Example

\[L_E = \{ \langle M \rangle : \text{M accepts } \varepsilon \} = \{ \langle M \rangle : \langle M, \varepsilon \rangle \} = I \{ L : \varepsilon \in L \} \]

Hence Undeniable.

Is c.e.: Just run

\[I = \{ \langle M \rangle : \text{L(M) = } \{ \varepsilon \} \} \]

Mu on \(\langle M, \varepsilon \rangle \).

(IE)

i.e. M accepts \(\varepsilon \)

but does not accept any other string.

Index set of the class containing only \(\{ \varepsilon \} \).

\(\text{Atm} \leq_m I \).: Undeniable, but let's see the reduction.

\[<M, W> \not\in M' \]

(Does also show)

\(\text{Atm} \leq_m L_E \)

\(\text{M accepts } W \Rightarrow L(M') = \{ \varepsilon \} \) i.e. \(M' \) only accept \(\varepsilon \).

Otherwise \(M' \) doesn't only accept \(\varepsilon \).

\(\text{IIE is not c.e.:} \)

Show \(\text{Dtm} \leq_m I\text{IE} \) as well.
Delay Trick

\[M \xrightarrow{g} M'' \]

- If \(X = \varepsilon \), accept
- Run \(M(\langle M \rangle) \) for up to \(n \) steps
 - If it accepted, accept \(X \).
 - If \(M \) does not accept \(\langle M \rangle \) \(\Rightarrow \) \(\text{L}(M'') \neq \{ \varepsilon \} \), accept \(\varepsilon \).

Does this give

\[M' = D_m \leq I \]

If not, use a busy box?

Checking Computations: An EQ of a 1 tape TM \(M \) during a computation on input \(X \) is

\[I = \langle g, w, i > \in \text{state, tape contents} \]

\[T(M, X, i) : i \] is a sequence of IPs (1 \(\leq \) \(n \) \(\leq \) \(m \))

\[I_0, I_1, \ldots, I_t \text{ s.t. } I_0 = \langle s, X, 1 \rangle \text{ input } x \]

and for all \(j \geq 1 \), \(I_j \) follows from \(I_{j-1} \) via the simulate in linear time!

One can also write

\[I = U g CV \text{ where } W = UCV \text{ and } M \text{ is scanning } C. \]

Or \(I = U [g]^c) \text{ cell } i \)