Using the Shape of Space for Shortcuts Speeding up regressions on millions of chess positions

Kenneth W. Regan¹

FWCG, University at Buffalo, 23 October 2015

¹Joint with Tamal T. Biswas, AAIM 2014, *Theoretical Computer Science* (in press).

• Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.

- Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.
- Idea: Precompute & store values $v_u = f(u_1, \ldots, u_\ell)$ at gridpoints u.

うして ふゆう ふほう ふほう ふしつ

- Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.
- Idea: Precompute & store values $v_u = f(u_1, \ldots, u_\ell)$ at gridpoints u.

うして ふゆう ふほう ふほう ふしつ

• Estimate f(x) via v_u for nearby gridpoints u.

- Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.
- Idea: Precompute & store values $v_u = f(u_1, \ldots, u_\ell)$ at gridpoints u.

- Estimate f(x) via v_u for nearby gridpoints u.
- Three main options for doing this:

- Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.
- Idea: Precompute & store values $v_u = f(u_1, \ldots, u_\ell)$ at gridpoints u.

- Estimate f(x) via v_u for nearby gridpoints u.
- Three main options for doing this:
- **1** Interpolate using v_u for (all) vertices of the cell x is in.

- Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.
- Idea: Precompute & store values $v_u = f(u_1, \ldots, u_\ell)$ at gridpoints u.

- Estimate f(x) via v_u for nearby gridpoints u.
- Three main options for doing this:
- Interpolate using v_u for (all) vertices of the cell x is in. Problem: naive "all" is exponential in the dimension ℓ .

- Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.
- Idea: Precompute & store values $v_u = f(u_1, \ldots, u_\ell)$ at gridpoints u.
- Estimate f(x) via v_u for nearby gridpoints u.
- Three main options for doing this:
- Interpolate using v_u for (all) vertices of the cell x is in. Problem: naive "all" is exponential in the dimension ℓ .
- **2** Do **Taylor expansion** using one or a few nearby gridpoints u.

- Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.
- Idea: Precompute & store values $v_u = f(u_1, \ldots, u_\ell)$ at gridpoints u.
- Estimate f(x) via v_u for nearby gridpoints u.
- Three main options for doing this:
- Interpolate using v_u for (all) vertices of the cell x is in. Problem: naive "all" is exponential in the dimension ℓ .
- Do Taylor expansion using one or a few nearby gridpoints u.
 Problem: this needs precomputing partials too.

- Evaluate an **expensive** $f(x) = f(x_1, \ldots, x_\ell)$ at millions of points x.
- Idea: Precompute & store values $v_u = f(u_1, \ldots, u_\ell)$ at gridpoints u.
- Estimate f(x) via v_u for nearby gridpoints u.
- Three main options for doing this:
- Interpolate using v_u for (all) vertices of the cell x is in. Problem: naive "all" is exponential in the dimension ℓ .
- Do Taylor expansion using one or a few nearby gridpoints u.
 Problem: this needs precomputing partials too.
- Oheat.

• Two activities: training and testing.

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.
- New 2010–2014 set has 1.15 million positions. Update each year...

ション ふゆ マ キャット キャット しょう

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.
- New 2010–2014 set has 1.15 million positions. Update each year...

ション ふゆ マ キャット キャット しょう

• Kaggle competition set running now $\longrightarrow 3$ million positions.

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.
- New 2010–2014 set has 1.15 million positions. Update each year...
- Kaggle competition set running now $\longrightarrow 3$ million positions.
- Multiply by $\ell = 30-35$ legal moves per position on average and by 10-100 "Newton" or Nelder-Mead iterations per run.

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.
- New 2010–2014 set has 1.15 million positions. Update each year...
- Kaggle competition set running now $\longrightarrow 3$ million positions.
- Multiply by $\ell = 30-35$ legal moves per position on average and by 10–100 "Newton" or Nelder-Mead iterations per run.

うして ふゆう ふほう ふほう ふしつ

• Model parameters *s*, *c*, . . . trained to chess **Elo ratings** via nonlinear regression.

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.
- New 2010–2014 set has 1.15 million positions. Update each year...
- Kaggle competition set running now $\longrightarrow 3$ million positions.
- Multiply by $\ell = 30-35$ legal moves per position on average and by 10–100 "Newton" or Nelder-Mead iterations per run.
- Model parameters *s*, *c*, . . . trained to chess **Elo ratings** via nonlinear regression.
- **Cheating test** regresses on typically 6–9 games, 200–300 positions by one player.

うして ふゆう ふほう ふほう ふしつ

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.
- New 2010–2014 set has 1.15 million positions. Update each year...
- Kaggle competition set running now $\longrightarrow 3$ million positions.
- Multiply by $\ell = 30-35$ legal moves per position on average and by 10–100 "Newton" or Nelder-Mead iterations per run.
- Model parameters s, c, \ldots trained to chess **Elo ratings** via nonlinear regression.
- Cheating test regresses on typically 6–9 games, 200–300 positions by one player. Full accuracy is vital for this test...

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.
- New 2010–2014 set has 1.15 million positions. Update each year...
- Kaggle competition set running now $\longrightarrow 3$ million positions.
- Multiply by $\ell = 30-35$ legal moves per position on average and by 10–100 "Newton" or Nelder-Mead iterations per run.
- Model parameters s, c, \ldots trained to chess **Elo ratings** via nonlinear regression.
- Cheating test regresses on typically 6–9 games, 200–300 positions by one player. Full accuracy is vital for this test...
- ... but not so vital for the training: Large data; approximation OK.

- Two activities: training and testing.
- First sets for years up to 2009 totaled just over 1 million positions.
- New 2010–2014 set has 1.15 million positions. Update each year...
- Kaggle competition set running now $\longrightarrow 3$ million positions.
- Multiply by $\ell = 30-35$ legal moves per position on average and by 10–100 "Newton" or Nelder-Mead iterations per run.
- Model parameters s, c, \ldots trained to chess **Elo ratings** via nonlinear regression.
- Cheating test regresses on typically 6–9 games, 200–300 positions by one player. Full accuracy is vital for this test...
- ... but not so vital for the training: Large data; approximation OK.
- Correspondence e(s,c)–Elo comes out superbly linear under exact runs on smaller data, so—provided the approximations avoid systematic bias across Elo levels—they will help correct each other.

9 Space of points $x = (x_1, \ldots, x_\ell)$, where ℓ is not small.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Space of points $x = (x_1, \ldots, x_\ell)$, where ℓ is not small.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

2 Need to evaluate y = f(x) for M = millions of x.

- Space of points $x = (x_1, \ldots, x_\ell)$, where ℓ is not small.
- **2** Need to evaluate y = f(x) for M = millions of x.
- Seach eval of f is expensive. Many repetitive evals [many move situations are similar].

- Space of points $x = (x_1, \ldots, x_\ell)$, where ℓ is not small.
- **2** Need to evaluate y = f(x) for M = millions of x.
- Seach eval of f is expensive. Many repetitive evals [many move situations are similar].
- **(**) However, the target function $\mu(y_1, \ldots, y_M)$ tolerates approximation:

- Space of points $x = (x_1, \ldots, x_\ell)$, where ℓ is not small.
- **2** Need to evaluate y = f(x) for M = millions of x.
- Seach eval of f is expensive. Many repetitive evals [many move situations are similar].
- **(**) However, the target function $\mu(y_1, \ldots, y_M)$ tolerates approximation:
 - Could be linear: $\mu = sum_j a_j y_j$. For mean or quantile statistics.

(日) (日) (日) (日) (日) (日) (日) (日)

- Space of points $x = (x_1, \ldots, x_\ell)$, where ℓ is not small.
- **2** Need to evaluate y = f(x) for M = millions of x.
- Seach eval of f is expensive. Many repetitive evals [many move situations are similar].
- **(**) However, the target function $\mu(y_1, \ldots, y_M)$ tolerates approximation:
 - Could be linear: $\mu = sum_j a_j y_j$. For mean or quantile statistics.

• Could be non-linear but well-behaved, e.g., logistic regression.

- Space of points $x = (x_1, \ldots, x_\ell)$, where ℓ is not small.
- **2** Need to evaluate y = f(x) for M = millions of x.
- Seach eval of f is expensive. Many repetitive evals [many move situations are similar].
- **(**) However, the target function $\mu(y_1, \ldots, y_M)$ tolerates approximation:
 - Could be linear: $\mu = sum_j a_j y_j$. For mean or quantile statistics.
 - Could be non-linear but well-behaved, e.g., logistic regression.
- **5** Two other helps: f is smooth and bounded.

- Space of points $x = (x_1, \ldots, x_\ell)$, where ℓ is not small.
- **2** Need to evaluate y = f(x) for M = millions of x.
- Seach eval of f is expensive. Many repetitive evals [many move situations are similar].
- **(**) However, the target function $\mu(y_1, \ldots, y_M)$ tolerates approximation:
 - Could be linear: $\mu = sum_j a_j y_j$. For mean or quantile statistics.
 - Could be non-linear but well-behaved, e.g., logistic regression.
- **5** Two other helps: f is smooth and bounded.
- And we need good approximation to µ(···) (only) under distributions D(x) controlled by a few model-specific parameters,
 [→] □ → (□) →

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the grid, several ideas:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the grid, several ideas:

うして ふゆう ふほう ふほう ふしつ

• Find nearest neighbor u, use f(u) as y. Not good enough approximation.

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the grid, several ideas:

うして ふゆう ふほう ふほう ふしつ

• Find nearest neighbor u, use f(u) as y. Not good enough approximation.

2 Write
$$x = \sum_k b_k u_k$$
, use $y = \sum_k b_k f(u_k)$.

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the grid, several ideas:

- Find nearest neighbor u, use f(u) as y. Not good enough approximation.
- **2** Write $x = \sum_k b_k u_k$, use $y = \sum_k b_k f(u_k)$. Seems better. But the dimension ℓ is not small.

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the grid, several ideas:

- Find nearest neighbor u, use f(u) as y. Not good enough approximation.
- **2** Write $x = \sum_k b_k u_k$, use $y = \sum_k b_k f(u_k)$. Seems better. But the dimension ℓ is not small.
- **3** Use any neighbor u and do Taylor expansion.

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the grid, several ideas:

- Find nearest neighbor u, use f(u) as y. Not good enough approximation.
- **2** Write $x = \sum_k b_k u_k$, use $y = \sum_k b_k f(u_k)$. Seems better. But the dimension ℓ is not small.
- **3** Use any neighbor u and do Taylor expansion.

Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i) (x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \cdots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i) (x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \cdots$$

• Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで
$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i) (x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \cdots$$

- Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② Problem is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. 30-50x data!

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i) (x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \cdots$$

- Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② Problem is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. 30-50x data!

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Main Question: Can we shortcut the partials?

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i) (x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \cdots$$

- Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② Problem is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. 30-50x data!

- Main Question: Can we shortcut the partials?
- If f were linear, obviously $\frac{\partial f}{\partial x_i} = \text{constant}$

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i) (x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \cdots$$

- Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② Problem is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. 30-50x data!

- **3** Main Question: Can we shortcut the partials?
- If f were linear, obviously $\frac{\partial f}{\partial x_i} = \text{constant} = "\partial \text{Euclid."}$

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i) (x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \cdots$$

- Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② Problem is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. 30-50x data!
- **3** Main Question: Can we shortcut the partials?
- If f were linear, obviously $\frac{\partial f}{\partial x_i} = \text{constant} = "\partial \text{Euclid."}$
- What if the space Γ is warped "similarly" to f? Can we roughly use $\partial \Gamma$ in place of ∂f ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Domain: A set of decision-making situations t. Chess game turns

ション ふゆ マ キャット マックシン

• Domain: A set of decision-making situations t. Chess game turns

Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i

- Domain: A set of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c, ... denoting skills and levels.
 Trained correspondence to chess Elo rating E

- Domain: A set of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c, ... denoting skills and levels.
 Trained correspondence to chess Elo rating E
- Defines fallible agent P(s, c, ...).

- Domain: A set of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c, ... denoting skills and levels.
 Trained correspondence to chess Elo rating E
- Defines fallible agent P(s, c, ...).
- Main Output: Probabilities $p_{t,i}$ for P(s, c, ...) to select option i at time t.

- Domain: A set of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c, ... denoting skills and levels.
 Trained correspondence to chess Elo rating E
- Defines fallible agent P(s, c, ...).
- Main Output: Probabilities $p_{t,i}$ for P(s, c, ...) to select option i at time t.
- Derived Outputs:
 - Aggregate statistics: move-match MM, average error AE, ...

- Projected confidence intervals for those statistics.
- "Intrinsic Performance Ratings" (IPR's).

• Let v_1, v_i stand for the values of the best move m_1 and *i*th-best move m_i , and p_1, p_i the probabilities that P(s, c, ...) will play them.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Let v_1, v_i stand for the values of the best move m_1 and *i*th-best move m_i , and p_1, p_i the probabilities that P(s, c, ...) will play them.

うして ふゆう ふほう ふほう ふしつ

• Given s, c, \ldots , the model computes $x_i = g_{s,c}(v_1, v_i)$ = the **perceived inferiority** of m_i by $P(s, c, \ldots)$.

• Let v_1, v_i stand for the values of the best move m_1 and *i*th-best move m_i , and p_1, p_i the probabilities that P(s, c, ...) will play them.

- Given s, c, \ldots , the model computes $x_i = g_{s,c}(v_1, v_i)$ = the **perceived inferiority** of m_i by $P(s, c, \ldots)$.
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...

- Let v_1, v_i stand for the values of the best move m_1 and *i*th-best move m_i , and p_1, p_i the probabilities that P(s, c, ...) will play them.
- Given s, c, \ldots , the model computes $x_i = g_{s,c}(v_1, v_i)$ = the **perceived inferiority** of m_i by $P(s, c, \ldots)$.
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...
- The Main Equation:

$$\frac{h(p_i)}{h(p_1)} = 1 - x_i.$$

- Let v_1, v_i stand for the values of the best move m_1 and *i*th-best move m_i , and p_1, p_i the probabilities that P(s, c, ...) will play them.
- Given s, c, \ldots , the model computes $x_i = g_{s,c}(v_1, v_i)$ = the **perceived inferiority** of m_i by $P(s, c, \ldots)$.
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...
- The Main Equation:

$$\frac{h(p_i)}{h(p_1)} = 1 - x_i.$$

うして ふゆう ふほう ふほう ふしつ

• Ratio not difference on LHS so x_i on RHS has 0-to-1 scale.

- Let v_1, v_i stand for the values of the best move m_1 and *i*th-best move m_i , and p_1, p_i the probabilities that P(s, c, ...) will play them.
- Given s, c, \ldots , the model computes $x_i = g_{s,c}(v_1, v_i)$ = the **perceived inferiority** of m_i by $P(s, c, \ldots)$.
- Besides g, the model picks a function $h(p_i)$ on probabilities.
- Could be h(p) = p (bad), log (good enough?), $H(p_i)$, logit...
- The Main Equation:

$$\frac{h(p_i)}{h(p_1)} = 1 - x_i.$$

- Ratio not difference on LHS so x_i on RHS has 0-to-1 scale.
- Given $(x_1, \ldots, x_i, \ldots, x_\ell)$, fit subject to $\sum_i p_i = 1$ to find p_1 . Other p_i follow by $p_i = h^{-1}(h(p_1)(1-x_i))$.

• The points $(x_1, x_2, \ldots, x_\ell)$ satisfy

 $0.0 = x_1 \le x_2 \le \dots \le x_i \le x_{i+1} \le \dots \le x_\ell \le 1.0.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The points $(x_1, x_2, \ldots, x_\ell)$ satisfy

$$0.0 = x_1 \le x_2 \le \dots \le x_i \le x_{i+1} \le \dots \le x_\ell \le 1.0.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• Can treat the points as ordered or say $f(x_1, \ldots, x_\ell)$ is symmetric.

• The points $(x_1, x_2, \ldots, x_\ell)$ satisfy

 $0.0 = x_1 \le x_2 \le \dots \le x_i \le x_{i+1} \le \dots \le x_\ell \le 1.0.$

• Can treat the points as ordered or say $f(x_1, \ldots, x_\ell)$ is symmetric.

• Fine to pad all points to the same length ℓ by appending values 1.0.

(日) (日) (日) (日) (日) (日) (日) (日)

• The points
$$(x_1, x_2, \ldots, x_\ell)$$
 satisfy

$$0.0 = x_1 \le x_2 \le \dots \le x_i \le x_{i+1} \le \dots \le x_\ell \le 1.0.$$

- Can treat the points as ordered or say $f(x_1, \ldots, x_\ell)$ is symmetric.
- Fine to pad all points to the same length ℓ by appending values 1.0.
- The objective function f is given by

$$f(x) = f(x_1, \dots, x_\ell) = p_1.$$

• The points
$$(x_1, x_2, \ldots, x_\ell)$$
 satisfy

$$0.0 = x_1 \le x_2 \le \dots \le x_i \le x_{i+1} \le \dots \le x_\ell \le 1.0.$$

- Can treat the points as ordered or say $f(x_1, \ldots, x_\ell)$ is symmetric.
- Fine to pad all points to the same length ℓ by appending values 1.0.
- The objective function f is given by

$$f(x) = f(x_1, \ldots, x_\ell) = p_1.$$

うして ふゆう ふほう ふほう ふしつ

• Each chess position and each s, c, \ldots gives us a point x.

• The points
$$(x_1, x_2, \ldots, x_\ell)$$
 satisfy

$$0.0 = x_1 \le x_2 \le \dots \le x_i \le x_{i+1} \le \dots \le x_\ell \le 1.0.$$

- Can treat the points as ordered or say $f(x_1, \ldots, x_\ell)$ is symmetric.
- Fine to pad all points to the same length ℓ by appending values 1.0.
- The objective function f is given by

$$f(x) = f(x_1, \ldots, x_\ell) = p_1.$$

- Each chess position and each s, c, \ldots gives us a point x.
- We can't avoid the regression to fit s, c, \ldots , but we would love to avoid the iterations used to compute f(x).

• The points
$$(x_1, x_2, \ldots, x_\ell)$$
 satisfy

$$0.0 = x_1 \le x_2 \le \dots \le x_i \le x_{i+1} \le \dots \le x_\ell \le 1.0.$$

- Can treat the points as ordered or say $f(x_1, \ldots, x_\ell)$ is symmetric.
- Fine to pad all points to the same length ℓ by appending values 1.0.
- The objective function f is given by

$$f(x) = f(x_1, \ldots, x_\ell) = p_1.$$

- Each chess position and each s, c, \ldots gives us a point x.
- We can't avoid the regression to fit s, c, \ldots , but we would love to avoid the iterations used to compute f(x).
- Influence on $p_1 = f(x)$ comes most from entries with low index iand low value x_i .

The Tapered Grid

• Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

・ロト ・御ト ・ヨト ・ヨト 三臣

The Tapered Grid

Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
Grid needs less precision also for higher coordinates *i*.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二層

The Tapered Grid

• Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二層

- **2** Grid needs less precision also for higher coordinates i.
- On the influence tell us about ∂f and help us pick a good grid neighbor u of x?

The Tapered Grid

• Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

- **2** Grid needs less precision also for higher coordinates i.
- On the influence tell us about ∂f and help us pick a good grid neighbor u of x?
- Given $x = (x_1, \ldots, x_\ell)$, how to define "nearest" gridpoint(s) $u = (u_1, \ldots, u_\ell)$?

The Tapered Grid

• Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

- **2** Grid needs less precision also for higher coordinates i.
- On the influence tell us about ∂f and help us pick a good grid neighbor u of x?
- Given $x = (x_1, \ldots, x_\ell)$, how to define "nearest" gridpoint(s) $u = (u_1, \ldots, u_\ell)$?
- **5** How to define a good bounding set u, v, \ldots ?

The Tapered Grid

- Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
- **2** Grid needs less precision also for higher coordinates i.
- On the influence tell us about ∂f and help us pick a good grid neighbor u of x?
- Given $x = (x_1, \ldots, x_\ell)$, how to define "nearest" gridpoint(s) $u = (u_1, \ldots, u_\ell)$?
- **(5)** How to define a good bounding set u, v, \ldots ?
- How to make the computation of nearby gridpoints efficient?

• The simple function h(p) = p, so $p_i = \frac{a_i}{\sum_i a_i}$, works poorly.

• The simple function h(p) = p, so $p_i = \frac{a_i}{\sum_i a_i}$, works poorly.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

2 Much better is $h(p) = \frac{1}{\log(1/p)}$.

• The simple function h(p) = p, so $p_i = \frac{a_i}{\sum_i a_i}$, works poorly.

(日) (日) (日) (日) (日) (日) (日) (日)

- 2 Much better is $h(p) = \frac{1}{\log(1/p)}$.
- **3** Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.

- The simple function h(p) = p, so $p_i = \frac{a_i}{\sum_i a_i}$, works poorly.
- (a) Much better is $h(p) = \frac{1}{\log(1/p)}$.
- **6** Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.
- **9 Problem:** Given y and b_1, \ldots, b_ℓ , find p such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_\ell} = y_\ell$$

- The simple function h(p) = p, so $p_i = \frac{a_i}{\sum_i a_i}$, works poorly.
- (a) Much better is $h(p) = \frac{1}{\log(1/p)}$.
- **6** Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.
- **9 Problem:** Given y and b_1, \ldots, b_ℓ , find p such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_\ell} = y.$$

うして ふゆう ふほう ふほう ふしつ

• For $\ell = 1$, simply $p = \sqrt[b]{y}$. So this generalizes taking roots.

- The simple function h(p) = p, so $p_i = \frac{a_i}{\sum_i a_i}$, works poorly.
- (a) Much better is $h(p) = \frac{1}{\log(1/p)}$.
- **6** Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.
- **9 Problem:** Given y and b_1, \ldots, b_ℓ , find p such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_\ell} = y.$$

- For $\ell = 1$, simply $p = \sqrt[b]{y}$. So this generalizes taking roots.
- **(a)** We have y = 1 and $b_1 = 1$. Can this be solved **without** iteration?
Side Note and Pure-Math Problem

- The simple function h(p) = p, so $p_i = \frac{a_i}{\sum_i a_i}$, works poorly.
- (a) Much better is $h(p) = \frac{1}{\log(1/p)}$.
- **6** Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.
- **9 Problem:** Given y and b_1, \ldots, b_ℓ , find p such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_\ell} = y.$$

- For $\ell = 1$, simply $p = \sqrt[b]{y}$. So this generalizes taking roots.
- We have y = 1 and $b_1 = 1$. Can this be solved without iteration?
- Simplest case $\ell = 2$: does g(b) = p such that $p + p^b = 1$ have a closed form?

- **1** Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- **2** This means four equal-optimal moves, all others lose instantly.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- 2 This means four equal-optimal moves, all others lose instantly.
- **③** The model will give $p_1 = p_2 = p_3 = p_4 = 0.25$, all other $p_i = 0$.

うして ふゆう ふほう ふほう ふしつ

- Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- 2 This means four equal-optimal moves, all others lose instantly.
- **③** The model will give $p_1 = p_2 = p_3 = p_4 = 0.25$, all other $p_i = 0$.
- **4 Axiom:** Influence of *poor* moves tapers off:

As
$$x_i \longrightarrow 1.0$$
, $\frac{\partial f}{\partial x_i} \longrightarrow 0$.

うして ふゆう ふほう ふほう ふしつ

- Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- ² This means four equal-optimal moves, all others lose instantly.
- **③** The model will give $p_1 = p_2 = p_3 = p_4 = 0.25$, all other $p_i = 0$.
- **4 Axiom:** Influence of *poor* moves tapers off:

As
$$x_i \longrightarrow 1.0$$
, $\frac{\partial f}{\partial x_i} \longrightarrow 0$.

• Axiom: Influence of *lower-ranked* moves becomes less: For i < j, $\frac{\partial f}{\partial x_i} < \frac{\partial f}{\partial x_i}$.

(Not quite what was meant...)

- Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- ² This means four equal-optimal moves, all others lose instantly.
- **③** The model will give $p_1 = p_2 = p_3 = p_4 = 0.25$, all other $p_i = 0$.
- **4 Axiom:** Influence of *poor* moves tapers off:

As
$$x_i \longrightarrow 1.0$$
, $\frac{\partial f}{\partial x_i} \longrightarrow 0$.

• Axiom: Influence of *lower-ranked* moves becomes less: For i < j, $\frac{\partial f}{\partial x_i} < \frac{\partial f}{\partial x_i}$.

(Not quite what was meant...)

[©] "Universal Guess": In the first Taylor term, use

$$\frac{\partial f}{\partial x_i} \approx \frac{1}{i}a_i = \frac{1}{i}(1 - x_i).$$

4日 + 4日 + 4日 + 4日 + 1日 - 900

Tailoring the Grid

・ロト ・御ト ・ヨト ・ヨト 三臣

Tailoring the Grid

• Define grid values u_i on each coordinate i by "tapering" (data structures by T. Biswas).

Tailoring the Grid

- Define grid values u_i on each coordinate *i* by "tapering" (data structures by T. Biswas).
- **2** Given $x = (x_1, \ldots, x_\ell)$, how to define a "neighborhood" from U?

うして ふゆう ふほう ふほう ふしつ

Tailoring the Grid

- Define grid values u_i on each coordinate i by "tapering" (data structures by T. Biswas).
- **2** Given $x = (x_1, \ldots, x_\ell)$, how to define a "neighborhood" from U?

③ Define x^+ by rounding each entry x_i to next-higher u_i .

Tailoring the Grid

- Define grid values u_i on each coordinate i by "tapering" (data structures by T. Biswas).
- **2** Given $x = (x_1, \ldots, x_\ell)$, how to define a "neighborhood" from U?

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- **3** Define x^+ by rounding each entry x_i to next-higher u_i .
- **4** And x^- by rounding each entry x_i to next-lower u_i .

Tailoring the Grid

- Define grid values u_i on each coordinate i by "tapering" (data structures by T. Biswas).
- **2** Given $x = (x_1, \ldots, x_\ell)$, how to define a "neighborhood" from U?
- **3** Define x^+ by rounding each entry x_i to next-higher u_i .
- **4** And x^- by rounding each entry x_i to next-lower u_i .
- **(5)** Neighborhood drawn from entries of x^+ and x^- .

- Given $x = (x_1, x_2, ..., x_{\ell}),$
 - Bounds x⁺ and x⁻ are well-defined by rounding each coordinate up/down to a gridpoint.

・ロト ・ 日 ・ モー・ モー・ うへぐ

Given $x = (x_1, x_2, ..., x_\ell),$

- Bounds x^+ and x^- are well-defined by rounding each coordinate up/down to a gridpoint.
- **2** "Nearest Neighbor" is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.

うして ふゆう ふほう ふほう ふしつ

Given $x = (x_1, x_2, ..., x_\ell),$

- Bounds x⁺ and x⁻ are well-defined by rounding each coordinate up/down to a gridpoint.
- **②** "Nearest Neighbor" is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- **③** Start with x^- , but "round up" when the rounding-down deficiency exceeds some weighted threshold.

Given $x = (x_1, x_2, \ldots, x_\ell),$

- Bounds x⁺ and x⁻ are well-defined by rounding each coordinate up/down to a gridpoint.
- **2** "Nearest Neighbor" is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- (a) Start with x^- , but "round up" when the rounding-down deficiency exceeds some weighted threshold.
- Once you have "rounded up," you can use same gridpoint value, but cannot "round down" again until x⁻ values come above it.

Given $x = (x_1, x_2, ..., x_{\ell}),$

- Bounds x⁺ and x⁻ are well-defined by rounding each coordinate up/down to a gridpoint.
- **②** "Nearest Neighbor" is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- Start with x^- , but "round up" when the rounding-down deficiency exceeds some weighted threshold.
- Once you have "rounded up," you can use same gridpoint value, but cannot "round down" again until x⁻ values come above it.

5 Like a heuristic for solving Knapsack problems.

Given $x = (x_1, x_2, \ldots, x_\ell),$

- Bounds x⁺ and x⁻ are well-defined by rounding each coordinate up/down to a gridpoint.
- **2** "Nearest Neighbor" is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- (a) Start with x^- , but "round up" when the rounding-down deficiency exceeds some weighted threshold.
- Once you have "rounded up," you can use same gridpoint value, but cannot "round down" again until x⁻ values come above it.
- **5** Like a heuristic for solving Knapsack problems.
- **()** Refinements which we have not yet fully explored include working backward from i = N (too).

Given $x = (x_1, x_2, \ldots, x_\ell),$

- Bounds x⁺ and x⁻ are well-defined by rounding each coordinate up/down to a gridpoint.
- **②** "Nearest Neighbor" is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- Start with x^- , but "round up" when the rounding-down deficiency exceeds some weighted threshold.
- Once you have "rounded up," you can use same gridpoint value, but cannot "round down" again until x^- values come above it.
- **5** Like a heuristic for solving Knapsack problems.
- **()** Refinements which we have not yet fully explored include working backward from i = N (too).
- O Combine with "universal gradient" idea, or even ignore said idea.

Basic story: looks good on random data, not sure yet on real-world data...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

- Basic story: looks good on random data, not sure yet on real-world data...
- **2** We ran experiments under a randomized distribution D_{ϵ} in which $r \in [x_{i-1}, 1]$ is sampled uniformly and

 $x_i = x_{i-1} + \epsilon(r - x_{i-1})$ (capped at $x_i = 1.0$).

(日) (日) (日) (日) (日) (日) (日) (日)

- Basic story: looks good on random data, not sure yet on real-world data...
- **2** We ran experiments under a randomized distribution D_{ϵ} in which $r \in [x_{i-1}, 1]$ is sampled uniformly and

 $x_i = x_{i-1} + \epsilon(r - x_{i-1})$ (capped at $x_i = 1.0$).

3 That is, we make each move randomly slightly inferior to the previous one. We choose ε according to N, to make expectation x_i ≈ 1.0 as i nears N.

- Basic story: looks good on random data, not sure yet on real-world data...
- **2** We ran experiments under a randomized distribution D_{ϵ} in which $r \in [x_{i-1}, 1]$ is sampled uniformly and

 $x_i = x_{i-1} + \epsilon(r - x_{i-1})$ (capped at $x_i = 1.0$).

- 3 That is, we make each move randomly slightly inferior to the previous one. We choose ε according to N, to make expectation x_i ≈ 1.0 as i nears N.
- Results under D_{ϵ} are *good*: 3-place precision on $\mu(...)$ given 2-place to 1-place precision on grid.

- Basic story: looks good on random data, not sure yet on real-world data...
- ② We ran experiments under a randomized distribution D_{ϵ} in which r ∈ [x_{i-1}, 1] is sampled uniformly and

 $x_i = x_{i-1} + \epsilon(r - x_{i-1})$ (capped at $x_i = 1.0$).

- That is, we make each move randomly slightly inferior to the previous one. We choose ε according to N, to make expectation x_i ≈ 1.0 as i nears N.
- Results under D_{ϵ} are *good*: 3-place precision on $\mu(...)$ given 2-place to 1-place precision on grid.
- Results on real chess data...

- Basic story: looks good on random data, not sure yet on real-world data...
- ② We ran experiments under a randomized distribution D_{ϵ} in which r ∈ [x_{i-1}, 1] is sampled uniformly and

 $x_i = x_{i-1} + \epsilon(r - x_{i-1})$ (capped at $x_i = 1.0$).

- That is, we make each move randomly slightly inferior to the previous one. We choose ε according to N, to make expectation x_i ≈ 1.0 as i nears N.
- Results under D_{ϵ} are *good*: 3-place precision on $\mu(...)$ given 2-place to 1-place precision on grid.
- Solution Results on real chess data...still a work in progress.

Results for NN+UG

🖹 ୬ବ୍ଜ

Results for Just NN

🛯 ୬ ବ ୯