Deep Analysis of Human Decision Making Skill Rating and Cheating Detection

Kenneth W. Regan¹ University at Buffalo (SUNY)

14 November, 2013

I Human decision-making in one area: Chess.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- I Human decision-making in one area: Chess.
- In real not simulated competition.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- U Human decision-making in one area: Chess.
- In real not simulated competition.
- Supports studying *depth* and *biases* in thinking.

- I Human decision-making in one area: Chess.
- In real not simulated competition.
- Supports studying *depth* and *biases* in thinking.
- Iarge-scale data finds robust patterns.

- I Human decision-making in one area: Chess.
- In real not simulated competition.
- Supports studying *depth* and *biases* in thinking.
- Iarge-scale data finds robust patterns.
- Model includes no details of chess other than move values supplied by computer analysis. Hence transferable at least to other games of strategy.

- U Human decision-making in one area: Chess.
- In real not simulated competition.
- Supports studying *depth* and *biases* in thinking.
- Large-scale data finds robust patterns.
- Model includes no details of chess other than move values supplied by computer analysis. Hence transferable at least to other games of strategy.
- Isomorphic to multiple-choice testing with partial credits. Metrics such as "Intrinsic Performance Rating" (IPR) connect to standard item-response theory measures.

 Domain: A set of decision-making situations t. Chess game turns

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Domain: A set of decision-making situations t. Chess game turns

ション ふゆ マ キャット キャット しょう

 Inputs: Values v_i for every option at turn t. Computer values of moves m_i

- Obmain: A set of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i
- Parameters: s, c,... denoting skills and levels. Trained correspondence to chess Elo rating E

ション ふゆ マ キャット キャット しょう

- Obmain: A set of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t. Computer values of moves m_i
- Parameters: s, c,... denoting skills and levels. Trained correspondence to chess Elo rating E

(日) (日) (日) (日) (日) (日) (日) (日)

• Defines fallible agent P(s, c, ...).

- Domain: A set of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t. Computer values of moves m_i
- Parameters: s, c,... denoting skills and levels. Trained correspondence to chess Elo rating E
- Defines fallible agent P(s, c, ...).
- Main Output: Probabilities $p_{t,i}$ for P(s, c, ...) to select option i at time t.

- Obmain: A set of decision-making situations t. Chess game turns
- Inputs: Values v_i for every option at turn t. Computer values of moves m_i
- Parameters: s, c,... denoting skills and levels. Trained correspondence to chess Elo rating E
- Defines fallible agent P(s, c, ...).
- Main Output: Probabilities $p_{t,i}$ for P(s, c, ...) to select option i at time t.
- Outputs:
 - Aggregate statistics: move-match MM, average error AE, ...
 - Projected confidence intervals for those statistics.
 - "Intrinsic Performance Ratings" (IPR's).

The probability $Pr(m_i | s, c, ...)$ depends on the value of move m_i in relation to the values of other moves.

• Too Simple:

$$\Pr(m_i \mid s, c, \dots) \sim g(s, c, val(m_i)).$$

Doesn't take values of the other moves into account.

The probability $Pr(m_i | s, c, ...)$ depends on the value of move m_i in relation to the values of other moves.

• Too Simple:

$$\Pr(m_i \mid s, c, \dots) \sim g(s, c, val(m_i)).$$

Doesn't take values of the other moves into account.

• Cogent answer—let m_1 be the engine's top-valued move:

$$rac{\Pr(m_i)}{\Pr(m_1)} \sim g(s, c, val(m_1) - val(m_i)).$$

That and $\sum_{i} \Pr(m_i) = 1$ minimally give the Main Principle.

The probability $Pr(m_i | s, c, ...)$ depends on the value of move m_i in relation to the values of other moves.

• Too Simple:

$$\Pr(m_i \mid s, c, \dots) \sim g(s, c, val(m_i)).$$

Doesn't take values of the other moves into account.

• Cogent answer—let m_1 be the engine's top-valued move:

$$rac{\Pr(m_i)}{\Pr(m_1)} \sim g(s,c,val(m_1)-val(m_i)).$$

That and $\sum_{i} \Pr(m_i) = 1$ minimally give the Main Principle.

• Much Better answer (best?): Use $\frac{\log(1/\Pr(m_1))}{\log(1/\Pr(m_i))}$ on LHS.

The probability $Pr(m_i | s, c, ...)$ depends on the value of move m_i in relation to the values of other moves.

• Too Simple:

$$\Pr(m_i \mid s, c, \dots) \sim g(s, c, val(m_i)).$$

Doesn't take values of the other moves into account.

• Cogent answer—let m_1 be the engine's top-valued move:

$$rac{\Pr(m_i)}{\Pr(m_1)} \sim g(s,c, val(m_1) - val(m_i)).$$

That and $\sum_i \Pr(m_i) = 1$ minimally give the Main Principle.

- Much Better answer (best?): Use $\frac{\log(1/\Pr(m_1))}{\log(1/\Pr(m_i))}$ on LHS.
- Needs Multi-PV analysis—already beyond Guid-Bratko work.
- Single-PV data on millions of moves shows other improvements.

• Over 2 million moves of 50-PV data: > 120 GB.

- Over 2 million moves of 50-PV data: > 120 GB.
- Over 30 million moves of Single-PV data: > 30 GB

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Over 2 million moves of 50-PV data: > 120 GB.
- Over 30 million moves of Single-PV data: > 30 GB
- = 75 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC's. Is this "Big Data"?

うして ふゆう ふほう ふほう ふしつ

- Over 2 million moves of 50-PV data: > 120 GB.
- Over 30 million moves of Single-PV data: > 30 GB
- = 75 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC's. Is this "Big Data"?

- 32

Deep Analysis of Human Decision Making

"Big-Data" Aspects

Synthesis of two different kinds of data.

• Single-PV data acts as scientific control for Multi-PV data.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- Covers almost entire history of chess.
- Shows large-scale regularities.

"Big-Data" Aspects

Synthesis of two different kinds of data.

• Single-PV data acts as scientific control for Multi-PV data.

うして ふゆう ふほう ふほう ふしつ

- Covers almost entire history of chess.
- Shows large-scale regularities.
- Model design decisions based on large data.
 - Logarithmic scaling law
 - "58%-42% Law" for probability of equal-value moves
 - Choice of fitting methods

"Big-Data" Aspects

Synthesis of two different kinds of data.

- Single-PV data acts as scientific control for Multi-PV data.
- Covers almost entire history of chess.
- Shows large-scale regularities.
- Model design decisions based on large data.
 - Logarithmic scaling law
 - "58%-42% Law" for probability of equal-value moves
 - Choice of fitting methods
- Scientific discovery beyond original intent of model.
 - Human tendencies (different from machine tendencies?)

• Follow simple laws...

Better, and Best?

Need a general function f and a function $\delta(i)$ giving a *scaled-down* difference in value from m_1 to m_i .

$$rac{f(\operatorname{Pr}_E(m_i))}{f(\operatorname{Pr}_E(m_1))} = g(E,\delta(i)).$$

Implemented with $f = \log$ and \log -log scaling, as guided by the data.

Best model? Let weights w_d at different engine depths d reflect a player's depth of calculation. Apply above equation to evals at each depth d to define $\Pr_E(m_i, d)$. Then define:

$$\Pr_E(m_i) = \sum_d w_d \cdot \Pr_E(m_i, d).$$

This accounts for moves that *swing* in value and idea that weaker players prefer weaker moves. In Process Now.

Why Desire Probabilities?

 Allows to predict the # N of agreements with any sequence of moves m^t_{*} over game turns t, not just computer's first choices:

$$N = \sum_t \Pr_E(m^t_*).$$

- and it gives confidence intervals for N.
- Also predicts aggregate error (AE, scaled) by

$$e = \sum_t \sum_i \delta(i) \cdot \Pr_E(m_i^t).$$

Comparing e with the *actual* error e' by a player over the same turns leads to a "virtual Elo rating" E' for those moves.

• IPR \equiv "Intrinsic Performance Rating."

The Turing Pandolfini?

- Bruce Pandolfini played by Ben Kingsley in "Searching for Bobby Fischer."
- Now does "Solitaire Chess" for Chess Life magazine:
 - Reader covers gamescore, tries to guess each move by one side.
 - E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
 - Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.
- Is it scientific?
- With my formulas, yes—using your games in real tournaments.
- Goal is **natural** scoring and distribution evaluation for multiple-choice tests, especially with partial-credit answers.

Judgment By Your Peers

Training Sets: Multi-PV analyze games with both players rated:

- 2690-2710, in 2006-2009 and 1991-1994
- 2590-2610, "" "", extended to 2580-2620 in 1976-1979
- 2490–2510, all three times
- 2390-2410, (lower sets have over 20,000 moves)
- 2290-2310, (all sets elim. moves 1-8, moves in repetitions,
- 2190-2210, (and moves with one side > 3 pawns ahead)
- Down to 1590-1610 for years 2006-2009 only.
- 2600-level set done for all years since 1971.

Training the Parameters

• Formula $g(E; \delta)$ is really

$$g(s,c;\delta)=rac{1}{e^{x^c}} \quad ext{where} \quad x=rac{\delta}{s}.$$

- s for Sensitivity: smaller $s \equiv$ better ability to sense small differences in value.
- c for Consistency: higher c reduces probability of high- δ moves (i.e., blunders).
- Full model (in progress) adds parameter d for depth of calculation.

Training the Parameters

• Formula $g(E; \delta)$ is really

$$g(s,c;\delta)=rac{1}{e^{x^c}} \quad ext{where} \quad x=rac{\delta}{s}.$$

- s for Sensitivity: smaller $s \equiv$ better ability to sense small differences in value.
- c for Consistency: higher c reduces probability of high- δ moves (i.e., blunders).
- Full model (in progress) adds parameter d for depth of calculation.
- Needs large-scale approximation to handle 15-20x data increase and tuning conversions between different chess engines (all in progress).

Fitting and Fighting Parameters

• For each Elo E training set, find (s, c) giving best fit.

うして ふゆう ふほう ふほう ふしつ

- Can use many different fitting methods...
 - Can compare methods...
 - Whole separate topic...

Fitting and Fighting Parameters

- For each Elo E training set, find (s, c) giving best fit.
- Can use many different fitting methods...
 - Can compare methods...
 - Whole separate topic...
 - Max-Likelihood does poorly.
- Often s and c trade off markedly, but E' ~ e(s, c) condenses into one Elo.

• Strong linear fit—suggests Elo mainly influenced by error.

Some IPRs—Historical and Current

- Magnus Carlsen:
 - 2983 at London 2011 (Kramnik 2857, Aronian 2838, Nakamura only 2452).
 - 2855 at Biel 2012.
- Bobby Fischer:
 - 2921 over all 3 Candidates' Matches in 1971.
 - 2650 vs. Spassky in 1972 (Spassky 2643).
 - 2724 vs. Spassky in 1992 (Spassky 2659).
- Hou Yifan: 2971 vs. Humpy Honeru (2683) in Nov. 2011.
- Paul Morphy: 2344 in 59 most impt. games, 2124 vs. Anderssen.
- Capablanca: 2936 at New York 1927.
- Alekhine: 2812 in 1927 WC match over Capa (2730).

Results and Implications for Human Thinking

- Sensitivity to small changes in the value of moves.
- Observes of sensitivity to changes in value at different depths of search.
- Tangibly greater error in positions where one side has even a slight advantage.
- Satural variability in performance, which we argue is intrinsic and unavoidable.
- Correspondences with results in item-response theory and psychometric test scoring.
- Quality of human-computer teams compared to computers or humans playing separately.

1. Sensitivity—Still the Slime Mold Story?

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

() 0.01, the higher move is played 53-55% of the time.
Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

- **0** 0.01, the higher move is played 53-55% of the time.
- 0.02, the higher move is played 58–59% of the time.

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

- 0.01, the higher move is played 53–55% of the time.
- 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

- 0.01, the higher move is played 53–55% of the time.
- 0.02, the higher move is played 58-59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

- **(** 0.01, the higher move is played 53-55% of the time.
- 0.02, the higher move is played 58-59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
 - Last is not a typo—see "When is a Law Natural?"

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

- 0.01, the higher move is played 53–55% of the time.
- 20.02, the higher move is played 58-59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
 - Last is not a typo—see "When is a Law Natural?"
 - Stockfish versions round evals to nearest 0.04 or 0.02.

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

- 0.01, the higher move is played 53–55% of the time.
- 20.02, the higher move is played 58-59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
 - Last is not a typo—see "When is a Law Natural?"
 - Stockfish versions round evals to nearest 0.04 or 0.02.
 - Relation to slime molds and other "semi-Brownian" systems?

• Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value "Swings Up" only at high depth, compared to one having the same value at all depths?

ション ふゆ マ キャット キャット しょう

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value "Swings Up" only at high depth, compared to one having the same value at all depths?
- How more likely to be played is a "Swing Down" move—a *trap*?

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value "Swings Up" only at high depth, compared to one having the same value at all depths?
- How more likely to be played is a "Swing Down" move—a trap?
- Goal is to develop a Challenge Quotient based on how much trappy play a player sets for the opponent

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value "Swings Up" only at high depth, compared to one having the same value at all depths?
- How more likely to be played is a "Swing Down" move—a trap?
- Goal is to develop a Challenge Quotient based on how much trappy play a player sets for the opponent—and emself.

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value "Swings Up" only at high depth, compared to one having the same value at all depths?
- How more likely to be played is a "Swing Down" move—a trap?
- Goal is to develop a Challenge Quotient based on how much trappy play a player sets for the opponent—and emself.
- Separates *performance* and *prediction* in the model.

- [show data]
- The metric correction

$$\int_{e-\delta}^e d\mu \quad {
m with} \quad d\mu = rac{c}{c+x} dx$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- [show data]
- The metric correction

$$\int_{e-\delta}^e d\mu \quad {
m with} \quad d\mu = rac{c}{c+x} dx$$

ション ふゆ マ キャット キャット しょう

balances evals well for Rybka, with c very near 1.0.

• A mix of three factors?

- [show data]
- The metric correction

$$\int_{e-\delta}^e d\mu \quad ext{with} \quad d\mu = rac{c}{c+x} dx$$

うして ふゆう ふほう ふほう ふしつ

- A mix of three factors?
- (A) Human perception of value as proportional to stakes, per Ariely-Kahneman-Tversky.

- [show data]
- The metric correction

$$\int_{e-\delta}^e d\mu \quad ext{with} \quad d\mu = rac{c}{c+x} dx$$

- A mix of three factors?
- (A) Human perception of value as proportional to stakes, per Ariely-Kahneman-Tversky.
- (B) Rationally playing less *catenaccio* when marginal impact of evaluation on win probability is minimal. (Leo Stedile, working under Mark Braverman)

- [show data]
- The metric correction

$$\int_{e-\delta}^e d\mu \quad ext{with} \quad d\mu = rac{c}{c+x} dx$$

- A mix of three factors?
- (A) Human perception of value as proportional to stakes, *per* Ariely-Kahneman-Tversky.
- (B) Rationally playing less *catenaccio* when marginal impact of evaluation on win probability is minimal. (Leo Stedile, working under Mark Braverman)
- (C) Greater volatility intrinsic to chess as game progresses.

A. Perception Proportional to Benefit

How strongly do you perceive a difference of 10 dollars, if:

- You are buying lunch and a drink in a pub.
- You are buying dinner in a restaurant.
- You are buying an I-pad.
- You are buying a carr.

For the car, maybe you don't care. In other cases, would you be equally thrifty?

ション ふゆ マ キャット マックタン

If you spend the way you play chess, you care maybe $4 \times$ as much in the pub!

• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=\frac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=\frac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$

うして ふゆう ふほう ふほう ふしつ

• Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.

• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=\frac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$

うして ふゆう ふほう ふほう ふしつ

- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.
- How to test apart from cause A?

• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=\frac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$

- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.
- How to test apart from cause A?
- Expect reval-error curve to shift in games between unequally-rated players.

• Expectation curves according to position evaluation v are sigmoidal, indeed close to a hyperbolic tangent

$$E=\frac{e^{av}-e^{-av}}{e^{av}+e^{-av}}.$$

- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.
- How to test apart from cause A?
- Expect reval-error curve to shift in games between unequally-rated players.
- Will need many such games, if not prevented by cause C.

Deep Analysis of Human Decision Making

C. Similar Phenomenon in Computer-Played Games

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• [show data from new "Computer and Freestyle Study."]

C. Similar Phenomenon in Computer-Played Games

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- [show data from new "Computer and Freestyle Study."]
- [Segue to item 6. in outline.]

4. Is Savielly Tartakover Right?

The winner is the player who makes the next-to-last blunder.

- We like to think chess is about Deep Strategy.
- This helps, but is it statistically dominated by blunders?
- Recent Examples:
 - USA-Russia and USA-China matches at 2012 Olympiad.
 - Gelfand-Anand 2012 Rapid playoff.
- My Average Error (AE) stat shows a tight linear fit to Elo rating.

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ ・ シュ ・

Full investigation will need ANOVA (analysis of variance).

5. Variance in Performance, and Motivation?

- Let's say I am 2400 facing 2600 player.
- My expectation is 25%. Maybe:
 - 60% win for stronger player.
 - 30% draw.
 - 10% chance of win for me.
- In 12-game match, maybe under 1% chance of winning if we are random.
- But my model's intrinsic error bars are often 200 points wide over 9-12 games.

ション ふゆ マ キャット マックタン

- Suggests to take event not game as the unit.
- How can we be motivated for events?

Deep Analysis of Human Decision Making

7. Procrastination...

- (Show graph of AE climbing to Move 40, then falling.)
- Aug. 2012 New In Chess, Kramnik-Grischuk, Moscow Tal Mem.

うして ふゆう ふほう ふほう ふしつ

- King's Indian: 12. Bf3!? then 13. Bg2 N (novelty)
- "Grischuk was already in some time pressure."
- IPR for Astana World Blitz (cat. 19, 2715) 2135.
- IPR for Amber 2010+2011 (cat. 20+21): 2545.
- Can players be coached to play like the young Anand?

8. Human Skill Increasing Over Time?

- In 1970s, two 2700+ players: Fischer and Karpov. In 1981: none!
- Sep. 2012 list, 44 2700+ players. Rating Inflation?
- My results:
- 1976-1979 vs. 1991-1994 vs. 2006-2009: Little or no difference in IPR at all rating levels.
- 2600 level, 1971-present:
 - Can argue 30-pt. IPR difference between 1980's and now.
 - Difference measured at 16 pts. using 4-yr. moving averages, 10-year blocks.
 - Explainable by faster time controls, no adjournments?
- Single-PV AE stat in all Cat 11+ RRs since 1971 hints at mild deflation.
- Moves 17-32 show similar results. Hence not just due to better opening prep?
- Increasing skill consistent with Olympics results.

9. Are We Reliable?

- One blunder in 200 moves can "ruin" a tournament.
- But we were reliable 99.5% of the time.
- Exponential g(s, c) curve fits better than inverse-poly ones.
- Contrary to my "Black Swan" expectation.
- But we are even more reliable if we can use a computer...

うして ふゆう ふほう ふほう ふしつ

• (show PAL/CSS Freestyle stats if time).

10. Not Just About Chess?

- Only chess aspect of entire work is the evaluations coming from chess engines.
- No special chess-knowledge, no "style" (except as reflected in fitted s, c, d).
- General Problem: Converting Utilities Into Probabilities for colordarkredfallible agents.
- Framework applies to multiple-choice tests, now prevalent in online courses.
- Alternative to current psychometric measures?
- Issue: Idea of "best move" at chess is the same for all human players, but "best move" in sports may depend on natural talent.

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.

うして ふゆう ふほう ふほう ふしつ

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.

うして ふゆう ふほう ふほう ふしつ

• Detect and deter cheating too—generally.

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.

うして ふゆう ふほう ふほう ふしつ

- Detect and deter cheating too—generally.
- Learn more about human decision making.

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.

うして ふゆう ふほう ふほう ふしつ

- Detect and deter cheating too—generally.
- Learn more about human decision making.
- Thus the Turing Tour comes back to the human mind.
Conclusions

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn't (and is) cheating.

うして ふゆう ふほう ふほう ふしつ

- Detect and deter cheating too—generally.
- Learn more about human decision making.
- Thus the Turing Tour comes back to the human mind.
- Thank you very much for the invitation.