a_{32}	a_{33}

Now P_A has 36 terms. But it simplifies for certain matrices:

$$A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{bmatrix}; \qquad P_A = 4 + 2\sqrt{3}iuy + 2u^2y^2.$$

Here $\omega = \frac{1}{2}(-1+\sqrt{3}i)$, and the "H₃ multiplier" is $2/\sqrt{3}$.

• P_C is simply the product of P_g over all gates g,

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.
- For min-phase K, works over any ring that embeds $(0, e^{2\pi i j/K})$.

うして ふゆう ふほう ふほう ふしつ

- P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.
- For min-phase K, works over any ring that embeds $(0, e^{2\pi i j/K})$.

うして ふゆう ふほう ふほう ふしつ

• However, degree is high: $\Theta(s)$.

- P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.
- For min-phase K, works over any ring that embeds $(0, e^{2\pi i j/K})$.
- However, degree is high: $\Theta(s)$. We would prefer to add terms P_g and work e.g. over \mathbb{Z}_K .

うして ふゆう ふほう ふほう ふしつ

- P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.
- For min-phase K, works over any ring that embeds $(0, e^{2\pi i j/K})$.
- However, degree is high: $\Theta(s)$. We would prefer to add terms P_g and work e.g. over \mathbb{Z}_K .

うして ふゆう ふほう ふほう ふしつ

• But where can the zero-values for invalid paths go?

- P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.
- For min-phase K, works over any ring that embeds $(0, e^{2\pi i j/K})$.
- However, degree is high: $\Theta(s)$. We would prefer to add terms P_g and work e.g. over \mathbb{Z}_K .

うして ふゆう ふほう ふほう ふしつ

- But where can the zero-values for invalid paths go?
- My trick: Allocate new "validity indicator" variables w, \ldots

- P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.
- For min-phase K, works over any ring that embeds $(0, e^{2\pi i j/K})$.
- However, degree is high: $\Theta(s)$. We would prefer to add terms P_g and work e.g. over \mathbb{Z}_K .
- But where can the zero-values for invalid paths go?
- My trick: Allocate new "validity indicator" variables w, \ldots
- Given a constraint c with values 0 = OK, 1 = fail, add

$$q_c = w_0 c + 2w_1 c + 4w_2 c + \dots + 2^{k-1} w_{k-1} c.$$

うして ふゆう ふほう ふほう ふしつ

- P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.
- For min-phase K, works over any ring that embeds $(0, e^{2\pi i j/K})$.
- However, degree is high: $\Theta(s)$. We would prefer to add terms P_g and work e.g. over \mathbb{Z}_K .
- But where can the zero-values for invalid paths go?
- My trick: Allocate new "validity indicator" variables w, \ldots
- Given a **constraint** c with values 0 = OK, 1 = fail, add

$$q_c = w_0 c + 2w_1 c + 4w_2 c + \dots + 2^{k-1} w_{k-1} c.$$

• Then $c = 1 \implies$ binary assignments to w_0, \ldots, w_{k-1} run through all K values \implies the entire net contribution over $\vec{u}, \vec{y}, \vec{w}$ cancels.

- P_C is simply the product of P_g over all gates g, possibly after substitutions for input and output variables and in-between.
- For min-phase K, works over any ring that embeds $(0, e^{2\pi i j/K})$.
- However, degree is high: $\Theta(s)$. We would prefer to add terms P_g and work e.g. over \mathbb{Z}_K .
- But where can the zero-values for invalid paths go?
- My trick: Allocate new "validity indicator" variables w, \ldots
- Given a **constraint** c with values 0 = OK, 1 = fail, add

$$q_c = w_0 c + 2w_1 c + 4w_2 c + \dots + 2^{k-1} w_{k-1} c.$$

- Then $c = 1 \implies$ binary assignments to w_0, \ldots, w_{k-1} run through all K values \implies the entire net contribution over $\vec{u}, \vec{y}, \vec{w}$ cancels.
- Whereas c = 0 zeroes all such terms, so he only effect is to inflate R.

Additive Extension

Theorem

Given any C of minphase K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r, w_1, \ldots, w_t)$ over \mathbb{Z}_K and a constant R such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

うして ふゆう ふほう ふほう ふしつ

$$A[C(x) \mapsto z] = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j N_{Q_C,x,z}[j]$$

Additive Extension

Theorem

Given any C of minphase K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_r, w_1, \ldots, w_t)$ over \mathbb{Z}_K and a constant R such that for all $x \in \{0, 1\}^n$ and $z \in \{0, 1\}^r$,

$$A[C(x) \mapsto z] = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j N_{Q_C,x,z}[j] = \frac{1}{R} \sum_{y,w} \omega^{Q_C(x,y,z,w)},$$

うして ふゆう ふほう ふほう ふしつ

where $Q_C = \sum_{gates g} q_g + \sum_{constraints c} q_c$ has bounded degree.

Thus we can do all calculations using Q_C over \mathbb{Z}_K .

• "Annotate" every juncture of qubit i with variable y_j or term u_i .

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• "Annotate" every juncture of qubit i with variable y_i or term u_i .

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.

- "Annotate" every juncture of qubit i with variable y_i or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C \quad * = \quad (1 - u_i y_j)$$
$$Q_C \quad + = \quad 2^{k-1} u_i y_j.$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- "Annotate" every juncture of qubit i with variable y_i or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

うして ふゆう ふほう ふほう ふしつ

• CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.

- "Annotate" every juncture of qubit i with variable y_i or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.

- "Annotate" every juncture of qubit i with variable y_i or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

うして ふゆう ふほう ふほう ふしつ

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.
- In characteristic 2, linearity is preserved.

- "Annotate" every juncture of qubit i with variable y_i or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.
- In characteristic 2, linearity is preserved.
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- "Annotate" every juncture of qubit i with variable y_i or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.
- In characteristic 2, linearity is preserved.
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.
- Linearity not preserved.

- "Annotate" every juncture of qubit i with variable y_j or term u_i .
- Initially x_i and 0 terms, $P_C = 1$, $Q_C = 0$.
- u_i —H—: new variable y_j ,

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.
- No change to P_C or Q_C , as with any permutation gate.
- In characteristic 2, linearity is preserved.
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.
- Linearity not preserved. Similar considerations in paper by Bacon-van Dam-Russell, 2008 (unpub., morphed into "least action" talk...).

To enforce a desired output value z_i on qubit *i* with final term u_i :

$$P_C \quad * = \quad (1 + 2u_i z_i - u_i - z_i) Q_C \quad + = \quad w_j (u_i + z_i - 2u_i z_i).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

To enforce a desired output value z_i on qubit *i* with final term u_i :

$$P_C \quad * = \quad (1 + 2u_i z_i - u_i - z_i) Q_C \quad + = \quad w_j (u_i + z_i - 2u_i z_i).$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

In characteristic 2, Q_C remains quadratic.

To enforce a desired output value z_i on qubit *i* with final term u_i :

$$P_C \quad * = \quad (1 + 2u_i z_i - u_i - z_i) Q_C \quad + = \quad w_j (u_i + z_i - 2u_i z_i).$$

In characteristic 2, Q_C remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski (et al.))

For quadratic $p(x_1, \ldots, x_n)$ over \mathbb{Z}_K , and all a < K, $N_p[a]$ is computable in poly(nK) time.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

To enforce a desired output value z_i on qubit *i* with final term u_i :

$$P_C \quad * = \quad (1 + 2u_i z_i - u_i - z_i) Q_C \quad + = \quad w_j (u_i + z_i - 2u_i z_i).$$

In characteristic 2, Q_C remains quadratic.

Theorem (Cai-Chen-Lipton-Lu 2010, after Grigoriev-Karpinski (et al.))

For quadratic $p(x_1, \ldots, x_n)$ over \mathbb{Z}_K , and all a < K, $N_p[a]$ is computable in poly(nK) time.

うして ふゆう ふほう ふほう ふしつ

Open: replace K by log K in the time? Affirmative for $A[C(x) \mapsto z]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• To represent u_i —S— we need K = 4.

・ロト ・ 日 ・ モー・ モー・ うへぐ

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.

うして ふゆう ふほう ふほう ふしつ

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.

• S: u_i left alone but $Q_C + = u_i^2$.

Gottesman-Knill: alternative methodology

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.

- S: u_i left alone but $Q_C + = u_i^2$.
- Inductively every term in Q_C has form y_j^2 or $2y_iy_j$.

Gottesman-Knill: alternative methodology

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.

- S: u_i left alone but $Q_C + = u_i^2$.
- Inductively every term in Q_C has form y_j^2 or $2y_i y_j$.
- These terms are invariant under $0 \leftrightarrow 2, 1 \leftrightarrow 3$.

Gottesman-Knill: alternative methodology

- To represent u_i —S— we need K = 4.
- H gives $Q_C += 2u_i y_j$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_j(u_i + z_i 2u_i z_i)$: OK with [G-K], [CCLL] because w_j appears only here.
- S: u_i left alone but $Q_C + = u_i^2$.
- Inductively every term in Q_C has form y_j^2 or $2y_iy_j$.
- These terms are invariant under $0 \leftrightarrow 2, 1 \leftrightarrow 3$.
- Hence [CCLL] gives poly-time simulation by soution counting in \mathbb{Z}_4 .

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Tracking Quantum Circuits By Polynomials

Open Questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?

うして ふゆう ふほう ふほう ふしつ

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?

うして ふゆう ふほう ふほう ふしつ

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?

うして ふゆう ふほう ふほう ふしつ

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?
- Baur-Strassen showed that $\log_2 \gamma(f)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?
- Baur-Strassen showed that $\log_2 \gamma(f)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.

• Relevance to complexity of quantum circuits C...

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?
- Baur-Strassen showed that $\log_2 \gamma(f)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.
- Relevance to complexity of quantum circuits C...
- Possibly quantify the "entangling capacity" of C?

- Solution counting is #P-complete for degree 3 over \mathbb{Z}_K in general.
- Are some "structured" subcases of degree 3 tractable? Can they come from families of QC's?
- What else is (physically!) meaningful about polynomials in the circuit's partition function?
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept, others?
- Baur-Strassen showed that $\log_2 \gamma(f)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.
- Relevance to complexity of quantum circuits C...
- Possibly quantify the "entangling capacity" of C?
- Delineate algebraic properties of qutrit circuits...