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Combinatorial Invariants and Quantum Circuits

Status of Universal Quantum Computing

Is represented by BQP, which includes the Factoring problem.

Factoring is believed outside the class of P: problems deemed
solvable on classical computers—or BPP if we add randomness.

If the NP-complete SAT problem requires exponential size
circuits, then BPP = P anyway.

Neither Factoring nor BQP seem to reach NP-complete level.

BQP ⊆ #P, which is the analogue of NP for counting problems.

E.g., #SAT asks “how many solutions?”, not “is there a solution?”

There has still not been a clear instance of factoring an integer
larger than 21 = 3× 7 via Shor’s Algorithm on a universal QC.

Adiabatic quantum computing is theoretically universal but its
computations are ephemeral. Also has stability issues in practice.
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The Complexity Class Neighborhood...
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Structural Forebodings

Between P and NP-complete is mostly deserted.
Similar between P and #P, per “Dichotomy” results by Jin-Yi Cai
and others.
Except that BQP is in the latter desert. Is BQP squeezed out?
Not many exponential-saving quantum algorithms besides Shor’s.
Grover’s Algorithm is only quadratic savings, and for SAT and
#SAT, saves only

√
exp(n) = exp(n/2).

“Quantum supremacy” knocked down? Shor’s algorithm dinged, or
is it improved? A major app de-quantized?
Many NP-complete problems have adept heuristics.
Also for #SAT: software sharpSAT, Cachet.
However, SAT-encoded cases of Factoring remain hard for them.

Can we capture quantum circuits by combinatorial invariants
that lead to new heuristics for classically simulating them?

https://arxiv.org/abs/2005.06787
https://rjlipton.com/2023/06/14/a-little-noise-makes-quantum-factoring-fail/
https://www.schneier.com/blog/archives/2024/01/improving-shors-algorithm.html
https://ewintang.com/assets/tang_thesis.pdf
https://github.com/marcthurley/sharpSAT
https://henrykautz.com/Cachet/index.htm
https://cs.stackexchange.com/questions/115682/practical-hard-3-sat-instances
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Dichotomy Example Over Z4

Consider quadratic polynomials f(x1, x2, . . . , xn) modulo 4.

Counting the number of zeroes is in P. (Follows by
[Cai-Chen-Lipton-Luo, 2010].)

Counting the number of zeroes in { 0, 1 }n is #P-complete.

But if all cross-terms are 2xixj it is in P again.

We will see how polynomials over Z4 characterize a neglected(?) library
of universal quantum circuits.

Three kinds of combinatorial invariants for these circuits:

1 Phase-and-location (“Feynman Path”) polynomials.

2 Graphs, and their generalization to graphical 2-polymatroids.

3 Versions of the Tutte Polynomial associated to such graphs and
matroids.

https://en.wikipedia.org/wiki/Tutte_polynomial
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Quantum Circuits

Quantum circuits look more constrained than Boolean circuits:

But Boolean circuits look similar if we do Savage’s TM-to-circuit
simulation and call each column for each tape cell a “cue-bit.”
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Quantum Gates—three slides by M. Rötteler
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Toffoli Gate
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Some More Gates

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,

S =

[
1 0
0 i

]
, T =

[
1 0

0 eiπ/4

]
, R8 =

[
1 0

0 eiπ/8

]
,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , CS =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 .

The gates H,X,Y,Z,S,CNOT,CZ generate Clifford circuits, which
are simulatable in polynomial time. (Time improved by us.)

Adding any of T, R8, CS, or Tof gives the full power of BQP.

Note: T2 = S, S2 = Z, Z2 = I = H2, and CS2 = CZ.
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Three Universal Libraries

The gate set H + CNOT + T is efficiently metrically universal,
meaning that any feasible quantum circuit of size s can be
approximated to within entrywise error ϵ by a circuit of these gates
only in size O(s) · (log s

ϵ )
O(1). (See Solovay-Kitaev theorem.)

Programmed improvement by Peter Selinger and Neil Ross.

The gate set H + Tof is not metrically universal—it has no complex
scalars—but it is computationally universal: It can maintain
real and complex parts of quantum states in double-rail manner.

The gate set H + CS is efficiently metrically universal. Note also:

https://en.wikipedia.org/wiki/Solovay-Kitaev_theorem
https://www.mathstat.dal.ca/~selinger/newsynth/
http://theory.caltech.edu/~preskill/ph219/ph219-prob3-fall-2021.pdf
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I. Feynman Path Polynomials

Let C have “minphase” K = 2k and let F embed K-th roots of unity ω.

H + Tof has k = 1, K = 2.

H + CS has k = 2, K = 4.

H + CNOT + T has k = 3, K = 8.

Theorem (RC 2007-09, extending Dawson et al. (2004) over Z2)

Any QC C of n qubits quickly transforms into a polynomial PC =
∏

g Pg

over gates g and a constant R > 0 such that for all x, z ∈ {0, 1}n:

⟨z | C | x⟩ = 1

R

K−1∑
j=0

ωj(#y : PC(x, y, z) = ι(ωj)) =
1

R

∑
y

ωPC(x,y,z),

where C has h nondeterministic (Hadamard) gates and y ∈ {0, 1}h.
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Additive Case (Cf. Bacon-van Dam-Russell [2008])

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial
QC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zn, w1, . . . , wt) of degree O(1) over ZK

and a constant R′ such that for all x, z ∈ {0, 1}n:

⟨z | C | x⟩ = 1

R′

K−1∑
j=0

ωj(#y, w : QC(x, y, z, w) = j)

=
1

R′

∑
y,w

ωQC(x,y,z,w),

where QC has the form
∑

gates g qg +
∑

constraints c qc.

Gives a particularly efficient reduction from BQP to #P.

In PC , illegal paths that violate some constraint incur the value 0.

In QC , any violation creates an additive term T = w1 · · ·wlog2 K

using fresh variables whose assignments give all values in 0 .. K−1,
which cancel. (This trick is my main original contribution.)
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Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)

QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.

T-gate also goes cubic.
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Logical Simulation

Theorem (C. Guan in RCG 2018)

Given C, n,K, h as above, we can quickly build a Boolean formula ϕC in
variables y1, . . . , yh, together with substituted-for x1, . . . , xn, z1, . . . , zn,
and other “forced” variables such that for all x, z ∈ {0, 1}n:

⟨z | C | x⟩ = 1

R

K−1∑
j=0

ωj ·#sat(ϕC).

The ϕ is a conjunction of “controlled bitflips” p′ = p⊕ (u ∧ v).

Easy to transform into 3CNF (i.e., “3SAT” form). (show demo)

For K = 2, 4 (i.e., for H + Tof and H + CS), we get the acceptance
probability as a simple difference:

|⟨z | C | x⟩|2 = 1

R

(
#sat(ϕC)−#sat(ϕ′

C)
)
.
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II. Strong Simulation of Graph State Circuits

Computing amplitudes ⟨z | C | x⟩ for Clifford circuits C can be
efficiently reduced to computing ⟨0n | CG | 0n⟩ for graph-state
circuits CG of graphs G, using H and CZ gates, as exemplified by:
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Improved From O(n3) to O(n2.37155...)

Theorem (Guan-Regan, 2019)

For n-qubit stabilizer circuits of size s, ⟨z | C | x⟩ can be computed in
O(s+ nω) time, where ω ≤ 2.37155... is the exponent of multiplying
n× n matrices.

Although C has K = 2, proof needs to use quadratic forms over Z4.
And LDU decompositions over Z2 by Dumas-Pernet [2018].
Corollary: Counting solutions to quadratic polynomials
p(x1, . . . , xn) over Z2 is in O(n2.37155...) time.
Improves O(n3) time of Ehrenfeucht-Karpinski (1990).
See Beaudrap and Herbert [2021] for other time/size/#H tradeoffs.
Can we recognize G with ⟨0n | CG | 0n⟩ = 0 more quickly still?

https://arxiv.org/abs/1904.00101
https://theory.cs.uni-bonn.de/ftp/reports/cs-reports/1990/8543-CS.pdf
https://arxiv.org/pdf/2109.08629
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From Graphs to Polymatroids

A self-loop on node i becomes a Z-gate on qubit line i.
An S-gate on line i would then be a “half loop.”
A CS gate would then be a “half edge.”
Formalizable as a polymatroid (PM). Into universal QC now.
John Preskill’s notes show that the following four widgets, together
with their conjugations by H⊗ H, suffice:

http://theory.caltech.edu/~preskill/ph219/ph219-prob3-fall-2021.pdf
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New Heuristic Forms to Investigate

Would be a “PM State Circuit”—except for all those H gates in the
middle.

Can we move them to the sides, as with graph state circuits?

If not, are there other useful canonical forms, a-la this?

How about the power of PM state circuits by themselves?

Are they more amenable to algebraic or logical model-counting
heuristics than general quantum circuits?

Chaowen and I also considered graphs that can have:

Loops not attached to a vertex, called circles.
Numbered copies of the empty graph, called wisps.
Wisps of negative sign, called negative isols.

They can be formalized via (graphical) 2-polymatroids. Call them
“(G)2PMs.”

We took them in a different direction.

https://algassert.com/post/1801
https://rjlipton.com/2020/02/11/using-negative-nodes-to-count/
https://dblp.uni-trier.de/rec/conf/acss/GuanR20.html
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III. New Generalized Tutte-Grothendieck Invariant

For any G2PM G, we define its amplitude polynomial QG(x), of just
one variable x, inductively like so:

If G has ℓ isolated nodes, k circles, and any number of wisps or
negative isols (i.e., no edges besides circles), then

QG(x) = (−1)kxℓ.

Else, if G has a loop e at some node, define

QG(x) = QG\e −QG\\e.

Else, if G has an edge e between two nodes, define

QG(x) = QG\e −
1

2
QG\\e.

Here G \ e means deleting edge e, but G \ \e means “exploding” e.
The recursion is confluent—order of choosing e does not matter.
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QG\\e.

Here G \ e means deleting edge e, but G \ \e means “exploding” e.
The recursion is confluent—order of choosing e does not matter.
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Exploding an Edge
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Properties of the Amplitude Polynomial

We connect QG to the rank-generating polynomial SG of J. Oxley
and G. Whittle, and a variant form S′

G, by

Theorem

QG(x) =

(
1

α

)n

S′
G(αx,−α) =

(
1

α

)n

SG(αx,−α)(αx)r,

where α = −i
√
2 and r is the number of isolated nodes of G.

Drawing on their definition of a generalized Tutte-Grothendieck
invariant (GTGI), we show:

Theorem

QG is a GTGI of graphs G and belongs to the first of only two possible
families of GTGIs that can arise from G2PMs
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Even More Speculative

What are these good for? Many computational problems boil down
to evaluating generative polynomials (Tutte, Jones, etc.) at specific
points x0. Classifying complexity of QG(x0) may channel
simulation problems about QCs.

Invariants based on Strassen’s geometric degree γ(f) concept may
help quantify both entanglement and the effort needed to maintain
coherence in universal QC.

Baur-Strassen showed that Ω(log2 γ(f)) lower-bounds the
arithmetical complexity of f , indeed the number of binary
multiplication gates.

Yields Ω(n log n) lower bound on circuits for f = xn1 + · · ·+ xnn.

Piddling, but it remains the only super-linear lower bound known
on any general measure of complexity.

Does γ(PC) witness a physical nonlinearity associated with
operating quantum circuits C?
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Other Web Sources

https://rjlipton.com/2022/01/05/quantum-graph-theory/

https://rjlipton.com/2019/06/17/contraction-and-explosion/

https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/

https://rjlipton.com/2021/11/01/quantum-trick-or-treat/ (chaos in
quantum walks)

https://rjlipton.com/2019/06/10/net-zero-graphs/

https://rjlipton.com/2012/07/08/grilling-quantum-circuits/

Last one has links to expanded geometric degree and Baur-Strassen
discussion.

Thanks for listening. Q & A.
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