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Compactness in Logic

Say a property II of L-structures is compact if for all L-structures §2,
whenever all finite substructures of 2 have II, then 2 has II.

e Usually one says that a collection P of properties is compact, where
P is defined by expressibility in £. For instance, first-order
definable properties are compact.

e Here we wish to focus on single properties.

e We consider mostly hereditary properties, so “whenever” can mean
iff not just if.

e We focus on simple (un)directed graphs as the structures.

Example: Bipartiteness.
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Complexity-Scaled Version

Let N = 2", where n is the input-size parameter. Consider graphs G of
size N nodes that offer query access to (non-)edges E(i, 7).

e Size close to N, e.g. (1 —€)N = “large” = infinite.

o Size n®M) = “small’ ~ finite.
No longer true for bipartiteness—the smallest odd cycles in a

non-bipartite graph of size N can have size = N.
How to have a compactness notion for already-finite structures?

Solution: make the target notion approximate.
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Approximate Compactness

Idea: II is approzimately compact if for all large G, whenever all small
subgraphs have II, then some large subgraph has II.

A graph property I is (f(N), g(N))-compact if for all N and all graphs
G of size N, if all f(N)-node subgraphs H of G have II, then there is a
g(N)-node subgraph G’ that has II.

Subgraphs are vertex-induced; original thought was an edge-induced
concept.
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Example: Bipartiteness

If all k-node subgraphs are bipartite, does it follow that some
(1 — €)N-node subgraph is bipartite?

Depends on k. Here k£ may depend on N and €, but € is fixed for all N,
so k= f(N). With g(N) fixed as (1 —¢)N, only k varies.

The following blog-procured results by Noga Alon and Luca Trevisan
act as asymptotic bookends on k.
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Contributed Results

Theorem (Alon)

For every € > 0 there exists C' > 0 depending only on € such that
bipartiteness is (C'log N, (1 — €)N)-compact. Moreover, we can construct
the subgraph of size (1 — €)N) in NOU) time.

Theorem (Trevisan)

If f(N) is such that bipartiteness is (f(N), (1 — €)N)-compact, then
F(N) = (log N).
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Proof of Theorem 3

There exist size-N expanders G of girth £ = Q(log N), so certainly any

odd cycle has that size, thus all subgraphs of size k — 1 are bipartite. By
the expander mizing lemma G cannot have even a bipartite subgraph of
size > N/2, for large enough N. O
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Proof of Theorem 2

Fix € > 0; fix C' > 0 later, and let k = %C’logz N. A graph is
non-bipartite if and only if it has an odd-length cycle. Hence if all
k-node subgraphs of GG are bipartite, then G has no odd cycles of length
k or less.

To construct a bipartite subgraph H, start with any vertex v. For each

i > 1 define N;(v) to be the neighborhood of vertices within i steps of v,
and S; = N; \ N;_1 to be the “shell” of those at exactly distance i. Now
consider the least j such that

1S5 < €[N
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Proof, how to avoid j > k

If 7 > k, then we have for all i <k, |S;| > €|N;]|, so
|Si| > €(]Si] + |Ni—1]), so |Si| > (1/(1 — €))|N;—1|, which in turn trivially
implies |S;| > (1/(1 — €))|N;—1|. This implies

1

> k
s> (L

which is > N when % logy N logy (1) > logy N, so when

2

> ———.
10g2(ﬁ)

Fixing C' to be otherwise forces j < k.
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Proof, case j < k

Now we observe that every S; for i < j is an independent set. If it has
an edge (s;,t;), then the paths of length i from s; and t; back to v come
together at v or some earlier node in a way that forms an odd cycle of
length at most 2¢ + 1 < C'logy n, contradicting the assumption.

It follows that the subgraph H; induced by Nj \ S; is bipartite, since
the S; give the 2-coloring. Putting n = |N;|, note that |S;| < en.

By induction we have that the leftover graph induced by V(G) \ N; has
a bipartite subgraph H' of size at least (1 —€)(N —n). Since H; U H' is
separated, it is bipartite as well, and has size at least (1 — ¢)N. Clearly
this induction yields a polynomial-time algorithm. [
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Property Testing

A tester is a randomized algorithm A that probes edges of the graph,
such that:

@ If GG has the property II, then after the probing the algorithm A
says ‘yes’ with probability at least 2/3. In the one-sided model, the
algorithm always says ‘yes’ in this case.

@ If the graph does not have II, and is not “near” a graph in II, then
A returns a ‘no’ with probability at least 2/3.

Here “near” is defined via a parameter ¢ > 0 that is also given to the
algorithm. Two graphs G, G’ are e-close if they have the same size N
and for all but e(];f) pairs 1 <i < j <N, E(i,j) + E'(i,j). Relates to
edge-induced subgraphs.

Query complexity q of A is the maximum number of edge probes.
Poly-testable if ¢ = g(e, N) = O(n®) where the “O” depends on e.
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Poly-Testable = Finitely Compact? (No.)

Idea: If all k-node subgraphs have II then the tester A should accept,
which means G is e-close to some G’ that has property II. From G’ we
aim to produce a large vertex-induced subgraph H with II, showing that
IT is (k, (1 — €)N)-compact.

Counterexample: Bipartiteness is testable for fixed k, but not
finite-compact with fixed k. What could have gone wrong?

@ The tester A need not work by probing small subgraphs for the
property II itself.

@ The closeness condition counts edges, and might not carry over to
verter-induced subgraphs.
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Cognizance and Edge-Induced Subgraphs

We address the former issue by strengthening a notion called
“canonical” by Goldreich and Trevisan [2003].

Definition

A property testing algorithm A for II is cognizant if it generates one or
more vertex-induced subgraphs H of G, probing only the edges in H,
and accepts if and only if the majority of the probed graphs have
property II.

The following theorem is credited to Alon in “Appendix D” of that
paper.

Theorem (Alon in Goldreich-Trevisan, 2003)

FEvery testable property that is closed under edge-induced subgraphs has a
cognizant tester.
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“Edge-Induced” Finite Compactness

Definition

ITis (f(N),e€)-edge-compact if for all N and all graphs G of size N, if all
f(N)-node subgraphs H of G have II, then by changing at most eN?
edges we can get a graph G’ that has II.

An N-vertex graph is dense if it has §N? edges, where we intend § > €
and fixed.

Theorem

For sufficiently large k, bipartiteness of dense graphs is (k,1/k3)
edge-compact (with edge-removals only).
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Proof of Theorem 7

Given € > 0, the known cognizant tester for bipartiteness [Goldreich
survey, 2010] selects k = O(log(1/¢)/€?) vertices uniformly at random,
and accepts iff the subgraph R they induce is bipartite. This makes
1/k3 < e. Suppose G is a graph for which all k-node subgraphs are
bipartite. Then the tester accepts with certainty. By definition of being
a tester, G is near a graph G’ in II, which here entails that eN? edges
can be deleted from G to yield H. U

@ Moreover, a suitable H can be described succinctly in terms of
choices that accompany R.

e Stronger bounds than Theorem 2, since k = O(1), but for weaker
notion—H is not a vertex-induced subgraph, and Theorem 3 shows
it cannot be made so.
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Some Other Properties

Theorem

If 3-colorability is (f(N),O(N))-compact, any f, with a (random)
polynomial-time algorithm for finding a ©(N)-sized subgraph and
3-coloring it, then 3-colorable graphs can be colored with O(log N) colors
in (random) polynomial time.

Proof.

Removing the 3-colored subgraph always shrinks the graph by a
constant factor, and since we can use fresh colors for the rest, the
iteration uses O(log N) colors overall. O

| A\

.
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Relation to Approximate Coloring

o Chlamtac [2007] colors any given 3-colorable graph G in O(N?-2072)

colors.

e Meanwhile, Guruswami and Khanna [2004] showed that it is
NP-hard to find a 4-coloring.

o Still best known upper and lower bounds on the number of colors?

e Zuckerman [2007] showed that for all € > 0, approximating the
chromatic number of a graph to wihin a factor of N'~¢ is NP-hard.

e This seems to be reason to suspect that O(N€) for some fixed
¢ < 0.2072 should be a lower bound, but the consequence doesn’t
immediately apply to 3-colorable graphs.
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Local-Global / Almost-Global

The following are considered “Local-Global” pairs of properties—see

paper for references and links to more:

(a) If (Vu #v e V) 3Bw)[E(u,w) A E(v,w)], then (Ju)(Vv # u)E(u,v).

(b) If every k-node subgraph is bipartite, then G can be colored with
NOW/k) colors.

(¢) If every k-node subgraph is 3-colorable, then G can be colored with
n!/2t7() colors, where (k) — 0 as k grows.

(d) If h : V — R has average value at least p on Ny(v) for all v € V
and t < r,t > 1, then its average on V is at least u/no(l/log’”).

(e) If G is s-connected and has no independent sets of size s + 1, then
G has a Hamiltonian circuit.

Does relaxing to almost-global enable more properties, keeping the same

property?



A Finite Compactness Notion, and Property Testing

Things To Do

@ Prove more finite-compact properties, for interesting bounds f(N)
for “small,” g(N) for “large.”

@ Find a better relationship to property testing?

@ Find relations to classes of logical formulas defining the properties.

On the last, if 1I is defined by a first-order sentence
¢=Vr1,...,2x)3... )M

(without constants, and with M quantifier-free), and ¢ holds for all
k-node subgraphs, then it is true for the whole graph. However, it seems
hard to say more than this in short order, or to make direct use of the
weaker goal of needing ¢ to be true only of a large subgraph, in relation
to the formula’s structure.
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Conclusions

o “With a Little Help From Our Friends,” we have shown some
non-trivial results and differences for a fairly natural
poly-versus-exp finitary analogue of compactness.

e Motivated by, and perhaps can inform, the important field of
Property Testing.

@ “Open Paper” connected to our blog—anyone can pitch in.

o Thanks to the organizers for giving us this opportunity.



