
Using the Shape of Space for Shortcuts

Using the Shape of Space for Shortcuts
Speeding up regressions on millions of chess positions

Kenneth W. Regan1

FWCG, University at Buffalo, 23 October 2015

1Joint with Tamal T. Biswas, AAIM 2014, Theoretical Computer Science (in
press).



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.

Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.

Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

The Setting

Evaluate an expensive f(x) = f(x1, . . . , x`) at millions of points x.

Idea: Precompute & store values vu = f(u1, . . . , u`) at gridpoints u.

Estimate f(x) via vu for nearby gridpoints u.

Three main options for doing this:

1 Interpolate using vu for (all) vertices of the cell x is in.
Problem: naive “all” is exponential in the dimension `.

2 Do Taylor expansion using one or a few nearby gridpoints u.
Problem: this needs precomputing partials too.

3 Cheat.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player.

Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

Wider Context—Cheating Detection at Chess

Two activities: training and testing.

First sets for years up to 2009 totaled just over 1 million positions.

New 2010–2014 set has 1.15 million positions. Update each year. . .

Kaggle competition set running now −→ 3 million positions.

Multiply by ` = 30–35 legal moves per position on average and by
10–100 “Newton” or Nelder-Mead iterations per run.

Model parameters s, c, . . . trained to chess Elo ratings via
nonlinear regression.

Cheating test regresses on typically 6–9 games, 200–300 positions
by one player. Full accuracy is vital for this test. . .

. . . but not so vital for the training: Large data; approximation OK.

Correspondence e(s,c)–Elo comes out superbly linear under exact
runs on smaller data, so—provided the approximations avoid
systematic bias across Elo levels—they will help correct each other.



Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,



Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,



Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,



Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,



Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.

Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,



Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,



Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,



Using the Shape of Space for Shortcuts

The Problem

1 Space of points x = (x1, . . . , x`), where ` is not small.

2 Need to evaluate y = f(x) for M = millions of x.

3 Each eval of f is expensive. Many repetitive evals [many move
situations are similar].

4 However, the target function µ(y1, . . . , yM ) tolerates approximation:

Could be linear: µ = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to µ(· · · ) (only) under
distributions D(x) controlled by a few model-specific parameters,



Using the Shape of Space for Shortcuts

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the
grid, several ideas:

1 Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

2 Write x =
∑

k bkuk, use y =
∑

k bkf(uk). Seems better. But the
dimension ` is not small.

3 Use any neighbor u and do Taylor expansion.



Using the Shape of Space for Shortcuts

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the
grid, several ideas:

1 Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

2 Write x =
∑

k bkuk, use y =
∑

k bkf(uk). Seems better. But the
dimension ` is not small.

3 Use any neighbor u and do Taylor expansion.



Using the Shape of Space for Shortcuts

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the
grid, several ideas:

1 Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

2 Write x =
∑

k bkuk, use y =
∑

k bkf(uk).

Seems better. But the
dimension ` is not small.

3 Use any neighbor u and do Taylor expansion.



Using the Shape of Space for Shortcuts

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the
grid, several ideas:

1 Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

2 Write x =
∑

k bkuk, use y =
∑

k bkf(uk). Seems better. But the
dimension ` is not small.

3 Use any neighbor u and do Taylor expansion.



Using the Shape of Space for Shortcuts

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the
grid, several ideas:

1 Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

2 Write x =
∑

k bkuk, use y =
∑

k bkf(uk). Seems better. But the
dimension ` is not small.

3 Use any neighbor u and do Taylor expansion.



Using the Shape of Space for Shortcuts

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given x not in the
grid, several ideas:

1 Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

2 Write x =
∑

k bkuk, use y =
∑

k bkf(uk). Seems better. But the
dimension ` is not small.

3 Use any neighbor u and do Taylor expansion.



Using the Shape of Space for Shortcuts

Taylor Expansion

f(x) = f(u) +
∑̀
i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi(u) = ∂f
∂xi

(u). 30-50x
data!

3 Main Question: Can we shortcut the partials?

4 If f were linear, obviously ∂f
∂xi

= constant = “∂Euclid.”

5 What if the space Γ is warped “similarly” to f? Can we roughly
use ∂Γ in place of ∂f?



Using the Shape of Space for Shortcuts

Taylor Expansion

f(x) = f(u) +
∑̀
i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi(u) = ∂f
∂xi

(u). 30-50x
data!

3 Main Question: Can we shortcut the partials?

4 If f were linear, obviously ∂f
∂xi

= constant = “∂Euclid.”

5 What if the space Γ is warped “similarly” to f? Can we roughly
use ∂Γ in place of ∂f?



Using the Shape of Space for Shortcuts

Taylor Expansion

f(x) = f(u) +
∑̀
i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi(u) = ∂f
∂xi

(u). 30-50x
data!

3 Main Question: Can we shortcut the partials?

4 If f were linear, obviously ∂f
∂xi

= constant = “∂Euclid.”

5 What if the space Γ is warped “similarly” to f? Can we roughly
use ∂Γ in place of ∂f?



Using the Shape of Space for Shortcuts

Taylor Expansion

f(x) = f(u) +
∑̀
i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi(u) = ∂f
∂xi

(u). 30-50x
data!

3 Main Question: Can we shortcut the partials?

4 If f were linear, obviously ∂f
∂xi

= constant = “∂Euclid.”

5 What if the space Γ is warped “similarly” to f? Can we roughly
use ∂Γ in place of ∂f?



Using the Shape of Space for Shortcuts

Taylor Expansion

f(x) = f(u) +
∑̀
i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi(u) = ∂f
∂xi

(u). 30-50x
data!

3 Main Question: Can we shortcut the partials?

4 If f were linear, obviously ∂f
∂xi

= constant

= “∂Euclid.”

5 What if the space Γ is warped “similarly” to f? Can we roughly
use ∂Γ in place of ∂f?



Using the Shape of Space for Shortcuts

Taylor Expansion

f(x) = f(u) +
∑̀
i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi(u) = ∂f
∂xi

(u). 30-50x
data!

3 Main Question: Can we shortcut the partials?

4 If f were linear, obviously ∂f
∂xi

= constant = “∂Euclid.”

5 What if the space Γ is warped “similarly” to f? Can we roughly
use ∂Γ in place of ∂f?



Using the Shape of Space for Shortcuts

Taylor Expansion

f(x) = f(u) +
∑̀
i=1

(xi − ui)
∂f

∂xi
(u) +

1

2

∑
i,j

(xi − ui)(xj − uj)
∂2f

∂ui∂uj
+ · · ·

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi(u) = ∂f
∂xi

(u). 30-50x
data!

3 Main Question: Can we shortcut the partials?

4 If f were linear, obviously ∂f
∂xi

= constant = “∂Euclid.”

5 What if the space Γ is warped “similarly” to f? Can we roughly
use ∂Γ in place of ∂f?



Using the Shape of Space for Shortcuts

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t.
Chess game turns

2 Inputs: Values vi for every option at turn t.
Computer values of moves mi

3 Parameters: s, c, . . . denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P (s, c, . . . ).

5 Main Output: Probabilities pt,i for P (s, c, . . . ) to select option i at
time t.

6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Using the Shape of Space for Shortcuts

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t.
Chess game turns

2 Inputs: Values vi for every option at turn t.
Computer values of moves mi

3 Parameters: s, c, . . . denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P (s, c, . . . ).

5 Main Output: Probabilities pt,i for P (s, c, . . . ) to select option i at
time t.

6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Using the Shape of Space for Shortcuts

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t.
Chess game turns

2 Inputs: Values vi for every option at turn t.
Computer values of moves mi

3 Parameters: s, c, . . . denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P (s, c, . . . ).

5 Main Output: Probabilities pt,i for P (s, c, . . . ) to select option i at
time t.

6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Using the Shape of Space for Shortcuts

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t.
Chess game turns

2 Inputs: Values vi for every option at turn t.
Computer values of moves mi

3 Parameters: s, c, . . . denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P (s, c, . . . ).

5 Main Output: Probabilities pt,i for P (s, c, . . . ) to select option i at
time t.

6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Using the Shape of Space for Shortcuts

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t.
Chess game turns

2 Inputs: Values vi for every option at turn t.
Computer values of moves mi

3 Parameters: s, c, . . . denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P (s, c, . . . ).

5 Main Output: Probabilities pt,i for P (s, c, . . . ) to select option i at
time t.

6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Using the Shape of Space for Shortcuts

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t.
Chess game turns

2 Inputs: Values vi for every option at turn t.
Computer values of moves mi

3 Parameters: s, c, . . . denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P (s, c, . . . ).

5 Main Output: Probabilities pt,i for P (s, c, . . . ) to select option i at
time t.

6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Using the Shape of Space for Shortcuts

How the Model Operates

Let v1, vi stand for the values of the best move m1 and ith-best
move mi, and p1, pi the probabilities that P (s, c, . . . ) will play them.

Given s, c, . . . , the model computes xi = gs,c(v1, vi) = the
perceived inferiority of mi by P (s, c, . . . ).

Besides g, the model picks a function h(pi) on probabilities.

Could be h(p) = p (bad), log (good enough?), H(pi), logit. . .

The Main Equation:

h(pi)

h(p1)
= 1− xi.

Ratio not difference on LHS so xi on RHS has 0-to-1 scale.

Given (x1, . . . , xi, . . . , x`), fit subject to
∑

i pi = 1 to find p1. Other
pi follow by pi = h−1(h(p1)(1− xi)).



Using the Shape of Space for Shortcuts

How the Model Operates

Let v1, vi stand for the values of the best move m1 and ith-best
move mi, and p1, pi the probabilities that P (s, c, . . . ) will play them.

Given s, c, . . . , the model computes xi = gs,c(v1, vi) = the
perceived inferiority of mi by P (s, c, . . . ).

Besides g, the model picks a function h(pi) on probabilities.

Could be h(p) = p (bad), log (good enough?), H(pi), logit. . .

The Main Equation:

h(pi)

h(p1)
= 1− xi.

Ratio not difference on LHS so xi on RHS has 0-to-1 scale.

Given (x1, . . . , xi, . . . , x`), fit subject to
∑

i pi = 1 to find p1. Other
pi follow by pi = h−1(h(p1)(1− xi)).



Using the Shape of Space for Shortcuts

How the Model Operates

Let v1, vi stand for the values of the best move m1 and ith-best
move mi, and p1, pi the probabilities that P (s, c, . . . ) will play them.

Given s, c, . . . , the model computes xi = gs,c(v1, vi) = the
perceived inferiority of mi by P (s, c, . . . ).

Besides g, the model picks a function h(pi) on probabilities.

Could be h(p) = p (bad), log (good enough?), H(pi), logit. . .

The Main Equation:

h(pi)

h(p1)
= 1− xi.

Ratio not difference on LHS so xi on RHS has 0-to-1 scale.

Given (x1, . . . , xi, . . . , x`), fit subject to
∑

i pi = 1 to find p1. Other
pi follow by pi = h−1(h(p1)(1− xi)).



Using the Shape of Space for Shortcuts

How the Model Operates

Let v1, vi stand for the values of the best move m1 and ith-best
move mi, and p1, pi the probabilities that P (s, c, . . . ) will play them.

Given s, c, . . . , the model computes xi = gs,c(v1, vi) = the
perceived inferiority of mi by P (s, c, . . . ).

Besides g, the model picks a function h(pi) on probabilities.

Could be h(p) = p (bad), log (good enough?), H(pi), logit. . .

The Main Equation:

h(pi)

h(p1)
= 1− xi.

Ratio not difference on LHS so xi on RHS has 0-to-1 scale.

Given (x1, . . . , xi, . . . , x`), fit subject to
∑

i pi = 1 to find p1. Other
pi follow by pi = h−1(h(p1)(1− xi)).



Using the Shape of Space for Shortcuts

How the Model Operates

Let v1, vi stand for the values of the best move m1 and ith-best
move mi, and p1, pi the probabilities that P (s, c, . . . ) will play them.

Given s, c, . . . , the model computes xi = gs,c(v1, vi) = the
perceived inferiority of mi by P (s, c, . . . ).

Besides g, the model picks a function h(pi) on probabilities.

Could be h(p) = p (bad), log (good enough?), H(pi), logit. . .

The Main Equation:

h(pi)

h(p1)
= 1− xi.

Ratio not difference on LHS so xi on RHS has 0-to-1 scale.

Given (x1, . . . , xi, . . . , x`), fit subject to
∑

i pi = 1 to find p1. Other
pi follow by pi = h−1(h(p1)(1− xi)).



Using the Shape of Space for Shortcuts

How the Model Operates

Let v1, vi stand for the values of the best move m1 and ith-best
move mi, and p1, pi the probabilities that P (s, c, . . . ) will play them.

Given s, c, . . . , the model computes xi = gs,c(v1, vi) = the
perceived inferiority of mi by P (s, c, . . . ).

Besides g, the model picks a function h(pi) on probabilities.

Could be h(p) = p (bad), log (good enough?), H(pi), logit. . .

The Main Equation:

h(pi)

h(p1)
= 1− xi.

Ratio not difference on LHS so xi on RHS has 0-to-1 scale.

Given (x1, . . . , xi, . . . , x`), fit subject to
∑

i pi = 1 to find p1. Other
pi follow by pi = h−1(h(p1)(1− xi)).



Using the Shape of Space for Shortcuts

The Space and Its Shape

The points (x1, x2, . . . , x`) satisfy

0.0 = x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+1 ≤ · · · ≤ x` ≤ 1.0.

Can treat the points as ordered or say f(x1, . . . , x`) is symmetric.

Fine to pad all points to the same length ` by appending values 1.0.

The objective function f is given by

f(x) = f(x1, . . . , x`) = p1.

Each chess position and each s, c, . . . gives us a point x.

We can’t avoid the regression to fit s, c, . . . , but we would love to
avoid the iterations used to compute f(x).

Influence on p1 = f(x) comes most from entries with low index i
and low value xi.



Using the Shape of Space for Shortcuts

The Space and Its Shape

The points (x1, x2, . . . , x`) satisfy

0.0 = x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+1 ≤ · · · ≤ x` ≤ 1.0.

Can treat the points as ordered or say f(x1, . . . , x`) is symmetric.

Fine to pad all points to the same length ` by appending values 1.0.

The objective function f is given by

f(x) = f(x1, . . . , x`) = p1.

Each chess position and each s, c, . . . gives us a point x.

We can’t avoid the regression to fit s, c, . . . , but we would love to
avoid the iterations used to compute f(x).

Influence on p1 = f(x) comes most from entries with low index i
and low value xi.



Using the Shape of Space for Shortcuts

The Space and Its Shape

The points (x1, x2, . . . , x`) satisfy

0.0 = x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+1 ≤ · · · ≤ x` ≤ 1.0.

Can treat the points as ordered or say f(x1, . . . , x`) is symmetric.

Fine to pad all points to the same length ` by appending values 1.0.

The objective function f is given by

f(x) = f(x1, . . . , x`) = p1.

Each chess position and each s, c, . . . gives us a point x.

We can’t avoid the regression to fit s, c, . . . , but we would love to
avoid the iterations used to compute f(x).

Influence on p1 = f(x) comes most from entries with low index i
and low value xi.



Using the Shape of Space for Shortcuts

The Space and Its Shape

The points (x1, x2, . . . , x`) satisfy

0.0 = x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+1 ≤ · · · ≤ x` ≤ 1.0.

Can treat the points as ordered or say f(x1, . . . , x`) is symmetric.

Fine to pad all points to the same length ` by appending values 1.0.

The objective function f is given by

f(x) = f(x1, . . . , x`) = p1.

Each chess position and each s, c, . . . gives us a point x.

We can’t avoid the regression to fit s, c, . . . , but we would love to
avoid the iterations used to compute f(x).

Influence on p1 = f(x) comes most from entries with low index i
and low value xi.



Using the Shape of Space for Shortcuts

The Space and Its Shape

The points (x1, x2, . . . , x`) satisfy

0.0 = x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+1 ≤ · · · ≤ x` ≤ 1.0.

Can treat the points as ordered or say f(x1, . . . , x`) is symmetric.

Fine to pad all points to the same length ` by appending values 1.0.

The objective function f is given by

f(x) = f(x1, . . . , x`) = p1.

Each chess position and each s, c, . . . gives us a point x.

We can’t avoid the regression to fit s, c, . . . , but we would love to
avoid the iterations used to compute f(x).

Influence on p1 = f(x) comes most from entries with low index i
and low value xi.



Using the Shape of Space for Shortcuts

The Space and Its Shape

The points (x1, x2, . . . , x`) satisfy

0.0 = x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+1 ≤ · · · ≤ x` ≤ 1.0.

Can treat the points as ordered or say f(x1, . . . , x`) is symmetric.

Fine to pad all points to the same length ` by appending values 1.0.

The objective function f is given by

f(x) = f(x1, . . . , x`) = p1.

Each chess position and each s, c, . . . gives us a point x.

We can’t avoid the regression to fit s, c, . . . , but we would love to
avoid the iterations used to compute f(x).

Influence on p1 = f(x) comes most from entries with low index i
and low value xi.



Using the Shape of Space for Shortcuts

The Space and Its Shape

The points (x1, x2, . . . , x`) satisfy

0.0 = x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+1 ≤ · · · ≤ x` ≤ 1.0.

Can treat the points as ordered or say f(x1, . . . , x`) is symmetric.

Fine to pad all points to the same length ` by appending values 1.0.

The objective function f is given by

f(x) = f(x1, . . . , x`) = p1.

Each chess position and each s, c, . . . gives us a point x.

We can’t avoid the regression to fit s, c, . . . , but we would love to
avoid the iterations used to compute f(x).

Influence on p1 = f(x) comes most from entries with low index i
and low value xi.



Using the Shape of Space for Shortcuts

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

2 Grid needs less precision also for higher coordinates i.
3 Can the influence tell us about ∂f and help us pick a good grid

neighbor u of x?
4 Given x = (x1, . . . , x`), how to define “nearest” gridpoint(s)
u = (u1, . . . , u`)?

5 How to define a good bounding set u, v, . . . ?
6 How to make the computation of nearby gridpoints efficient?



Using the Shape of Space for Shortcuts

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i.

3 Can the influence tell us about ∂f and help us pick a good grid
neighbor u of x?

4 Given x = (x1, . . . , x`), how to define “nearest” gridpoint(s)
u = (u1, . . . , u`)?

5 How to define a good bounding set u, v, . . . ?
6 How to make the computation of nearby gridpoints efficient?



Using the Shape of Space for Shortcuts

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i.
3 Can the influence tell us about ∂f and help us pick a good grid

neighbor u of x?

4 Given x = (x1, . . . , x`), how to define “nearest” gridpoint(s)
u = (u1, . . . , u`)?

5 How to define a good bounding set u, v, . . . ?
6 How to make the computation of nearby gridpoints efficient?



Using the Shape of Space for Shortcuts

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i.
3 Can the influence tell us about ∂f and help us pick a good grid

neighbor u of x?
4 Given x = (x1, . . . , x`), how to define “nearest” gridpoint(s)
u = (u1, . . . , u`)?

5 How to define a good bounding set u, v, . . . ?
6 How to make the computation of nearby gridpoints efficient?



Using the Shape of Space for Shortcuts

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i.
3 Can the influence tell us about ∂f and help us pick a good grid

neighbor u of x?
4 Given x = (x1, . . . , x`), how to define “nearest” gridpoint(s)
u = (u1, . . . , u`)?

5 How to define a good bounding set u, v, . . . ?

6 How to make the computation of nearby gridpoints efficient?



Using the Shape of Space for Shortcuts

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i.
3 Can the influence tell us about ∂f and help us pick a good grid

neighbor u of x?
4 Given x = (x1, . . . , x`), how to define “nearest” gridpoint(s)
u = (u1, . . . , u`)?

5 How to define a good bounding set u, v, . . . ?
6 How to make the computation of nearby gridpoints efficient?



Using the Shape of Space for Shortcuts

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi = ai∑
i ai

, works poorly.

2 Much better is h(p) = 1
log(1/p) .

3 Gives pi = pbi1 , where bi = 1/ai = 1
1−xi .

4 Problem: Given y and b1, . . . , b`, find p such that

pb1 + pb2 + · · ·+ pb` = y.

5 For ` = 1, simply p = b
√
y. So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Simplest case ` = 2: does g(b) = p such that p+ pb = 1 have a
closed form?



Using the Shape of Space for Shortcuts

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi = ai∑
i ai

, works poorly.

2 Much better is h(p) = 1
log(1/p) .

3 Gives pi = pbi1 , where bi = 1/ai = 1
1−xi .

4 Problem: Given y and b1, . . . , b`, find p such that

pb1 + pb2 + · · ·+ pb` = y.

5 For ` = 1, simply p = b
√
y. So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Simplest case ` = 2: does g(b) = p such that p+ pb = 1 have a
closed form?



Using the Shape of Space for Shortcuts

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi = ai∑
i ai

, works poorly.

2 Much better is h(p) = 1
log(1/p) .

3 Gives pi = pbi1 , where bi = 1/ai = 1
1−xi .

4 Problem: Given y and b1, . . . , b`, find p such that

pb1 + pb2 + · · ·+ pb` = y.

5 For ` = 1, simply p = b
√
y. So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Simplest case ` = 2: does g(b) = p such that p+ pb = 1 have a
closed form?



Using the Shape of Space for Shortcuts

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi = ai∑
i ai

, works poorly.

2 Much better is h(p) = 1
log(1/p) .

3 Gives pi = pbi1 , where bi = 1/ai = 1
1−xi .

4 Problem: Given y and b1, . . . , b`, find p such that

pb1 + pb2 + · · ·+ pb` = y.

5 For ` = 1, simply p = b
√
y. So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Simplest case ` = 2: does g(b) = p such that p+ pb = 1 have a
closed form?



Using the Shape of Space for Shortcuts

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi = ai∑
i ai

, works poorly.

2 Much better is h(p) = 1
log(1/p) .

3 Gives pi = pbi1 , where bi = 1/ai = 1
1−xi .

4 Problem: Given y and b1, . . . , b`, find p such that

pb1 + pb2 + · · ·+ pb` = y.

5 For ` = 1, simply p = b
√
y. So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Simplest case ` = 2: does g(b) = p such that p+ pb = 1 have a
closed form?



Using the Shape of Space for Shortcuts

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi = ai∑
i ai

, works poorly.

2 Much better is h(p) = 1
log(1/p) .

3 Gives pi = pbi1 , where bi = 1/ai = 1
1−xi .

4 Problem: Given y and b1, . . . , b`, find p such that

pb1 + pb2 + · · ·+ pb` = y.

5 For ` = 1, simply p = b
√
y. So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Simplest case ` = 2: does g(b) = p such that p+ pb = 1 have a
closed form?



Using the Shape of Space for Shortcuts

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi = ai∑
i ai

, works poorly.

2 Much better is h(p) = 1
log(1/p) .

3 Gives pi = pbi1 , where bi = 1/ai = 1
1−xi .

4 Problem: Given y and b1, . . . , b`, find p such that

pb1 + pb2 + · · ·+ pb` = y.

5 For ` = 1, simply p = b
√
y. So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Simplest case ` = 2: does g(b) = p such that p+ pb = 1 have a
closed form?



Using the Shape of Space for Shortcuts

Axioms and Properties

1 Suppose x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, . . . , 1.0).
2 This means four equal-optimal moves, all others lose instantly.

3 The model will give p1 = p2 = p3 = p4 = 0.25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi −→ 1.0,
∂f

∂xi
−→ 0.

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j,
∂f

∂xj
<
∂f

∂xi
.

(Not quite what was meant. . . )
6 “Universal Guess”: In the first Taylor term, use

∂f

∂xi
≈ 1

i
ai =

1

i
(1− xi).



Using the Shape of Space for Shortcuts

Axioms and Properties

1 Suppose x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, . . . , 1.0).
2 This means four equal-optimal moves, all others lose instantly.
3 The model will give p1 = p2 = p3 = p4 = 0.25, all other pi = 0.

4 Axiom: Influence of poor moves tapers off:

As xi −→ 1.0,
∂f

∂xi
−→ 0.

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j,
∂f

∂xj
<
∂f

∂xi
.

(Not quite what was meant. . . )
6 “Universal Guess”: In the first Taylor term, use

∂f

∂xi
≈ 1

i
ai =

1

i
(1− xi).



Using the Shape of Space for Shortcuts

Axioms and Properties

1 Suppose x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, . . . , 1.0).
2 This means four equal-optimal moves, all others lose instantly.
3 The model will give p1 = p2 = p3 = p4 = 0.25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi −→ 1.0,
∂f

∂xi
−→ 0.

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j,
∂f

∂xj
<
∂f

∂xi
.

(Not quite what was meant. . . )
6 “Universal Guess”: In the first Taylor term, use

∂f

∂xi
≈ 1

i
ai =

1

i
(1− xi).



Using the Shape of Space for Shortcuts

Axioms and Properties

1 Suppose x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, . . . , 1.0).
2 This means four equal-optimal moves, all others lose instantly.
3 The model will give p1 = p2 = p3 = p4 = 0.25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi −→ 1.0,
∂f

∂xi
−→ 0.

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j,
∂f

∂xj
<
∂f

∂xi
.

(Not quite what was meant. . . )

6 “Universal Guess”: In the first Taylor term, use

∂f

∂xi
≈ 1

i
ai =

1

i
(1− xi).



Using the Shape of Space for Shortcuts

Axioms and Properties

1 Suppose x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, . . . , 1.0).
2 This means four equal-optimal moves, all others lose instantly.
3 The model will give p1 = p2 = p3 = p4 = 0.25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi −→ 1.0,
∂f

∂xi
−→ 0.

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j,
∂f

∂xj
<
∂f

∂xi
.

(Not quite what was meant. . . )
6 “Universal Guess”: In the first Taylor term, use

∂f

∂xi
≈ 1

i
ai =

1

i
(1− xi).



Using the Shape of Space for Shortcuts

Tailoring the Grid

1 Define grid values ui on each coordinate i by “tapering” (data
structures by T. Biswas).

2 Given x = (x1, . . . , x`), how to define a “neighborhood” from U?

3 Define x+ by rounding each entry xi to next-higher ui.

4 And x− by rounding each entry xi to next-lower ui.

5 Neighborhood drawn from entries of x+ and x−.



Using the Shape of Space for Shortcuts

Tailoring the Grid

1 Define grid values ui on each coordinate i by “tapering” (data
structures by T. Biswas).

2 Given x = (x1, . . . , x`), how to define a “neighborhood” from U?

3 Define x+ by rounding each entry xi to next-higher ui.

4 And x− by rounding each entry xi to next-lower ui.

5 Neighborhood drawn from entries of x+ and x−.



Using the Shape of Space for Shortcuts

Tailoring the Grid

1 Define grid values ui on each coordinate i by “tapering” (data
structures by T. Biswas).

2 Given x = (x1, . . . , x`), how to define a “neighborhood” from U?

3 Define x+ by rounding each entry xi to next-higher ui.

4 And x− by rounding each entry xi to next-lower ui.

5 Neighborhood drawn from entries of x+ and x−.



Using the Shape of Space for Shortcuts

Tailoring the Grid

1 Define grid values ui on each coordinate i by “tapering” (data
structures by T. Biswas).

2 Given x = (x1, . . . , x`), how to define a “neighborhood” from U?

3 Define x+ by rounding each entry xi to next-higher ui.

4 And x− by rounding each entry xi to next-lower ui.

5 Neighborhood drawn from entries of x+ and x−.



Using the Shape of Space for Shortcuts

Tailoring the Grid

1 Define grid values ui on each coordinate i by “tapering” (data
structures by T. Biswas).

2 Given x = (x1, . . . , x`), how to define a “neighborhood” from U?

3 Define x+ by rounding each entry xi to next-higher ui.

4 And x− by rounding each entry xi to next-lower ui.

5 Neighborhood drawn from entries of x+ and x−.



Using the Shape of Space for Shortcuts

Tailoring the Grid

1 Define grid values ui on each coordinate i by “tapering” (data
structures by T. Biswas).

2 Given x = (x1, . . . , x`), how to define a “neighborhood” from U?

3 Define x+ by rounding each entry xi to next-higher ui.

4 And x− by rounding each entry xi to next-lower ui.

5 Neighborhood drawn from entries of x+ and x−.



Using the Shape of Space for Shortcuts

Strategies

Given x = (x1, x2, . . . , x`),

1 Bounds x+ and x− are well-defined by rounding each coordinate
up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x−. Always u1 = 0.0 = x+1 = x−1 .

3 Start with x−, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value,
but cannot “round down” again until x− values come above it.

5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Using the Shape of Space for Shortcuts

Strategies

Given x = (x1, x2, . . . , x`),

1 Bounds x+ and x− are well-defined by rounding each coordinate
up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x−. Always u1 = 0.0 = x+1 = x−1 .

3 Start with x−, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value,
but cannot “round down” again until x− values come above it.

5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Using the Shape of Space for Shortcuts

Strategies

Given x = (x1, x2, . . . , x`),

1 Bounds x+ and x− are well-defined by rounding each coordinate
up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x−. Always u1 = 0.0 = x+1 = x−1 .

3 Start with x−, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value,
but cannot “round down” again until x− values come above it.

5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Using the Shape of Space for Shortcuts

Strategies

Given x = (x1, x2, . . . , x`),

1 Bounds x+ and x− are well-defined by rounding each coordinate
up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x−. Always u1 = 0.0 = x+1 = x−1 .

3 Start with x−, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value,
but cannot “round down” again until x− values come above it.

5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Using the Shape of Space for Shortcuts

Strategies

Given x = (x1, x2, . . . , x`),

1 Bounds x+ and x− are well-defined by rounding each coordinate
up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x−. Always u1 = 0.0 = x+1 = x−1 .

3 Start with x−, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value,
but cannot “round down” again until x− values come above it.

5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Using the Shape of Space for Shortcuts

Strategies

Given x = (x1, x2, . . . , x`),

1 Bounds x+ and x− are well-defined by rounding each coordinate
up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x−. Always u1 = 0.0 = x+1 = x−1 .

3 Start with x−, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value,
but cannot “round down” again until x− values come above it.

5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Using the Shape of Space for Shortcuts

Strategies

Given x = (x1, x2, . . . , x`),

1 Bounds x+ and x− are well-defined by rounding each coordinate
up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x−. Always u1 = 0.0 = x+1 = x−1 .

3 Start with x−, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value,
but cannot “round down” again until x− values come above it.

5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Using the Shape of Space for Shortcuts

Results So Far. . .

1 Basic story: looks good on random data, not sure yet on real-world
data...

2 We ran experiments under a randomized distribution Dε in which
r ∈ [xi−1, 1] is sampled uniformly and

xi = xi−1 + ε(r − xi−1) (capped at xi = 1.0).

3 That is, we make each move randomly slightly inferior to the
previous one. We choose ε according to N , to make expectation
xi ≈ 1.0 as i nears N .

4 Results under Dε are good: 3-place precision on µ(. . . ) given 2-place
to 1-place precision on grid.

5 Results on real chess data. . . still a work in progress.



Using the Shape of Space for Shortcuts

Results So Far. . .

1 Basic story: looks good on random data, not sure yet on real-world
data...

2 We ran experiments under a randomized distribution Dε in which
r ∈ [xi−1, 1] is sampled uniformly and

xi = xi−1 + ε(r − xi−1) (capped at xi = 1.0).

3 That is, we make each move randomly slightly inferior to the
previous one. We choose ε according to N , to make expectation
xi ≈ 1.0 as i nears N .

4 Results under Dε are good: 3-place precision on µ(. . . ) given 2-place
to 1-place precision on grid.

5 Results on real chess data. . . still a work in progress.



Using the Shape of Space for Shortcuts

Results So Far. . .

1 Basic story: looks good on random data, not sure yet on real-world
data...

2 We ran experiments under a randomized distribution Dε in which
r ∈ [xi−1, 1] is sampled uniformly and

xi = xi−1 + ε(r − xi−1) (capped at xi = 1.0).

3 That is, we make each move randomly slightly inferior to the
previous one. We choose ε according to N , to make expectation
xi ≈ 1.0 as i nears N .

4 Results under Dε are good: 3-place precision on µ(. . . ) given 2-place
to 1-place precision on grid.

5 Results on real chess data. . . still a work in progress.



Using the Shape of Space for Shortcuts

Results So Far. . .

1 Basic story: looks good on random data, not sure yet on real-world
data...

2 We ran experiments under a randomized distribution Dε in which
r ∈ [xi−1, 1] is sampled uniformly and

xi = xi−1 + ε(r − xi−1) (capped at xi = 1.0).

3 That is, we make each move randomly slightly inferior to the
previous one. We choose ε according to N , to make expectation
xi ≈ 1.0 as i nears N .

4 Results under Dε are good: 3-place precision on µ(. . . ) given 2-place
to 1-place precision on grid.

5 Results on real chess data. . . still a work in progress.



Using the Shape of Space for Shortcuts

Results So Far. . .

1 Basic story: looks good on random data, not sure yet on real-world
data...

2 We ran experiments under a randomized distribution Dε in which
r ∈ [xi−1, 1] is sampled uniformly and

xi = xi−1 + ε(r − xi−1) (capped at xi = 1.0).

3 That is, we make each move randomly slightly inferior to the
previous one. We choose ε according to N , to make expectation
xi ≈ 1.0 as i nears N .

4 Results under Dε are good: 3-place precision on µ(. . . ) given 2-place
to 1-place precision on grid.

5 Results on real chess data. . .

still a work in progress.



Using the Shape of Space for Shortcuts

Results So Far. . .

1 Basic story: looks good on random data, not sure yet on real-world
data...

2 We ran experiments under a randomized distribution Dε in which
r ∈ [xi−1, 1] is sampled uniformly and

xi = xi−1 + ε(r − xi−1) (capped at xi = 1.0).

3 That is, we make each move randomly slightly inferior to the
previous one. We choose ε according to N , to make expectation
xi ≈ 1.0 as i nears N .

4 Results under Dε are good: 3-place precision on µ(. . . ) given 2-place
to 1-place precision on grid.

5 Results on real chess data. . . still a work in progress.



Using the Shape of Space for Shortcuts

Results for NN+UG



Using the Shape of Space for Shortcuts

Results for Just NN


