Combinatorial Invariants and Quantum Circuits

(With speculation on the status of "quantum supremacy")

Kenneth W. Regan¹ University at Buffalo (SUNY)

28 Sept., 2024

¹Joint work with Amlan Chakrabarti, University of Calcutta, and Chaowen Guan, University of Cincinnati

• Is represented by **BQP**, which includes the Factoring problem.

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers—or **BPP** if we add randomness.

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers—or **BPP** if we add randomness.
- If the **NP**-complete **SAT** problem requires exponential size **circuits**, then **BPP** = **P** anyway.

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers—or **BPP** if we add randomness.
- If the **NP**-complete **SAT** problem requires exponential size **circuits**, then **BPP** = **P** anyway.
- Neither Factoring nor **BQP** seem to reach **NP**-complete level.

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers—or **BPP** if we add randomness.
- If the **NP**-complete **SAT** problem requires exponential size **circuits**, then **BPP** = **P** anyway.
- Neither Factoring nor **BQP** seem to reach **NP**-complete level.
- $\mathbf{BQP} \subseteq \#\mathbf{P}$, which is the analogue of \mathbf{NP} for counting problems.

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers—or **BPP** if we add randomness.
- If the **NP**-complete **SAT** problem requires exponential size **circuits**, then **BPP** = **P** anyway.
- Neither Factoring nor **BQP** seem to reach **NP**-complete level.
- $\mathbf{BQP} \subseteq \#\mathbf{P}$, which is the analogue of \mathbf{NP} for *counting problems*.
- E.g., **#SAT** asks "how many solutions?", not "is there a solution?"

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers—or **BPP** if we add randomness.
- If the **NP**-complete **SAT** problem requires exponential size **circuits**, then **BPP** = **P** anyway.
- Neither Factoring nor **BQP** seem to reach **NP**-complete level.
- $\mathbf{BQP} \subseteq \#\mathbf{P}$, which is the analogue of \mathbf{NP} for *counting problems*.
- E.g., **#SAT** asks "how many solutions?", not "is there a solution?"
- There has still not been a *clear* instance of factoring an integer larger than $21 = 3 \times 7$ via **Shor's Algorithm** on a universal QC.

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers—or **BPP** if we add randomness.
- If the **NP**-complete **SAT** problem requires exponential size **circuits**, then **BPP** = **P** anyway.
- Neither Factoring nor **BQP** seem to reach **NP**-complete level.
- $\mathbf{BQP} \subseteq \#\mathbf{P}$, which is the analogue of \mathbf{NP} for *counting problems*.
- E.g., **#SAT** asks "how many solutions?", not "is there a solution?"
- There has still not been a *clear* instance of factoring an integer larger than $21 = 3 \times 7$ via **Shor's Algorithm** on a universal QC.
- Adiabatic quantum computing is theoretically universal but its computations are ephemeral.

- Is represented by **BQP**, which includes the Factoring problem.
- Factoring is believed outside the class of **P**: problems deemed solvable on classical computers—or **BPP** if we add randomness.
- If the **NP**-complete **SAT** problem requires exponential size **circuits**, then **BPP** = **P** anyway.
- Neither Factoring nor **BQP** seem to reach **NP**-complete level.
- $\mathbf{BQP} \subseteq \#\mathbf{P}$, which is the analogue of \mathbf{NP} for *counting problems*.
- E.g., **#SAT** asks "how many solutions?", not "is there a solution?"
- There has still not been a *clear* instance of factoring an integer larger than $21 = 3 \times 7$ via **Shor's Algorithm** on a universal QC.
- Adiabatic quantum computing is theoretically universal but its computations are ephemeral. Also has stability issues in practice.

The Complexity Class Neighborhood...

ullet Between ${f P}$ and ${f NP}$ -complete is mostly deserted.

- Between **P** and **NP**-complete is mostly deserted.
- \bullet Similar between ${\bf P}$ and $\#{\bf P},$ per "Dichotomy" results by Jin-Yi Cai and others.

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and #**P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert.

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and #**P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and #**P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?
- Not many exponential-saving quantum algorithms besides Shor's.

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and #**P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?
- Not many exponential-saving quantum algorithms besides Shor's.
- Grover's Algorithm is only quadratic savings, and for SAT and #SAT, saves only $\sqrt{\exp(n)} = \exp(n/2)$.

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and **#P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?
- Not many exponential-saving quantum algorithms besides Shor's.
- Grover's Algorithm is only quadratic savings, and for SAT and #SAT, saves only $\sqrt{\exp(n)} = \exp(n/2)$.
- "Quantum supremacy" knocked down? Shor's algorithm dinged, or is it improved? A major app de-quantized?

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and #**P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?
- Not many exponential-saving quantum algorithms besides Shor's.
- Grover's Algorithm is only quadratic savings, and for SAT and #SAT, saves only $\sqrt{\exp(n)} = \exp(n/2)$.
- "Quantum supremacy" knocked down? Shor's algorithm dinged, or is it improved? A major app de-quantized?
- Many **NP**-complete problems have adept heuristics.

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and **#P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?
- Not many exponential-saving quantum algorithms besides Shor's.
- Grover's Algorithm is only quadratic savings, and for SAT and #SAT, saves only $\sqrt{\exp(n)} = \exp(n/2)$.
- "Quantum supremacy" knocked down? Shor's algorithm dinged, or is it improved? A major app de-quantized?
- Many NP-complete problems have adept heuristics.
- Also for **#SAT**: software sharpSAT, Cachet.

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and **#P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?
- Not many exponential-saving quantum algorithms besides Shor's.
- Grover's Algorithm is only quadratic savings, and for SAT and #SAT, saves only $\sqrt{\exp(n)} = \exp(n/2)$.
- "Quantum supremacy" knocked down? Shor's algorithm dinged, or is it improved? A major app de-quantized?
- Many **NP**-complete problems have adept heuristics.
- Also for **#SAT**: software sharpSAT, Cachet.
- However, **SAT**-encoded cases of Factoring remain hard for them.

- Between **P** and **NP**-complete is mostly deserted.
- Similar between **P** and #**P**, per "Dichotomy" results by Jin-Yi Cai and others.
- Except that **BQP** is in the latter desert. Is **BQP** squeezed out?
- Not many exponential-saving quantum algorithms besides Shor's.
- Grover's Algorithm is only quadratic savings, and for SAT and #SAT, saves only $\sqrt{\exp(n)} = \exp(n/2)$.
- "Quantum supremacy" knocked down? Shor's algorithm dinged, or is it improved? A major app de-quantized?
- Many **NP**-complete problems have adept heuristics.
- Also for **#SAT**: software sharpSAT, Cachet.
- However, **SAT**-encoded cases of Factoring remain hard for them.

Can we capture **quantum circuits** by combinatorial invariants that lead to new heuristics for *classically* simulating them?

Consider quadratic polynomials $f(x_1, x_2, ..., x_n)$ modulo 4.

Consider quadratic polynomials $f(x_1, x_2, ..., x_n)$ modulo 4.

• Counting the number of zeroes is in P.

Consider quadratic polynomials $f(x_1, x_2, ..., x_n)$ modulo 4.

• Counting the number of zeroes is in P. (Follows by [Cai-Chen-Lipton-Luo, 2010].)

Consider quadratic polynomials $f(x_1, x_2, ..., x_n)$ modulo 4.

- Counting the number of zeroes is in P. (Follows by [Cai-Chen-Lipton-Luo, 2010].)
- Counting the number of zeroes in $\{0,1\}^n$ is #P-complete.

Consider quadratic polynomials $f(x_1, x_2, ..., x_n)$ modulo 4.

- Counting the number of zeroes is in P. (Follows by [Cai-Chen-Lipton-Luo, 2010].)
- Counting the number of zeroes in $\{0,1\}^n$ is #P-complete.
- But if all cross-terms are $2x_ix_j$ it is in P again.

Consider quadratic polynomials $f(x_1, x_2, ..., x_n)$ modulo 4.

- Counting the number of zeroes is in P. (Follows by [Cai-Chen-Lipton-Luo, 2010].)
- Counting the number of zeroes in $\{0,1\}^n$ is $\#\mathsf{P}\text{-complete}$.
- But if all cross-terms are $2x_ix_j$ it is in P again.

We will see how polynomials over \mathbb{Z}_4 characterize a neglected(?) library of universal quantum circuits.

Consider quadratic polynomials $f(x_1, x_2, ..., x_n)$ modulo 4.

- Counting the number of zeroes is in P. (Follows by [Cai-Chen-Lipton-Luo, 2010].)
- Counting the number of zeroes in $\{0,1\}^n$ is #P-complete.
- But if all cross-terms are $2x_ix_j$ it is in P again.

We will see how polynomials over \mathbb{Z}_4 characterize a neglected(?) library of universal quantum circuits.

Three kinds of combinatorial invariants for these circuits:

- Phase-and-location ("Feynman Path") polynomials.
- ② Graphs, and their generalization to graphical 2-polymatroids.
- Versions of the Tutte Polynomial associated to such graphs and matroids.

Quantum Circuits

Quantum circuits look more constrained than Boolean circuits:

But Boolean circuits look similar if we do Savage's TM-to-circuit simulation and call each *column* for each tape cell a "cue-bit."

Quantum Gates—three slides by M. Rötteler

Quantum gates

single qubit operation:

controlled-NOT:

unitary matrix
$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

controlled-U:

control
$$U$$

control target
$$U$$
 unitary matrix $= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & U_{10} & U_{11} \end{pmatrix}$

measurement in the $|0\rangle, |1\rangle$ basis:

September 24, 2009

Quantum circuit example

M Roetteler

Toffoli Gate

The Toffoli gate "TOF"

X	У	Z	X'	y'	Z'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

Theorem (Toffoli, 1981)

Any reversible computation can be realized by using TOF gates and ancilla (auxiliary) bits which are initialized to 0.

Slides by Martin Rötteler

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}, \quad R_8 = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/8} \end{bmatrix},$$

$$\mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \mathsf{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad \mathsf{CS} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix}.$$

$$\mathsf{S} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad \mathsf{T} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}, \quad \mathsf{R}_8 = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/8} \end{bmatrix},$$

$$\mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \mathsf{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathsf{CS} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix}.$$

 $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$

• The gates H, X, Y, Z, S, CNOT, CZ generate *Clifford circuits*, which are simulatable in polynomial time.

$$\mathsf{S} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad \mathsf{T} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}, \quad \mathsf{R}_8 = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/8} \end{bmatrix},$$

$$\mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \mathsf{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathsf{CS} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix}.$$

 $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$

• The gates H, X, Y, Z, S, CNOT, CZ generate *Clifford circuits*, which are simulatable in polynomial time. (Time improved by us.)

$$\mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$
$$\mathbf{S} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad \mathbf{T} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}, \quad \mathbf{R}_8 = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/8} \end{bmatrix},$$

$$\mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \mathsf{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad \mathsf{CS} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix}.$$

- The gates H, X, Y, Z, S, CNOT, CZ generate *Clifford circuits*, which are simulatable in polynomial time. (Time improved by us.)
- Adding any of T, R₈, CS, or Tof gives the full power of BQP.

$$\mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$
$$\mathbf{S} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad \mathbf{T} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}, \quad \mathbf{R}_8 = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/8} \end{bmatrix},$$

$$\mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \mathsf{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad \mathsf{CS} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix}.$$

- The gates H, X, Y, Z, S, CNOT, CZ generate *Clifford circuits*, which are simulatable in polynomial time. (Time improved by us.)
- ullet Adding any of T, R₈, CS, or Tof gives the full power of BQP.
- Note: $T^2 = S$, $S^2 = Z$, $Z^2 = I = H^2$, and $CS^2 = CZ$.

• The gate set H + CNOT + T is efficiently metrically universal, meaning that any feasible quantum circuit of size s can be approximated to within entrywise error ϵ by a circuit of these gates only in size $O(s) \cdot (\log \frac{s}{\epsilon})^{O(1)}$. (See Solovay-Kitaev theorem.)

- The gate set H + CNOT + T is **efficiently metrically universal**, meaning that any feasible quantum circuit of size s can be approximated to within entrywise error ϵ by a circuit of these gates only in size $O(s) \cdot (\log \frac{s}{\epsilon})^{O(1)}$. (See Solovay-Kitaev theorem.)
- Programmed improvement by Peter Selinger and Neil Ross.

- The gate set $\mathsf{H} + \mathsf{CNOT} + \mathsf{T}$ is **efficiently metrically universal**, meaning that any feasible quantum circuit of size s can be approximated to within entrywise error ϵ by a circuit of these gates only in size $O(s) \cdot (\log \frac{s}{\epsilon})^{O(1)}$. (See Solovay-Kitaev theorem.)
- Programmed improvement by Peter Selinger and Neil Ross.
- The gate set H + Tof is not metrically universal—it has no complex scalars—but it is **computationally universal**: It can maintain real and complex parts of quantum states in double-rail manner.

- The gate set H + CNOT + T is **efficiently metrically universal**, meaning that any feasible quantum circuit of size s can be approximated to within entrywise error ϵ by a circuit of these gates only in size $O(s) \cdot (\log \frac{s}{\epsilon})^{O(1)}$. (See Solovay-Kitaev theorem.)
- Programmed improvement by Peter Selinger and Neil Ross.
- The gate set H + Tof is not metrically universal—it has no complex scalars—but it is **computationally universal**: It can maintain real and complex parts of quantum states in double-rail manner.
- The gate set H + CS is efficiently metrically universal.

- The gate set H + CNOT + T is **efficiently metrically universal**, meaning that any feasible quantum circuit of size s can be approximated to within entrywise error ϵ by a circuit of these gates only in size $O(s) \cdot (\log \frac{s}{\epsilon})^{O(1)}$. (See Solovay-Kitaev theorem.)
- Programmed improvement by Peter Selinger and Neil Ross.
- The gate set H + Tof is not metrically universal—it has no complex scalars—but it is **computationally universal**: It can maintain real and complex parts of quantum states in double-rail manner.
- The gate set H + CS is efficiently metrically universal. **Note also:**

I. Feynman Path Polynomials

Let C have "minphase" $K = 2^k$ and let F embed K-th roots of unity ω .

- H + Tof has k = 1, K = 2.
- H + CS has k = 2, K = 4.
- H + CNOT + T has k = 3, K = 8.

I. Feynman Path Polynomials

Let C have "minphase" $K = 2^k$ and let F embed K-th roots of unity ω .

- H + Tof has k = 1, K = 2.
- H + CS has k = 2, K = 4.
- H + CNOT + T has k = 3, K = 8.

Theorem (RC 2007-09, extending Dawson et al. (2004) over \mathbb{Z}_2)

Any QC C of n qubits quickly transforms into a polynomial $P_C = \prod_g P_g$ over gates g and a constant R > 0 such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j (\# y : P_C(x, y, z) = \iota(\omega^j))$$

I. Feynman Path Polynomials

Let C have "minphase" $K = 2^k$ and let F embed K-th roots of unity ω .

- H + Tof has k = 1, K = 2.
- H + CS has k = 2, K = 4.
- H + CNOT + T has k = 3, K = 8.

Theorem (RC 2007-09, extending Dawson et al. (2004) over \mathbb{Z}_2)

Any QC C of n qubits quickly transforms into a polynomial $P_C = \prod_g P_g$ over gates g and a constant R > 0 such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j (\# y : P_C(x, y, z) = \iota(\omega^j)) = \frac{1}{R} \sum_y \omega^{P_C(x, y, z)},$$

where C has h nondeterministic (Hadamard) gates and $y \in \{0,1\}^h$.

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree O(1) over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j(\#y, w : Q_C(x, y, z, w) = j)$$

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree O(1) over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j(\#y, w : Q_C(x, y, z, w) = j) = \frac{1}{R'} \sum_{y, w} \omega^{Q_C(x, y, z, w)},$$

where Q_C has the form $\sum_{qates\ q} q_g + \sum_{constraints\ c} q_c$.

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree O(1) over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j(\#y, w : Q_C(x, y, z, w) = j) = \frac{1}{R'} \sum_{y, w} \omega^{Q_C(x, y, z, w)},$$

where Q_C has the form $\sum_{gates\ g} q_g + \sum_{constraints\ c} q_c$.

• Gives a particularly efficient reduction from BQP to #P.

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree O(1) over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j(\#y, w : Q_C(x, y, z, w) = j) = \frac{1}{R'} \sum_{y, w} \omega^{Q_C(x, y, z, w)},$$

where Q_C has the form $\sum_{gates\ g} q_g + \sum_{constraints\ c} q_c$.

- Gives a particularly efficient reduction from BQP to #P.
- In P_C , illegal paths that violate some constraint incur the value 0.

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree O(1) over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j(\#y, w : Q_C(x, y, z, w) = j) = \frac{1}{R'} \sum_{y, w} \omega^{Q_C(x, y, z, w)},$$

where Q_C has the form $\sum_{gates\ g} q_g + \sum_{constraints\ c} q_c$.

- Gives a particularly efficient reduction from BQP to #P.
- In P_C , illegal paths that violate some constraint incur the value 0.
- In Q_C , any violation creates an additive term $T = w_1 \cdots w_{\log_2 K}$ using fresh variables whose assignments give all values in 0 ... K-1, which cancel.

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree O(1) over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j(\#y, w : Q_C(x, y, z, w) = j) = \frac{1}{R'} \sum_{y, w} \omega^{Q_C(x, y, z, w)},$$

where Q_C has the form $\sum_{qates\ q} q_g + \sum_{constraints\ c} q_c$.

- Gives a particularly efficient reduction from BQP to #P.
- In P_C , illegal paths that violate some constraint incur the value 0.
- In Q_C , any violation creates an additive term $T = w_1 \cdots w_{\log_2 K}$ using fresh variables whose assignments give all values in $0 \dots K-1$, which *cancel*. (This trick is my main original contribution.)

• Initially $P_C = 1$, $Q_C = 0$.

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

• CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$.

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

• CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$. No change to P_C or Q_C .

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j u_i u_j$. No change to P_C or Q_C .
- S-gate: Q_C adds u_i^2 .

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j u_i u_j$. No change to P_C or Q_C .
- S-gate: Q_C adds u_i^2 .
- CS-gate: Q_C adds $u_i u_j$.

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j u_i u_j$. No change to P_C or Q_C .
- S-gate: Q_C adds u_i^2 .
- CS-gate: Q_C adds $u_i u_j$.
- Thereby CS escapes the easy case over \mathbb{Z}_4 (with k=2).

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j u_i u_j$. No change to P_C or Q_C .
- S-gate: Q_C adds u_i^2 .
- CS-gate: Q_C adds $u_i u_j$.
- Thereby CS escapes the easy case over \mathbb{Z}_4 (with k=2).
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j u_i u_j$. No change to P_C or Q_C .
- S-gate: Q_C adds u_i^2 .
- CS-gate: Q_C adds $u_i u_j$.
- Thereby CS escapes the easy case over \mathbb{Z}_4 (with k=2).
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.
- T-gate also goes cubic.

Theorem (C. Guan in RCG 2018)

Given C, n, K, h as above, we can quickly build a Boolean formula ϕ_C in variables y_1, \ldots, y_h , together with substituted-for $x_1, \ldots, x_n, z_1, \ldots, z_n$, and other "forced" variables such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j \cdot \#sat(\phi_C).$$

Theorem (C. Guan in RCG 2018)

Given C, n, K, h as above, we can quickly build a Boolean formula ϕ_C in variables y_1, \ldots, y_h , together with substituted-for $x_1, \ldots, x_n, z_1, \ldots, z_n$, and other "forced" variables such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j \cdot \#sat(\phi_C).$$

• The ϕ is a conjunction of "controlled bitflips" $p' = p \oplus (u \wedge v)$.

Theorem (C. Guan in RCG 2018)

Given C, n, K, h as above, we can quickly build a Boolean formula ϕ_C in variables y_1, \ldots, y_h , together with substituted-for $x_1, \ldots, x_n, z_1, \ldots, z_n$, and other "forced" variables such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j \cdot \#sat(\phi_C).$$

- The ϕ is a conjunction of "controlled bitflips" $p' = p \oplus (u \wedge v)$.
- Easy to transform into 3CNF (i.e., "3SAT" form). (show demo)

Theorem (C. Guan in RCG 2018)

Given C, n, K, h as above, we can quickly build a Boolean formula ϕ_C in variables y_1, \ldots, y_h , together with substituted-for $x_1, \ldots, x_n, z_1, \ldots, z_n$, and other "forced" variables such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j \cdot \#sat(\phi_C).$$

- The ϕ is a conjunction of "controlled bitflips" $p' = p \oplus (u \wedge v)$.
- Easy to transform into 3CNF (i.e., "3SAT" form). (show demo)
- For K = 2, 4 (i.e., for H + Tof and H + CS), we get the acceptance probability as a simple difference:

$$\left|\left\langle z\mid C\mid x\right\rangle\right|^{2}=\frac{1}{R}\left(\#sat(\phi_{C})-\#sat(\phi_{C}')\right).$$

II. Strong Simulation of Graph State Circuits

Computing amplitudes $\langle z \mid C \mid x \rangle$ for Clifford circuits C can be efficiently reduced to computing $\langle 0^n \mid C_G \mid 0^n \rangle$ for **graph-state circuits** C_G of graphs G, using H and CZ gates, as exemplified by:

Improved From $O(n^3)$ to $O(n^{2.37155...})$

Theorem (Guan-Regan, 2019)

For n-qubit stabilizer circuits of size s, $\langle z \mid C \mid x \rangle$ can be computed in $O(s+n^{\omega})$ time, where $\omega \leq 2.37155...$ is the exponent of multiplying $n \times n$ matrices.

Theorem (Guan-Regan, 2019)

For n-qubit stabilizer circuits of size s, $\langle z \mid C \mid x \rangle$ can be computed in $O(s + n^{\omega})$ time, where $\omega \leq 2.37155...$ is the exponent of multiplying $n \times n$ matrices.

• Although C has K = 2, proof needs to use quadratic forms over \mathbb{Z}_4 . And LDU decompositions over \mathbb{Z}_2 by Dumas-Pernet [2018].

Theorem (Guan-Regan, 2019)

- Although C has K = 2, proof needs to use quadratic forms over \mathbb{Z}_4 . And LDU decompositions over \mathbb{Z}_2 by Dumas-Pernet [2018].
- Corollary: Counting solutions to quadratic polynomials $p(x_1, ..., x_n)$ over \mathbb{Z}_2 is in $O(n^{2.37155...})$ time.

Theorem (Guan-Regan, 2019)

- Although C has K = 2, proof needs to use quadratic forms over \mathbb{Z}_4 . And LDU decompositions over \mathbb{Z}_2 by Dumas-Pernet [2018].
- Corollary: Counting solutions to quadratic polynomials $p(x_1, ..., x_n)$ over \mathbb{Z}_2 is in $O(n^{2.37155...})$ time.

Theorem (Guan-Regan, 2019)

- Although C has K = 2, proof needs to use quadratic forms over \mathbb{Z}_4 . And LDU decompositions over \mathbb{Z}_2 by Dumas-Pernet [2018].
- Corollary: Counting solutions to quadratic polynomials $p(x_1, ..., x_n)$ over \mathbb{Z}_2 is in $O(n^{2.37155...})$ time.
- Improves $O(n^3)$ time of Ehrenfeucht-Karpinski (1990).

Theorem (Guan-Regan, 2019)

- Although C has K = 2, proof needs to use quadratic forms over \mathbb{Z}_4 . And LDU decompositions over \mathbb{Z}_2 by Dumas-Pernet [2018].
- Corollary: Counting solutions to quadratic polynomials $p(x_1, ..., x_n)$ over \mathbb{Z}_2 is in $O(n^{2.37155...})$ time.
- Improves $O(n^3)$ time of Ehrenfeucht-Karpinski (1990).
- See Beaudrap and Herbert [2021] for other time/size/#H tradeoffs.

Theorem (Guan-Regan, 2019)

- Although C has K = 2, proof needs to use quadratic forms over \mathbb{Z}_4 . And LDU decompositions over \mathbb{Z}_2 by Dumas-Pernet [2018].
- Corollary: Counting solutions to quadratic polynomials $p(x_1, ..., x_n)$ over \mathbb{Z}_2 is in $O(n^{2.37155...})$ time.
- Improves $O(n^3)$ time of Ehrenfeucht-Karpinski (1990).
- See Beaudrap and Herbert [2021] for other time/size/#H tradeoffs.
- Can we recognize G with $\langle 0^n \mid C_G \mid 0^n \rangle = 0$ more quickly still?

• A self-loop on node i becomes a Z-gate on qubit line i.

- A self-loop on node i becomes a Z-gate on qubit line i.
- An S-gate on line i would then be a "half loop."

- A self-loop on node i becomes a Z-gate on qubit line i.
- An S-gate on line i would then be a "half loop."
- A CS gate would then be a "half edge."

- A self-loop on node i becomes a Z-gate on qubit line i.
- An S-gate on line i would then be a "half loop."
- A CS gate would then be a "half edge."
- Formalizable as a **polymatroid** (PM). Into universal QC now.

- A self-loop on node i becomes a Z-gate on qubit line i.
- An S-gate on line i would then be a "half loop."
- A CS gate would then be a "half edge."
- Formalizable as a **polymatroid** (PM). Into universal QC now.
- John Preskill's notes show that the following four widgets, together with their conjugations by $H \otimes H$, suffice:

• Would be a "PM State Circuit"—except for all those H gates in the middle.

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?
- If not, are there other useful canonical forms, a-la this?

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?
- If not, are there other useful canonical forms, a-la this?
- How about the power of PM state circuits by themselves?

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?
- If not, are there other useful canonical forms, a-la this?
- How about the power of PM state circuits by themselves?
- Are they more amenable to algebraic or logical model-counting heuristics than general quantum circuits?

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?
- If not, are there other useful canonical forms, a-la this?
- How about the power of PM state circuits by themselves?
- Are they more amenable to algebraic or logical model-counting heuristics than general quantum circuits?
- Chaowen and I also considered graphs that can have:
 - Loops not attached to a vertex, called *circles*.
 - Numbered copies of the empty graph, called wisps.
 - Wisps of negative sign, called negative isols.

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?
- If not, are there other useful canonical forms, a-la this?
- How about the power of PM state circuits by themselves?
- Are they more amenable to algebraic or logical model-counting heuristics than general quantum circuits?
- Chaowen and I also considered graphs that can have:
 - Loops not attached to a vertex, called *circles*.
 - Numbered copies of the empty graph, called wisps.
 - Wisps of negative sign, called *negative isols*.
- They can be formalized via (graphical) 2-polymatroids. Call them "(G)2PMs."

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?
- If not, are there other useful canonical forms, a-la this?
- How about the power of PM state circuits by themselves?
- Are they more amenable to algebraic or logical model-counting heuristics than general quantum circuits?
- Chaowen and I also considered graphs that can have:
 - Loops not attached to a vertex, called *circles*.
 - Numbered copies of the empty graph, called wisps.
 - Wisps of negative sign, called *negative isols*.
- They can be formalized via (graphical) 2-polymatroids. Call them "(G)2PMs."
- We took them in a different direction.

For any G2PM G, we define its **amplitude polynomial** $Q_G(x)$, of just one variable x, inductively like so:

For any G2PM G, we define its **amplitude polynomial** $Q_G(x)$, of just one variable x, inductively like so:

• If G has ℓ isolated nodes, k circles, and any number of wisps or negative isols (i.e., no edges besides circles), then

$$Q_G(x) = (-1)^k x^{\ell}.$$

For any G2PM G, we define its **amplitude polynomial** $Q_G(x)$, of just one variable x, inductively like so:

• If G has ℓ isolated nodes, k circles, and any number of wisps or negative isols (i.e., no edges besides circles), then

$$Q_G(x) = (-1)^k x^{\ell}.$$

 \bullet Else, if G has a loop e at some node, define

$$Q_G(x) = Q_{G \setminus e} - Q_{G \setminus e}.$$

For any G2PM G, we define its **amplitude polynomial** $Q_G(x)$, of just one variable x, inductively like so:

• If G has ℓ isolated nodes, k circles, and any number of wisps or negative isols (i.e., no edges besides circles), then

$$Q_G(x) = (-1)^k x^{\ell}.$$

• Else, if G has a loop e at some node, define

$$Q_G(x) = Q_{G \setminus e} - Q_{G \setminus e}.$$

 \bullet Else, if G has an edge e between two nodes, define

$$Q_G(x) = Q_{G \setminus e} - \frac{1}{2} Q_{G \setminus e}.$$

Here $G \setminus e$ means deleting edge e, but $G \setminus e$ means "**exploding**" e.

The recursion is *confluent*—order of choosing *e* does not matter.

Exploding an Edge

Properties of the Amplitude Polynomial

We connect Q_G to the **rank-generating polynomial** S_G of J. Oxley and G. Whittle, and a variant form S'_G , by

<u>Theorem</u>

$$Q_G(x) = \left(\frac{1}{\alpha}\right)^n S_G'(\alpha x, -\alpha) = \left(\frac{1}{\alpha}\right)^n S_G(\alpha x, -\alpha)(\alpha x)^r,$$

where $\alpha = -i\sqrt{2}$ and r is the number of isolated nodes of G.

Drawing on their definition of a generalized Tutte-Grothendieck invariant (GTGI), we show:

Theorem

 Q_G is a GTGI of graphs G and belongs to the first of only two possible families of GTGIs that can arise from G2PMs

• What are these good for? Many computational problems boil down to evaluating generative polynomials (Tutte, Jones, etc.) at specific points x_0 . Classifying complexity of $Q_G(x_0)$ may channel simulation problems about QCs.

- What are these good for? Many computational problems boil down to evaluating generative polynomials (Tutte, Jones, etc.) at specific points x_0 . Classifying complexity of $Q_G(x_0)$ may channel simulation problems about QCs.
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and the effort needed to maintain coherence in universal QC.

- What are these good for? Many computational problems boil down to evaluating generative polynomials (Tutte, Jones, etc.) at specific points x_0 . Classifying complexity of $Q_G(x_0)$ may channel simulation problems about QCs.
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and the effort needed to maintain coherence in universal QC.
- Baur-Strassen showed that $\Omega(\log_2 \gamma(f))$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.

- What are these good for? Many computational problems boil down to evaluating generative polynomials (Tutte, Jones, etc.) at specific points x_0 . Classifying complexity of $Q_G(x_0)$ may channel simulation problems about QCs.
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and the effort needed to maintain coherence in universal QC.
- Baur-Strassen showed that $\Omega(\log_2 \gamma(f))$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.
- Yields $\Omega(n \log n)$ lower bound on circuits for $f = x_1^n + \cdots + x_n^n$.

- What are these good for? Many computational problems boil down to evaluating generative polynomials (Tutte, Jones, etc.) at specific points x_0 . Classifying complexity of $Q_G(x_0)$ may channel simulation problems about QCs.
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and the effort needed to maintain coherence in universal QC.
- Baur-Strassen showed that $\Omega(\log_2 \gamma(f))$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.
- Yields $\Omega(n \log n)$ lower bound on circuits for $f = x_1^n + \cdots + x_n^n$.
- Piddling, but it remains the only super-linear lower bound known on any general measure of complexity.

- What are these good for? Many computational problems boil down to evaluating generative polynomials (Tutte, Jones, etc.) at specific points x_0 . Classifying complexity of $Q_G(x_0)$ may channel simulation problems about QCs.
- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and the effort needed to maintain coherence in universal QC.
- Baur-Strassen showed that $\Omega(\log_2 \gamma(f))$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.
- Yields $\Omega(n \log n)$ lower bound on circuits for $f = x_1^n + \cdots + x_n^n$.
- Piddling, but it remains the only super-linear lower bound known on any general measure of complexity.
- Does $\gamma(P_C)$ witness a physical nonlinearity associated with operating quantum circuits C?

• https://rjlipton.com/2022/01/05/quantum-graph-theory/

- https://rjlipton.com/2022/01/05/quantum-graph-theory/
- https://rjlipton.com/2019/06/17/contraction-and-explosion/

- https://rjlipton.com/2022/01/05/quantum-graph-theory/
- https://rjlipton.com/2019/06/17/contraction-and-explosion/
- https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/

- https://rjlipton.com/2022/01/05/quantum-graph-theory/
- https://rjlipton.com/2019/06/17/contraction-and-explosion/
- https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/
- https://rjlipton.com/2021/11/01/quantum-trick-or-treat/ (chaos in quantum walks)

- https://rjlipton.com/2022/01/05/quantum-graph-theory/
- https://rjlipton.com/2019/06/17/contraction-and-explosion/
- https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/
- https://rjlipton.com/2021/11/01/quantum-trick-or-treat/ (chaos in quantum walks)
- https://rjlipton.com/2019/06/10/net-zero-graphs/

- https://rjlipton.com/2022/01/05/quantum-graph-theory/
- https://rjlipton.com/2019/06/17/contraction-and-explosion/
- https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/
- https://rjlipton.com/2021/11/01/quantum-trick-or-treat/ (chaos in quantum walks)
- https://rjlipton.com/2019/06/10/net-zero-graphs/
- https://rjlipton.com/2012/07/08/grilling-quantum-circuits/

- https://rjlipton.com/2022/01/05/quantum-graph-theory/
- https://rjlipton.com/2019/06/17/contraction-and-explosion/
- https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/
- https://rjlipton.com/2021/11/01/quantum-trick-or-treat/ (chaos in quantum walks)
- https://rjlipton.com/2019/06/10/net-zero-graphs/
- https://rjlipton.com/2012/07/08/grilling-quantum-circuits/
- Last one has links to expanded geometric degree and Baur-Strassen discussion.

- https://rjlipton.com/2022/01/05/quantum-graph-theory/
- https://rjlipton.com/2019/06/17/contraction-and-explosion/
- https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/
- https://rjlipton.com/2021/11/01/quantum-trick-or-treat/ (chaos in quantum walks)
- https://rjlipton.com/2019/06/10/net-zero-graphs/
- https://rjlipton.com/2012/07/08/grilling-quantum-circuits/
- Last one has links to expanded geometric degree and Baur-Strassen discussion.
- Thanks for listening. Q & A.