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Compactness in Logic

Say a property Π of L-structures is compact if for all L-structures Ω,
whenever all finite substructures of Ω have Π, then Ω has Π.

Usually one says that a collection P of properties is compact, where
P is defined by expressibility in L. For instance, first-order
definable properties are compact.

Here we wish to focus on single properties.

We consider mostly hereditary properties, so “whenever” can mean
iff not just if .

We focus on simple (un)directed graphs as the structures.
Example: Bipartiteness.
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Complexity-Scaled Version

Let N = 2n, where n is the input-size parameter. Consider graphs G of
size N nodes that offer query access to (non-)edges E(i, j).

Size close to N , e.g. (1− ε)N = “large” ≈ infinite.

Size nO(1) = “small’ ≈ finite.

No longer true for bipartiteness—the smallest odd cycles in a
non-bipartite graph of size N can have size ≈ N .

How to have a compactness notion for already-finite structures?

Solution: make the target notion approximate.
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Approximate Compactness

Idea: Π is approximately compact if for all large G, whenever all small
subgraphs have Π, then some large subgraph has Π.

Definition

A graph property Π is (f(N), g(N))-compact if for all N and all graphs
G of size N , if all f(N)-node subgraphs H of G have Π, then there is a
g(N)-node subgraph G′ that has Π.

Subgraphs are vertex -induced; original thought was an edge-induced
concept.
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Example: Bipartiteness

If all k-node subgraphs are bipartite, does it follow that some
(1− ε)N -node subgraph is bipartite?

Depends on k. Here k may depend on N and ε, but ε is fixed for all N ,
so k = f(N). With g(N) fixed as (1− ε)N , only k varies.

The following blog-procured results by Noga Alon and Luca Trevisan
act as asymptotic bookends on k.
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Contributed Results

Theorem (Alon)

For every ε > 0 there exists C > 0 depending only on ε such that
bipartiteness is (C logN, (1− ε)N)-compact. Moreover, we can construct
the subgraph of size (1− ε)N) in NO(1) time.

Theorem (Trevisan)

If f(N) is such that bipartiteness is (f(N), (1− ε)N)-compact, then
f(N) = Ω(logN).
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Proof of Theorem 3

Proof.

There exist size-N expanders G of girth k = Ω(logN), so certainly any
odd cycle has that size, thus all subgraphs of size k− 1 are bipartite. By
the expander mixing lemma G cannot have even a bipartite subgraph of
size > N/2, for large enough N .
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Proof of Theorem 2

Fix ε > 0; fix C > 0 later, and let k = 1
2C log2N . A graph is

non-bipartite if and only if it has an odd-length cycle. Hence if all
k-node subgraphs of G are bipartite, then G has no odd cycles of length
k or less.

To construct a bipartite subgraph H, start with any vertex v. For each
i ≥ 1 define Ni(v) to be the neighborhood of vertices within i steps of v,
and Si = Ni \Ni−1 to be the “shell” of those at exactly distance i. Now
consider the least j such that

|Sj | < ε|Nj |.
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Proof, how to avoid j > k

If j > k, then we have for all i ≤ k, |Si| ≥ ε|Ni|, so
|Si| ≥ ε(|Si|+ |Ni−1|), so |Si| ≥ (1/(1− ε))|Ni−1|, which in turn trivially
implies |Si| ≥ (1/(1− ε))|Ni−1|. This implies

|Si| ≥ (
1

1− ε
)k,

which is > N when C
2 log2N log2(

1
1−ε) > log2N , so when

C >
2

log2(
1

1−ε)
.

Fixing C to be otherwise forces j ≤ k.
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Proof, case j ≤ k

Now we observe that every Si for i < j is an independent set. If it has
an edge (si, ti), then the paths of length i from si and ti back to v come
together at v or some earlier node in a way that forms an odd cycle of
length at most 2i+ 1 ≤ C log2 n, contradicting the assumption.

It follows that the subgraph Hj induced by Nj \ Sj is bipartite, since
the Si give the 2-coloring. Putting n = |Nj |, note that |Sj | ≤ εn.

By induction we have that the leftover graph induced by V (G) \Nj has
a bipartite subgraph H ′ of size at least (1− ε)(N − n). Since Hj ∪H ′ is
separated, it is bipartite as well, and has size at least (1− ε)N . Clearly
this induction yields a polynomial-time algorithm. �
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Property Testing

A tester is a randomized algorithm A that probes edges of the graph,
such that:

1 If G has the property Π, then after the probing the algorithm A
says ‘yes’ with probability at least 2/3. In the one-sided model, the
algorithm always says ‘yes’ in this case.

2 If the graph does not have Π, and is not “near” a graph in Π, then
A returns a ‘no’ with probability at least 2/3.

Here “near” is defined via a parameter ε > 0 that is also given to the
algorithm. Two graphs G,G′ are ε-close if they have the same size N
and for all but ε

(
N
2

)
pairs 1 ≤ i < j ≤ N , E(i, j)↔ E′(i, j). Relates to

edge-induced subgraphs.

Query complexity q of A is the maximum number of edge probes.
Poly-testable if q = q(ε,N) = O(nc) where the “O” depends on ε.
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Poly-Testable =⇒ Finitely Compact? (No.)

Idea: If all k-node subgraphs have Π then the tester A should accept,
which means G is ε-close to some G′ that has property Π. From G′ we
aim to produce a large vertex-induced subgraph H with Π, showing that
Π is (k, (1− ε)N)-compact.

Counterexample: Bipartiteness is testable for fixed k, but not
finite-compact with fixed k. What could have gone wrong?

The tester A need not work by probing small subgraphs for the
property Π itself.

The closeness condition counts edges, and might not carry over to
vertex-induced subgraphs.
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Cognizance and Edge-Induced Subgraphs

We address the former issue by strengthening a notion called
“canonical” by Goldreich and Trevisan [2003].

Definition

A property testing algorithm A for Π is cognizant if it generates one or
more vertex-induced subgraphs H of G, probing only the edges in H,
and accepts if and only if the majority of the probed graphs have
property Π.

The following theorem is credited to Alon in “Appendix D” of that
paper.

Theorem (Alon in Goldreich-Trevisan, 2003)

Every testable property that is closed under edge-induced subgraphs has a
cognizant tester.
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“Edge-Induced” Finite Compactness

Definition

Π is (f(N), ε)-edge-compact if for all N and all graphs G of size N , if all
f(N)-node subgraphs H of G have Π, then by changing at most εN2

edges we can get a graph G′ that has Π.

An N -vertex graph is dense if it has δN2 edges, where we intend δ > ε
and fixed.

Theorem

For sufficiently large k, bipartiteness of dense graphs is (k, 1/k3)
edge-compact (with edge-removals only).
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Proof of Theorem 7

Given ε > 0, the known cognizant tester for bipartiteness [Goldreich
survey, 2010] selects k = O(log(1/ε)/ε2) vertices uniformly at random,
and accepts iff the subgraph R they induce is bipartite. This makes
1/k3 < ε. Suppose G is a graph for which all k-node subgraphs are
bipartite. Then the tester accepts with certainty. By definition of being
a tester, G is near a graph G′ in Π, which here entails that εN2 edges
can be deleted from G to yield H. �

Moreover, a suitable H can be described succinctly in terms of
choices that accompany R.

Stronger bounds than Theorem 2, since k = O(1), but for weaker
notion—H is not a vertex-induced subgraph, and Theorem 3 shows
it cannot be made so.
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Some Other Properties

Theorem

If 3-colorability is (f(N),Θ(N))-compact, any f , with a (random)
polynomial-time algorithm for finding a Θ(N)-sized subgraph and
3-coloring it, then 3-colorable graphs can be colored with O(logN) colors
in (random) polynomial time.

Proof.

Removing the 3-colored subgraph always shrinks the graph by a
constant factor, and since we can use fresh colors for the rest, the
iteration uses O(logN) colors overall.
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Relation to Approximate Coloring

Chlamtac [2007] colors any given 3-colorable graph G in O(N0.2072)
colors.

Meanwhile, Guruswami and Khanna [2004] showed that it is
NP-hard to find a 4-coloring.

Still best known upper and lower bounds on the number of colors?

Zuckerman [2007] showed that for all ε > 0, approximating the
chromatic number of a graph to wihin a factor of N1−ε is NP-hard.

This seems to be reason to suspect that O(N c) for some fixed
c < 0.2072 should be a lower bound, but the consequence doesn’t
immediately apply to 3-colorable graphs.
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Local-Global / Almost-Global

The following are considered “Local-Global” pairs of properties—see
paper for references and links to more:

(a) If (∀u 6= v ∈ V )(∃!w)[E(u,w) ∧ E(v, w)], then (∃u)(∀v 6= u)E(u, v).

(b) If every k-node subgraph is bipartite, then G can be colored with
NO(1/k) colors.

(c) If every k-node subgraph is 3-colorable, then G can be colored with
n1/2+r(k) colors, where r(k) −→ 0 as k grows.

(d) If h : V −→ R+ has average value at least µ on Nt(v) for all v ∈ V
and t ≤ r, t ≥ 1, then its average on V is at least µ/nO(1/ log r).

(e) If G is s-connected and has no independent sets of size s+ 1, then
G has a Hamiltonian circuit.

Does relaxing to almost-global enable more properties, keeping the same
property?
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Things To Do

1 Prove more finite-compact properties, for interesting bounds f(N)
for “small,” g(N) for “large.”

2 Find a better relationship to property testing?

3 Find relations to classes of logical formulas defining the properties.

On the last, if Π is defined by a first-order sentence

φ = (∀x1, . . . , xk)(∃ . . . )M

(without constants, and with M quantifier-free), and φ holds for all
k-node subgraphs, then it is true for the whole graph. However, it seems
hard to say more than this in short order, or to make direct use of the
weaker goal of needing φ to be true only of a large subgraph, in relation
to the formula’s structure.
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Conclusions

“With a Little Help From Our Friends,” we have shown some
non-trivial results and differences for a fairly natural
poly-versus-exp finitary analogue of compactness.

Motivated by, and perhaps can inform, the important field of
Property Testing.

“Open Paper” connected to our blog—anyone can pitch in.

Thanks to the organizers for giving us this opportunity.


