Cheating Detection and Cognitive Modeling At Chess Cognitive Science Colloquium

Kenneth W. Regan¹
University at Buffalo (SUNY)

16 October, 2024

¹With grateful acknowledgment to co-authors Guy Haworth and Tamal Biswas, students in my graduate seminars, and UB's Center for Computational Research (CCR)

A Predictive Analytic Model

Means that the model:

- Addresses a series of events or decisions, each with possible outcomes $m_1, m_2, \ldots, m_i, \ldots$
- Assigns to each m_i a probability p_i .
- Projects risk/reward quantities associated to the outcomes.
- Also assigns confidence intervals for p_i and those quantities.

In a *utility-based* model, each m_i has a utility or cost u_i . The main risk/reward quantity is then $E = \sum_i p_i u_i$. **Examples:**

- Insurance: m_i are risk factors; costs u_i do not influence p_i .
- Chess: m_i are legal moves; u_i are values given by strong chess-playing programs that objectively say how good the moves are. In my model, p_i depend on u_i per bounded rationality.
- Multiple-choice tests: m_i are possible answers to a test question, $u_i = \text{gain/loss}$ for right/wrong answer.

Chess and Tests—With Partial Credits (Or LLMs?)

of drug-resistant strains of bacteria and viruses has researchers' hopes that permanent victories against many diseases have been achieved. vigor . . corroborated feebleness . . dashed proliferation . . blighted destruction . . disputed disappearance . . frustrated (source: itunes.apple.com)

Here (b,c) are equal-optimal choices, (a) is bad, but (d) and (e) are reasonable—worth part credit.

Move Utilities Example (Kramnik-Anand, 2008)

Depths...

Values by Stockfish 6

	•																		
Move	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nd2	103	093	087	093	027	028	000	000	056	-007	039	028	037	020	014	017	000	006	000
Bxd7	048	034	-033	-033	-013	-042	-039	-050	-025	-010	001	000	-009	-027	-018	000	000	000	000
Qg8	114	114	-037	-037	-014	-014	-022	-068	-008	-056	-042	-004	-032	000	-014	-025	-045	-045	-050
Nxd4	-056	-056	-113	-071	-071	-145	-020	-006	077	052	066	040	050	051	-181	-181	-181	-213	-213

Aptitude—Via Elo Grades (calculator)

- Named for **Arpad Elo**, number R_P rates skill of player P.
- E.g. 1000 = bright beginner, 1600 = good club player, 2200 = master, 2800 = world championship caliber.
- Computer engines are far higher, e.g.: Stockfish 16 = 3544, Torch 1.0 = 3531, Komodo Dragon 3.3 = 3529.
- Expectation $e = \frac{1}{1 + \exp(c(R_P R_O))}$ depends only on difference to opponent's rating R_O . With $c = (\ln 10)/400$ the curve is:

Main Parameters and Inputs

The (only!) player parameters trained against chess Elo Ratings are:

- s for "sensitivity"—strategic judgment. Like Anatoly Karpov.
- c for "consistency" in tactical minefields. Like Mikhail Tal.
- h for "heave" or "Nudge"—obverse to depth of thinking.

Trained on all available in-person classical games in 2010–2019 between players within 10 Elo of a marker 1025, 1050, ..., 2775, 2800, 2825. Wider selection below 1500 and above 2500.

- Given an Elo rating R, "central slice" gives corresponding s_R, c_R, h_R .
- Only other input is move values at various depths of search.
- Important "differentiator": my heavily scaled version (ASD) of "average centipawn loss."
- Other than these, my model knows nothing about chess.

Log-Linear Versus Loglog-Linear Model

The generic **log-linear** model puts

$$\log\left(\frac{1}{p_i}\right) = \alpha + \beta u_i, \quad \text{or equivalently,} \quad \log\left(\frac{1}{p_i}\right) - \log\left(\frac{1}{p_1}\right) = \beta \delta_i,$$

where $\delta_i = u_1 - u_i$. Solved by **softmax** giving $p_i = p_1 \exp(-\beta u_i)$, so each p_i is represented as a **multiple** of the best-move probability p_1 .

The loglog-linear model puts $\log \log(\frac{1}{p_i}) - \log \log(\frac{1}{p_i}) = \beta \delta_i$, i.e.:

$$\frac{\log(1/p_i)}{\log(1/p_1)} = \exp(\beta \delta_i).$$

This gives $p_i = p_1^{\exp(\beta \delta_i)}$, so probabilities are represented as **powers** of p_1 .

In place of $\beta \delta_i$, I have $\left(\frac{\delta_i - h\rho_i}{s}\right)^c$, where the "heave term" ρ_i uses the values at lower depths of search. Why h is tightly clamped.

A rare bird? Relation to power-law phenomena?

How it Works

- Take s, c, h from a player's rating (or wider skill profile).
- Generate probability p_i for each legal move m_i .
- Paint m_i on a 1,000-sided die, **1,000** p_i times.
- Roll the die to give confidence intervals that go with the p_i .
- (Correct after-the-fact for chess decisions not being independent.)

Main Outputs:

- Statistical z-scores for various (actual-projected) quantities:
 - **T1-match**: Agreement with the move listed first by the computer.
 - EV-match: Includes moves of equal-optimal value not listed first.
 - **ASD**: Average *scaled* difference in value from inferior moves.
- An Intrinsic Performance Rating (IPR) for the set of games.

Fit s, c, h by making T1,EV,ASD be **unbiased estimators** on the training sets, which are stratified by Elo ratings.

Karpov & Tal at Montreal "Tourney of Stars" 1979

- Tied for first with 12/18 in star-studded double round-robin.
- Karpov was rated 2705, Tal only 2615.
- Karpov (per Stockfish 11): s = 0.016, c = 0.307.
- Tal (per Stockfish 11): s = 0.026, c = 0.365.
- Lower s is better—so Karpov was more "Karpovian."
- Higher c is better—so my model with Tal's parameters would make fewer large mistakes.

Are these grainy parameters enough to mimic human tendencies?

- IPRs: Karpov 2625 +- 155, Tal 2730 +- 185.
- Whole tourney IPR is (only!) **2575** +- **50** (s = 0.041, c = 0.385).
- Average Elo of players, **2621**, is within error bars. Surprise is that the IPR is not near 2700s range. Today's elite regularly hit 2800+.

Z-Scores

- A **z-score** measuresf performance relative to natural expectation.
- Used extensively by business in Quality Assurance, Human Resources Management, and by many testing agencies.
- Expressed in units of standard deviations, called "sigmas" (σ) .
- Correspond to statements of odds-against (but see next slides):
- "Six Sigma" (6σ) means about 500,000,000–1 odds;
- $5\sigma = 3,000,000-1;$
- $4.75\sigma = 1,000,000-1;$
- $4.5\sigma = 300,000-1$;
- $4\sigma = 32,000-1$;
- $3\sigma = 740-1$;
- $2\sigma = 43-1$ (civil minimum standard, polling "margin of error").

Bell Curve and Tails

Suppose We Get z = 3.54

- Natural frequency \approx 1-in-5,000. Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. **But:**
- Prior likelihood of cheating is estimated at
 - 1-in-5,000 to 1-in-10,000 for in-person chess.
 - 1-in-50 (greater for kids) to 1-in-200 for online chess.
- Look-Elsewhere Effect: How many were playing chess that day? weekend? week? month? year?

Are these considerations orthogonal, or do they align?

Over large datasets from (presumably) non-cheating players, the **Central Limit Theorem** "kicks in" well: the z-scores conform to the bell curve.

Evaluation Criteria and Demonstrations

- Is it **safe**? That is, do its outputs conform to an expected (normal) distribution over populations that obey the null hypothesis? (Yes).
- ② Is it **sensitive**? And are its positive results clearly pertinent to the desired inferences? (Can improve?)
- On How is it calibrated? Are the calibration—as well as positive results—explainable?
- **①** Can it be **cross-validated**? What sanity checks does it provide?
- Ones it model more than what its proximate application demands, so as to be robust against "mission creep"?
- How can we distinguish uncovering genuine cognitive phenomena from artifacts of the model?

Show demos as time allows...

Cognitive Concepts and Conceits

Many results in cognitive decision making come from studies that

- 1 are well-targeted to the concept and hypothesis, but
- 2 have under 100 test subjects...
- 3 ...under simulated conditions...
- ...with unclear metrics and alignment of personal vs. test goals..., and where
- **6** ...reproducibility is doubtful and arduous.

The *chess angle* is to trade 1 against wealth of 2,3,4,5: lots of players and games, real competition, clear goals and metrics (Elo ratings), and not only reproducible but conducive to abundant falsifiable predictions. My Kahneman obit.

Let's consider elements of **difficulty** and **time pressure**.

Position Value \longleftrightarrow Expectation (2000 vs. 2000)

- Similar 0.75 expectation when up 1.30 vs. equal-rated player.
- Complication: dependence on rating itself.

Item-Response Theory (IRT source)

- Horizontal axis governs difficulty in relation to $\theta = ability$.
- Slope at y = 0.5 correctness rate is the **discrimination** factor.

Defining Difficulty

- For any fixed aptitude level θ , difficulty \approx expected points loss.
- In chess, this is our $E_L = \sum_i p_i (u_1 u_i) = \sum_i p_i \delta_i$.
- Call this expected loss the hazard.
- Depends on rating because the probabilities p_i projected by my model depend on rating R.
- My model divides out dependence on R. "Expectation Weights, Normalized" (EWN).
- Technote: In a log-linear model, with $-\log p_i \sim u_i$, we get

$$E_L \sim \sum_i p_i \log(1/p_1) - \sum_i p_i \log(1/p_i) = \log\left(\frac{1}{p_1}\right) - H,$$

where H is **entropy**. But my model is not log-linear.

• How well does hazard—normalized over aptitude—work as a measure of difficulty?

A Philosophical Issue

Should a grading metric μ expect to assess lower performance on more-difficult questions, or should it show a *constancy of signal* θ across all types of questions?

- I typically categorize questions as A-level, B-level, C-level, D-level.
- Ideal distribution: 20%,30%,30%,20% averaging 2.5 difficulty.
- Overall threshold for A: grading score $\mu \geq 90\%$.
- Getting 60% on the A-level questions puts you on-track, even though 60% by itself is C-range (or worse).
- Thus simple μ does not give constant signal—it needs context.
- Should we define "A-level" etc. in each category? ($\approx curving$).

Raw metrics like T1, EV, ASD should not give constancy of signal.

How about IPR?

IPR and Hazard (World Senior Teams 2024)

- Older players, established ratings (but deflated), average 2080.
- Focus on 2000–2200. Analysis by Stockfish 11 in EWN mode.
- IPR overall: **2125** +- **40**. Broken down according to [dis-]advantage:
 - 1-2 pawns behind: **2170** +- **105**; worse: **2065** +- **110**.
 - 1-2 pawns ahead: **2085** +- **120**; better: **2020** +- **155**
 - Within 1.00 of equal: **2145** +- **45**; within 0.50: **2125** +- **65**.
- Reasonable constancy of signal.
- But on positions with ≥ 1.5 times normal hazard: **2255** +- **65**.
- With $\geq 2x$ hazard: 2170 +- 115. Could be consistent. But—
- Positions of of 0.5x or lower hazard: 1800 +- 180.
- Not constancy of signal.
- Low-hazard positions either have an obvious best move or many good moves.

Example: Niemann-Shankland, USA Ch. 2023

Low-hazard because crisis is far off, but difficult in real chess terms. Low E_L , high entropy H. (Niemann lost.)

Aspects of Difficulty (Besides Hazard)

- Needing deep cogitation to find best move or avoid a trap. Expressly modeled—e.q. to project the trap for Kramnik.
- **② Being at a disadvantage.** Chess, not so much examinations. Model performs fine.
- **3** Humans perform poorly. Basic with repeatable test questions. Repeatable chess positions, however, are opening book knowledge.
- 4 Humans take a long time to answer.
 - Can't project ahead of time (owing to non-book \equiv non-repeatable).
 - But certainly directly captures the human experience of difficulty.
- **1 Output** Question is inherently complex or taxing.
 - How to measure this internally?
 - Sunde, Zegners, and Strittmatter [SZS, Jan. 2022] propose counting the time (i.e., number of position nodes) needed by chwess engine to complete analysis to depth (say) 24.
 - Carow and Witzig [CW, Feb. 2024] consider all the above, but strive for human-chess based measures.

Time Budget and Effect on Quality

- FIDE Standard Time Control: 90 minutes to turn 40, then 30 minutes more, with 30-second *increment* after every move. Allows 150 minutes to turn 60.
- "Standard" control must allow at least 120 minutes to turn 60.
- Some elite events allow 180, 195, even 210 minutes (to turn 60).
- Rapid means any time giving under 60 minutes and at least 10. Common is 15 min. plus 10-second increment, giving 25 to turn 60.
- Blitz means under 10 minutes, most common is 3 minutes + 2-second increment, which gives 5 minutes—and so approximates old-school 5-minute chess on analog clocks.
- For 25-minute Rapid, I measure **240** reduction in quality per IPR.
- For 5-minute Blitz, 575 lower. (Error bars for both are about ± 25 .)

Time-Quality Curves (whole graph)

Predicated on Time Spent For a Move

Staying with players rated 2000 to 2200 at the World Senior Team Ch.

- Positions on which they spent at most **30 seconds** on the move: **2860** +- **75**.
- At most 10 seconds: 3235 +- 90.
- Starting at turn 16 rather than 9: 3220 +- 100.
- At most 5 seconds (sample size 605): 3230 +- 160.

What gives here? How about moves with long thinks—?

- Positions with 5–10 minutes consumed: 1460 +- 85.
- Using 10–15 minutes (705 positions): **1235** +- **170**.
- Using ≥ 15 minutes (371 positions): **1410** +- **205**.
- "Thinking Is Bad For You." (At least it's a bad sign...)
- Vivid reproduction of [SZS 2022] (and also Anderson et al., 2016 thru now for online blitz).

Hazard Vs. Time—and Time Left

Switching to Komodo 13.3 in place of Stockfish 11 as analyzing engine:

- Overall IPR of Elo 2000-to-2200 players: **2175** +- **35**.
- Average thinking time over all moves (turns 9–60): 181 seconds.
- IPR on turns of $\leq 0.5x$ hazard: **1635** +- **125**.
- Average thinking time in those positions: 145 seconds.
- IPR on turns of $\geq 2x$ hazard: **2345** +- **125**.
- Average thinking time in those positions: 151 seconds.

Results are more as-expected on turns with little time budget left:

- When player has ≤ 180 seconds left (633 turns): 1540 +- 280.
- Or average ≤ 60 seconds left to turn 40, not counting increment time: 1685 +- 200.
- Or average 30 seconds left to turn 40, counting half the increment time: **1395** +- **425**. (In all cases, average hazard.)

Enter Entropy

Students in my CSE702 graduate seminar proposed a measure H_U of entropy that uses only the move utilities u_i , not the projected probabilities p_i (nor their logs). Avoids the rating feedback loop.

- Average $H_U = 2.57$.
- Turns with $H_U \leq 2$: avg. time used 88 sec., IPR 2405 +- 100.
- Turns with $H_U \leq 1.5$: avg. time used **72 sec.**, IPR **2485** +- **130**.
- Turns with $H_U \leq 1$: avg. time used **56 sec.**, IPR **2645** +- **165** (lower hazard too).
- Turns with $H_U \leq 0.5$: avg. time used **40 sec.**, IPR **2580** +- **255** (much lower hazard).
- Turns with $H_U \geq 3$: time used 252 sec., IPR 2000 +- 35.
- Turns with $H_U \ge 3.5$ (702 pos.): time 312 sec., IPR 1965 +- 110.
- (No position has $H_U \geq 3.8$. All cases have close to mean hazard.)
- High entropy correlates well with (human experience of) difficulty.
- Much more work to do...

Discussion and Q & A

[And Thanks]

[Possible extra slides for Q & A follow...optional, of course...]

Some Accompanying Stances

- Extreme Corner of Data Science—since I need ultra-high confidence on any claim.
- Concern: Data modelers in less-extreme settings satisfice.
- That is, their models are designed up to one particular goal but don't explore much of the harder adjacent metaspace.
- Nonreproducibility, Mission Creep, and Shifting Sands. E.g., I do not reproduce the longer conclusions of this study.
- Cross-Validation...one point of which is:
- How can we distinguish uncovering genuine cognitive phenomena from artifacts of the model?

Some Cognitive Nuggets

- Dimensions of Strategy and Tactics (and Depth of Thinking).
 - But wait—the model has no information specific to chess...
 - Brain seems to register changes in move values as depth increases.
- 2 Machine-Like Versus Human Play
 - Garry Kasparov, as a 2012 Alan Turing Centennial test, distinguished 5 games played by human 2200-level masters from 5 games by engines "stopped down" to 2200 level.
- 3 Relationship to Multiple-Choice Tests (with partial credits)
 - "Solitaire Chess" feature often gives part credits.
 - Large field of **Item Response Theory** (IRT).

Player Estimation

- Model \rightarrow Intrinsic Performance Rating (IPR) for any games.
- IPR still may overdo accuracy, undercut challenge created.
- ullet The s,c,h... tradeoff that produces a given Elo IPR value judges positional versus tactical abilities.

Questions that IPR can answer:

- Natural growth curves for young players? & arcs for older players?
- 2 Are there substantial geographical variations in ratings?
- **3** How does skill at fast chess correlate with ratings at slow chess?
- **4** Has there been rating **inflation**? Is there current **deflation**?

Rating estimation bias skews linearly, but my model has ample cross-checks by which to detect and correct it. The pandemic brought a truly monstruous situation where official ratings were frozen for years...

Rating Lag—Natural Versus Pandemic-Caused

- The #1 scientific role I've played since the pandemic has been estimating the true skill growth of young players.
- Has perforce been **post-normal science**.
- My "back of the envelope" formula held up over two years with only one small revision for preteens.
- Revision in Oct. 2022 to curtail projections past Elo 2000 level.
- Would have been more "normal" if comprehensive studies of the career arcs (measured by Elo rating) of young players were to hand.
- Lack of such studies exposed by the controversy over Hans Niemann's rise from 2465 Elo to 2700.
- Show this GLL article including example of Ms. Sarayu Velpula.
- Velpula in current Indian Women's Championship...

Hans Niemann: Platform or Plateau?

The Gender Gap in Chess

- Is clear: with Judit Polgar retired, there are no women in the top 100 by rating (to 2637).
- Hou Yifan is 2633 but semi-inactive; next is Ju Wenjun at 2563.
- (But are current top female players more distinctly underrated?)
- Where and when does the gap begin?
- "Nature versus Nurture"—or rather Duration of Engagement?
- I have not found differences between these improvement factors:
 - Playing in-person chess events—versus binging online blitz.
 - Study alone—versus with a regular chess coach (online).
- What data could test a simple "10,000 hours" hypothesis?
- Perhaps: time spent on major platforms, crosstabled by age, rating, and gender. Alas not maintained as such?
- Q&A, and Thanks.