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Deep Analysis of Human Decision Making

A Rich and Deep Waterway, Albeit Narrow

1 Human decision-making in one area: Chess.

2 In real not simulated competition.

3 Supports studying depth and biases in thinking.

4 Large-scale data �nds robust patterns.

5 Model includes no details of chess other than move values supplied
by computer analysis. Hence transferable at least to other games of
strategy.

6 Isomorphic to multiple-choice testing with partial credits. Metrics
such as �Intrinsic Performance Rating� (IPR) connect to standard
item-response theory measures.
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A Predictive Analytic Model

1 Domain: A set of decision-making situations t .
Chess game turns

2 Inputs: Values vi for every option at turn t .
Computer values of moves mi

3 Parameters: s ; c; : : : denoting skills and levels.
Trained correspondence to chess Elo rating E

4 De�nes fallible agent P(s ; c; : : : ).

5 Main Output: Probabilities pt ;i for P(s ; c; : : : ) to select option i at
time t .

6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected con�dence intervals for those statistics.
�Intrinsic Performance Ratings� (IPR's).
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Main Principle and Schematic Equation

The probability Pr(mi j s ; c; : : : ) depends on the value of move mi in

relation to the values of other moves.

Too Simple:

Pr(mi j s ; c; : : : ) � g(s ; c; val(mi )):

Doesn't take values of the other moves into account.

Cogent answer�let m1 be the engine's top-valued move:

Pr(mi )

Pr(m1)
� g(s ; c; val(m1)� val(mi )):

That and
P

i Pr(mi ) = 1 minimally give the Main Principle.

Much Better answer (best?): Use log(1=Pr(m1))
log(1=Pr(mi ))

on LHS.

Needs Multi-PV analysis�already beyond Guid-Bratko work.

Single-PV data on millions of moves shows other improvements.
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The Data

Over 2 million moves of 50-PV data: > 120 GB.

Over 30 million moves of Single-PV data: > 30 GB
= 75 million pages of text data at 2k/page.
All taken on two quad-core home-style PC's. Is this �Big Data�?
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�Big-Data� Aspects

1 Synthesis of two di�erent kinds of data.

Single-PV data acts as scienti�c control for Multi-PV data.
Covers almost entire history of chess.
Shows large-scale regularities.

2 Model design decisions based on large data.

Logarithmic scaling law
�58%-42% Law� for probability of equal-value moves
Choice of �tting methods

3 Scienti�c discovery beyond original intent of model.

Human tendencies (di�erent from machine tendencies?)
Follow simple laws...
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Better, and Best?

Need a general function f and a function �(i) giving a scaled-down
di�erence in value from m1 to mi .

f (PrE (mi ))

f (PrE (m1))
= g(E ; �(i)):

Implemented with f = log and log-log scaling, as guided by the data.

Best model? Let weights wd at di�erent engine depths d re�ect a
player's depth of calculation. Apply above equation to evals at each
depth d to de�ne PrE (mi ; d). Then de�ne:

Pr
E

(mi ) =
X
d

wd � Pr
E

(mi ; d):

This accounts for moves that swing in value and idea that weaker
players prefer weaker moves. In Process Now.
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Why Desire Probabilities?

Allows to predict the # N of agreements with any sequence of
moves m t

�
over game turns t , not just computer's �rst choices:

N =
X
t

Pr
E

(m t

�
):

and it gives con�dence intervals for N .

Also predicts aggregate error (AE, scaled) by

e =
X
t

X
i

�(i) � Pr
E

(m t

i ):

Comparing e with the actual error e 0 by a player over the same
turns leads to a �virtual Elo rating� E 0 for those moves.

IPR � �Intrinsic Performance Rating.�
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The Turing Pandol�ni?

Bruce Pandol�ni � played by Ben Kingsley in �Searching for
Bobby Fischer.�

Now does �Solitaire Chess� for Chess Life magazine:

Reader covers gamescore, tries to guess each move by one side.
E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for
premature 15.Ng5.
Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800
player, etc.

Is it scienti�c?

With my formulas, yes�using your games in real tournaments.

Goal is natural scoring and distribution evaluation for
multiple-choice tests, especially with partial-credit answers.
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Judgment By Your Peers

Training Sets: Multi-PV analyze games with both players rated:

2690�2710, in 2006�2009 and 1991�1994

2590�2610, "" "", extended to 2580�2620 in 1976�1979

2490�2510, all three times

2390�2410, (lower sets have over 20,000 moves)

2290�2310, (all sets elim. moves 1�8, moves in repetitions,

2190�2210, (and moves with one side > 3 pawns ahead)

Down to 1590�1610 for years 2006�2009 only.

2600-level set done for all years since 1971.
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Training the Parameters

Formula g(E ; �) is really

g(s ; c; �) =
1

ex
c where x =

�

s
:

s for Sensitivity: smaller s � better ability to sense small
di�erences in value.

c for Consistency: higher c reduces probability of high-� moves
(i.e., blunders).

Full model (in progress) adds parameter d for depth of calculation.

Needs large-scale approximation to handle 15�20x data increase and
tuning conversions between di�erent chess engines (all in progress).
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Fitting and Fighting Parameters

For each Elo E training set, �nd (s ; c) giving best �t.

Can use many di�erent �tting methods. . .

Can compare methods. . .
Whole separate topic. . .

Max-Likelihood does poorly.

Often s and c trade o� markedly, but E 0 � e(s ; c) condenses into
one Elo.

Strong linear �t�suggests Elo mainly in�uenced by error.
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Some IPRs�Historical and Current

Magnus Carlsen:

2983 at London 2011 (Kramnik 2857, Aronian 2838, Nakamura only
2452).
2855 at Biel 2012.

Bobby Fischer:

2921 over all 3 Candidates' Matches in 1971.
2650 vs. Spassky in 1972 (Spassky 2643).
2724 vs. Spassky in 1992 (Spassky 2659).

Hou Yifan: 2971 vs. Humpy Honeru (2683) in Nov. 2011.

Paul Morphy: 2344 in 59 most impt. games, 2124 vs. Anderssen.

Capablanca: 2936 at New York 1927.

Alekhine: 2812 in 1927 WC match over Capa (2730).
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Results and Implications for Human Thinking

1 Sensitivity to small changes in the value of moves.

2 Degrees of sensitivity to changes in value at di�erent depths of
search.

3 Tangibly greater error in positions where one side has even a slight
advantage.

4 Natural variability in performance, which we argue is intrinsic and
unavoidable.

5 Correspondences with results in item-response theory and
psychometric test scoring.

6 Quality of human-computer teams compared to computers or
humans playing separately.
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1. Sensitivity�Still the Slime Mold Story?

Conditioned on one of the top two moves being played, if their values
(Rybka 3, depth 13) di�er by...:

1 0.01, the higher move is played 53�55% of the time.

2 0.02, the higher move is played 58�59% of the time.

3 0.03, the higher move is played 60�61% of the time.

4 0.00, the higher move is played 57-59% of the time.

Last is not a typo�see �When is a Law Natural?�

Stock�sh versions round evals to nearest 0.04 or 0.02.

Relation to slime molds and other �semi-Brownian� systems?
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2. Depth-of-Phenomenon E�ects (ongoing)

Tied-top law extends to 3, 4, tied moves in similar 58% ratio of
choice to the next.

Lead moves tend to have been higher at lower depths. Does this
explain it?

How less likely to be found is a move whose value �Swings Up�
only at high depth, compared to one having the same value at all
depths?

How more likely to be played is a �Swing Down� move�a trap?

Goal is to develop a Challenge Quotient based on how much
trappy play a player sets for the opponent�and emself.

Separates performance and prediction in the model.
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How less likely to be found is a move whose value �Swings Up�
only at high depth, compared to one having the same value at all
depths?

How more likely to be played is a �Swing Down� move�a trap?

Goal is to develop a Challenge Quotient based on how much
trappy play a player sets for the opponent�and emself.

Separates performance and prediction in the model.
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3. The Imbalance-Error Phenomenon

[show data]

The metric correction
Z

e

e��
d� with d� =

c

c + x
dx

balances evals well for Rybka, with c very near 1.0.

A mix of three factors?

(A) Human perception of value as proportional to stakes, per
Ariely-Kahneman-Tversky.

(B) Rationally playing less catenaccio when marginal impact of
evaluation on win probability is minimal. (Leo Stedile, working
under Mark Braverman)

(C) Greater volatility intrinsic to chess as game progresses.
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A. Perception Proportional to Bene�t

How strongly do you perceive a di�erence of 10 dollars, if:

You are buying lunch and a drink in a pub.

You are buying dinner in a restaurant.

You are buying an I-pad.

You are buying a carr.

For the car, maybe you don't care. In other cases, would you be equally
thrifty?

If you spend the way you play chess, you care maybe

4� as much in the pub!



Deep Analysis of Human Decision Making

B. Rational Risk-Taking

Expectation curves according to position evaluation v are
sigmoidal, indeed close to a hyperbolic tangent

E =
eav � e�av

eav + e�av
:

Here a gives pretty steep slope near 0, a � 4:5 for Rybka and
Houdini.

How to test apart from cause A?

Expect reval-error curve to shift in games between unequally-rated
players.

Will need many such games , if not prevented by cause C.
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C. Similar Phenomenon in Computer-Played Games

[show data from new �Computer and Freestyle Study.�]

[Segue to item 6. in outline.]
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4. Is Savielly Tartakover Right?

The winner is the player who makes the next-to-last

blunder.

We like to think chess is about Deep Strategy.

This helps, but is it statistically dominated by blunders?

Recent Examples:

USA-Russia and USA-China matches at 2012 Olympiad.
Gelfand-Anand 2012 Rapid playo�.

My Average Error (AE) stat shows a tight linear �t to Elo rating.

Full investigation will need ANOVA (analysis of variance).
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5. Variance in Performance, and Motivation?

Let's say I am 2400 facing 2600 player.

My expectation is 25%. Maybe:

60% win for stronger player.
30% draw.
10% chance of win for me.

In 12-game match, maybe under 1% chance of winning if we are
random.

But my model's intrinsic error bars are often 200 points wide over
9�12 games.

Suggests to take event not game as the unit.

How can we be motivated for events?
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7. Procrastination...

(Show graph of AE climbing to Move 40, then falling.)

Aug. 2012 New In Chess, Kramnik-Grischuk, Moscow Tal Mem.

King's Indian: 12. Bf3!? then 13. Bg2 N (novelty)
�Grischuk was already in some time pressure.�

IPR for Astana World Blitz (cat. 19, 2715) 2135.

IPR for Amber 2010+2011 (cat. 20+21): 2545.

Can players be coached to play like the young Anand?
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8. Human Skill Increasing Over Time?

In 1970s, two 2700+ players: Fischer and Karpov. In 1981: none!

Sep. 2012 list, 44 2700+ players. Rating In�ation?

My results:

1976�1979 vs. 1991�1994 vs. 2006�2009: Little or no di�erence in
IPR at all rating levels.
2600 level, 1971�present:

Can argue 30-pt. IPR di�erence between 1980's and now.
Di�erence measured at 16 pts. using 4-yr. moving averages, 10-year
blocks.
Explainable by faster time controls, no adjournments?

Single-PV AE stat in all Cat 11+ RRs since 1971 hints at mild
de�ation.

Moves 17�32 show similar results. Hence not just due to better
opening prep?

Increasing skill consistent with Olympics results.
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9. Are We Reliable?

One blunder in 200 moves can �ruin� a tournament.

But we were reliable 99.5% of the time.

Exponential g(s ; c) curve �ts better than inverse-poly ones.

Contrary to my �Black Swan� expectation.

But we are even more reliable if we can use a computer...

(show PAL/CSS Freestyle stats if time).
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10. Not Just About Chess?

Only chess aspect of entire work is the evaluations coming from

chess engines.

No special chess-knowledge, no �style� (except as re�ected in �tted
s ; c; d).

General Problem: Converting Utilities Into Probabilities for
colordarkredfallible agents.

Framework applies to multiple-choice tests, now prevalent in online
courses.

Alternative to current psychometric measures?

Issue: Idea of �best move� at chess is the same for all human
players, but �best move� in sports may depend on natural talent.
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Conclusions

Lots more potential for research and connections...

Can use support�infrastructure, student helpers...

Run data with other engines Houdini, Stock�sh, Komodo....
Run more tournaments.
Run to higher depths�how much does that matter?

Spread word about general-scienti�c aspects, including public
outreach over what isn't (and is) cheating.

Detect and deter cheating too�generally.

Learn more about human decision making.

Thus the Turing Tour comes back to the human mind.

Thank you very much for the invitation.
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