Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Kenneth W. Regan University at Buffalo (SUNY)

University of Calcutta, 3 August 2016

Two Cardinal Directions

(1) Breadth-First Search: Time over Space.
(2) Depth-First Search: Space over Time.

Two Cardinal Directions

(1) Breadth-First Search: Time over Space.
(2) Depth-First Search: Space over Time.

- Models of computation are commonly introduced as "machines" or "grammars" but we will emphasize graphs.
- Graph nodes are snapshots I, J, K, \ldots of the memory map.

Two Cardinal Directions

(1) Breadth-First Search: Time over Space.
(2) Depth-First Search: Space over Time.

- Models of computation are commonly introduced as "machines" or "grammars" but we will emphasize graphs.
- Graph nodes are snapshots I, J, K, \ldots of the memory map.
- Called configurations or instantaneous descriptions (IDs).

Two Cardinal Directions

(1) Breadth-First Search: Time over Space.
(2) Depth-First Search: Space over Time.

- Models of computation are commonly introduced as "machines" or "grammars" but we will emphasize graphs.
- Graph nodes are snapshots I, J, K, \ldots of the memory map.
- Called configurations or instantaneous descriptions (IDs).
- $I \vdash J$ means " I can go to J in one step." Directed edge.

Two Cardinal Directions

(1) Breadth-First Search: Time over Space.
(2) Depth-First Search: Space over Time.

- Models of computation are commonly introduced as "machines" or "grammars" but we will emphasize graphs.
- Graph nodes are snapshots I, J, K, \ldots of the memory map.
- Called configurations or instantaneous descriptions (IDs).
- $I \vdash J$ means " I can go to J in one step." Directed edge.
- Desired that the string representations of I and J have edit distance at most 1 or at most 2.

Turing Machines

A Turing Machine (TM) is a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, B, s, F)$ where:

Turing Machines

A Turing Machine (TM) is a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, B, s, F)$ where:

- Q is a finite set of states.

Turing Machines

A Turing Machine (TM) is a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, B, s, F)$ where:

- Q is a finite set of states.
- s, a member of Q, is the start state.

Turing Machines

A Turing Machine (TM) is a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, B, s, F)$ where:

- Q is a finite set of states.
- s, a member of Q, is the start state.
- F, a subset of Q, is the set of desired final states, also called accepting states.

Turing Machines

A Turing Machine (TM) is a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, B, s, F)$ where:

- Q is a finite set of states.
- s, a member of Q, is the start state.
- F, a subset of Q, is the set of desired final states, also called accepting states.
- Σ is the input alphabet; often $\Sigma=\{0,1\}$.

Turing Machines

A Turing Machine (TM) is a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, B, s, F)$ where:

- Q is a finite set of states.
- s, a member of Q, is the start state.
- F, a subset of Q, is the set of desired final states, also called accepting states.
- Σ is the input alphabet; often $\Sigma=\{0,1\}$.
- Γ is the work alphabet and contains Σ and the blank B.

Turing Machines

A Turing Machine (TM) is a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, B, s, F)$ where:

- Q is a finite set of states.
- s, a member of Q, is the start state.
- F, a subset of Q, is the set of desired final states, also called accepting states.
- Σ is the input alphabet; often $\Sigma=\{0,1\}$.
- Γ is the work alphabet and contains Σ and the blank B.
- δ is a finite set of instructions (aka. "tuples" or "transitions") of the form

$$
\tau=(p, c, d, D, q)
$$

where $p, q \in Q, c, d \in \Gamma$, and the "direction' D is either Left, Right, or S tay.
A multitape Turing machine makes $\delta \subset Q \times \Gamma^{k} \times \Gamma^{k} \times\{L, R, S\}^{k} \times Q$ instead for some $k>1$. [Show "O-O" notation and " $3 n+1$ " example.]

DTM and NTM and Halting

- The definition allows two different instructions $(p, c, d, D, q),\left(p, c, d^{\prime}, D^{\prime}, q^{\prime}\right)$ to begin with the same p ad c (or k-tuple of chars).

DTM and NTM and Halting

- The definition allows two different instructions $(p, c, d, D, q),\left(p, c, d^{\prime}, D^{\prime}, q^{\prime}\right)$ to begin with the same p ad c (or k-tuple of chars).
- When that happens, M has nondeterminism at state p reading c. Any such case makes it an NTM for nondeterministic Turing machine.

DTM and NTM and Halting

- The definition allows two different instructions $(p, c, d, D, q),\left(p, c, d^{\prime}, D^{\prime}, q^{\prime}\right)$ to begin with the same p ad c (or k-tuple of chars).
- When that happens, M has nondeterminism at state p reading c. Any such case makes it an NTM for nondeterministic Turing machine.
- If it never happens, then M is deterministic and is called a DTM.

DTM and NTM and Halting

- The definition allows two different instructions $(p, c, d, D, q),\left(p, c, d^{\prime}, D^{\prime}, q^{\prime}\right)$ to begin with the same p ad c (or k-tuple of chars).
- When that happens, M has nondeterminism at state p reading c. Any such case makes it an NTM for nondeterministic Turing machine.
- If it never happens, then M is deterministic and is called a DTM.
- If there is no instruction for a state p and $\operatorname{char}(\mathrm{s}) c$, then if and when M reaches state p where it is reading c, M halts. Then M accepts if and only if $p \in F$.

DTM and NTM and Halting

- The definition allows two different instructions $(p, c, d, D, q),\left(p, c, d^{\prime}, D^{\prime}, q^{\prime}\right)$ to begin with the same p ad c (or k-tuple of chars).
- When that happens, M has nondeterminism at state p reading c. Any such case makes it an NTM for nondeterministic Turing machine.
- If it never happens, then M is deterministic and is called a DTM.
- If there is no instruction for a state p and $\operatorname{char}(\mathrm{s}) c$, then if and when M reaches state p where it is reading c, M halts. Then M accepts if and only if $p \in F$.
- On any input string x over the alphabet Σ (notation: $x \in \Sigma^{*}$-the * means "zero or more" chars so the empty string λ is included), M starts with x on its first tape and any other tapes completely blank, and its head scans the first char x_{1} of x.

DTM and NTM and Halting

- The definition allows two different instructions $(p, c, d, D, q),\left(p, c, d^{\prime}, D^{\prime}, q^{\prime}\right)$ to begin with the same p ad c (or k-tuple of chars).
- When that happens, M has nondeterminism at state p reading c. Any such case makes it an NTM for nondeterministic Turing machine.
- If it never happens, then M is deterministic and is called a DTM.
- If there is no instruction for a state p and $\operatorname{char}(\mathrm{s}) c$, then if and when M reaches state p where it is reading c, M halts. Then M accepts if and only if $p \in F$.
- On any input string x over the alphabet Σ (notation: $x \in \Sigma^{*}$-the * means "zero or more" chars so the empty string λ is included), M starts with x on its first tape and any other tapes completely blank, and its head scans the first char x_{1} of x.
- If $x=\lambda$ then all tapes are blank and the head scans B.

Configurations

- Configurations of a 1-tape TM can have the form

$$
I=u\binom{q}{c} v
$$

where q is the current stats, c the character scanned, $u \in \Gamma^{*}$ stretches out to the leftmost nonblank cell, and $v \in \Gamma^{*}$ stretches out to the rightmost nonblank cell.

Configurations

- Configurations of a 1-tape TM can have the form

$$
I=u\binom{q}{c} v
$$

where q is the current stats, c the character scanned, $u \in \Gamma^{*}$ stretches out to the leftmost nonblank cell, and $v \in \Gamma^{*}$ stretches out to the rightmost nonblank cell.

- Possibly $u, v=\lambda$ and possibly $c=B$. All cells not included in $u c v$ are blank.

Configurations

- Configurations of a 1-tape TM can have the form

$$
I=u\binom{q}{c} v
$$

where q is the current stats, c the character scanned, $u \in \Gamma^{*}$ stretches out to the leftmost nonblank cell, and $v \in \Gamma^{*}$ stretches out to the rightmost nonblank cell.

- Possibly $u, v=\lambda$ and possibly $c=B$. All cells not included in $u c v$ are blank.
- Initial ID on an input $x \in \Sigma^{n}$ is

$$
I_{0}(x)=\binom{s}{x_{1}} x_{2} \cdots x_{n} ; \quad I_{0}(\lambda)=\binom{s}{B} .
$$

Configurations

- Configurations of a 1-tape TM can have the form

$$
I=u\binom{q}{c} v
$$

where q is the current stats, c the character scanned, $u \in \Gamma^{*}$ stretches out to the leftmost nonblank cell, and $v \in \Gamma^{*}$ stretches out to the rightmost nonblank cell.

- Possibly $u, v=\lambda$ and possibly $c=B$. All cells not included in $u c v$ are blank.
- Initial ID on an input $x \in \Sigma^{n}$ is

$$
I_{0}(x)=\binom{s}{x_{1}} x_{2} \cdots x_{n} ; \quad I_{0}(\lambda)=\binom{s}{B} .
$$

- Note this is a string over the "ID alphabet" $\Gamma^{\prime}=\Gamma \cup(Q \times \Gamma)$.

Configurations

- Configurations of a 1-tape TM can have the form

$$
I=u\binom{q}{c} v
$$

where q is the current stats, c the character scanned, $u \in \Gamma^{*}$ stretches out to the leftmost nonblank cell, and $v \in \Gamma^{*}$ stretches out to the rightmost nonblank cell.

- Possibly $u, v=\lambda$ and possibly $c=B$. All cells not included in $u c v$ are blank.
- Initial ID on an input $x \in \Sigma^{n}$ is

$$
I_{0}(x)=\binom{s}{x_{1}} x_{2} \cdots x_{n} ; \quad I_{0}(\lambda)=\binom{s}{B} .
$$

- Note this is a string over the "ID alphabet" $\Gamma^{\prime}=\Gamma \cup(Q \times \Gamma)$.
- For multitape TMs we get k-tuples of strings, each indicating the current location of the head on its tape, but we treat the whole thing as one memory map.

The Computation Graph

- Write $I \vdash_{M} J$ if there is an instruction $\tau=(p, c, d, D, q)$ such that $I=u\binom{p}{c} v$ and carrying out the action of τ on I leaves J.

The Computation Graph

- Write $I \vdash_{M} J$ if there is an instruction $\tau=(p, c, d, D, q)$ such that $I=u\binom{p}{c} v$ and carrying out the action of τ on I leaves J.
- (A precise formal definition is a self-study exercise; the "edge cases" are tricky when I involves expanding out to a new cell or contracting by blanking out a cell on the end.)

The Computation Graph

- Write $I \vdash_{M} J$ if there is an instruction $\tau=(p, c, d, D, q)$ such that $I=u\binom{p}{c} v$ and carrying out the action of τ on I leaves J.
- (A precise formal definition is a self-study exercise; the "edge cases" are tricky when I involves expanding out to a new cell or contracting by blanking out a cell on the end.)
- Write $I \vdash_{M}^{0} I$ for all I, and for $k \geq 2$, define $I \vdash_{M}^{k} J$ if there are IDs I_{1}, \ldots, I_{k-1} such that

$$
I \vdash_{M} I_{1} \vdash_{M} I_{2} \vdash_{M} \cdots \vdash_{M} I_{k-1} \vdash_{M} J
$$

This just expresses that there is a path from node I to node J in the directed graph we've defined.

The Computation Graph

- Write $I \vdash_{M} J$ if there is an instruction $\tau=(p, c, d, D, q)$ such that $I=u\binom{p}{c} v$ and carrying out the action of τ on I leaves J.
- (A precise formal definition is a self-study exercise; the "edge cases" are tricky when I involves expanding out to a new cell or contracting by blanking out a cell on the end.)
- Write $I \vdash_{M}^{0} I$ for all I, and for $k \geq 2$, define $I \vdash_{M}^{k} J$ if there are IDs I_{1}, \ldots, I_{k-1} such that

$$
I \vdash_{M} I_{1} \vdash_{M} I_{2} \vdash_{M} \cdots \vdash_{M} I_{k-1} \vdash_{M} J
$$

This just expresses that there is a path from node I to node J in the directed graph we've defined.

- Then M accepts x if there is a path from $I_{0}(x)$ to some halting ID $J=u\binom{q}{c} v$ in which $q \in F$. And $L(M)=\left\{x \in \Sigma^{*}: M\right.$ accepts $\left.x\right\}$.

"Good Housekeeping" Normal Form

If M halts in state q reading c, we can always add a transition $\left(q, c, c, R, q^{\prime}\right)$ with a new state q^{\prime} that begins a routine doing the following:

- Move to the rightmost non-blank character (on each tape).

"Good Housekeeping" Normal Form

If M halts in state q reading c, we can always add a transition $\left(q, c, c, R, q^{\prime}\right)$ with a new state q^{\prime} that begins a routine doing the following:

- Move to the rightmost non-blank character (on each tape).
- Sweep right-to-left blanking out the entire tape(s).

"Good Housekeeping" Normal Form

If M halts in state q reading c, we can always add a transition $\left(q, c, c, R, q^{\prime}\right)$ with a new state q^{\prime} that begins a routine doing the following:

- Move to the rightmost non-blank character (on each tape).
- Sweep right-to-left blanking out the entire tape(s).
- If q was accepting, end in a unique accepting state q_{a} scanning a solitary 1.

"Good Housekeeping" Normal Form

If M halts in state q reading c, we can always add a transition $\left(q, c, c, R, q^{\prime}\right)$ with a new state q^{\prime} that begins a routine doing the following:

- Move to the rightmost non-blank character (on each tape).
- Sweep right-to-left blanking out the entire tape(s).
- If q was accepting, end in a unique accepting state q_{a} scanning a solitary 1. If not, end in the rejecting $I D I_{r}=\binom{q_{r}}{0}$ instead.

"Good Housekeeping" Normal Form

If M halts in state q reading c, we can always add a transition $\left(q, c, c, R, q^{\prime}\right)$ with a new state q^{\prime} that begins a routine doing the following:

- Move to the rightmost non-blank character (on each tape).
- Sweep right-to-left blanking out the entire tape(s).
- If q was accepting, end in a unique accepting state q_{a} scanning a solitary 1. If not, end in the rejecting $I D I_{r}=\binom{q_{r}}{0}$ instead.

Needed for this is that M never writes B except in ths final phase, so ucv never has an internal blank which could deceive this routine, and/or maintains endmarkers $\wedge, \$$ to bound the tape(s). We always assume this form-many texts including Sipser's define it.

"Good Housekeeping" Normal Form

If M halts in state q reading c, we can always add a transition $\left(q, c, c, R, q^{\prime}\right)$ with a new state q^{\prime} that begins a routine doing the following:

- Move to the rightmost non-blank character (on each tape).
- Sweep right-to-left blanking out the entire tape(s).
- If q was accepting, end in a unique accepting state q_{a} scanning a solitary 1. If not, end in the rejecting $I D I_{r}=\binom{q_{r}}{0}$ instead.

Needed for this is that M never writes B except in ths final phase, so ucv never has an internal blank which could deceive this routine, and/or maintains endmarkers $\wedge, \$$ to bound the tape(s). We always assume this form-many texts including Sipser's define it.

Thus the "ID Graph" G_{M} has a unique goal node $I_{f}=\binom{q_{a}}{1}$ and one other sink I_{r}.

Time and Space Consumed

- The time for an accepting computation $I_{0}(x) \vdash^{t}{ }_{M} I_{f}$ is just the number t of steps.

Time and Space Consumed

- The time for an accepting computation $I_{0}(x) \vdash^{t}{ }_{M} I_{f}$ is just the number t of steps.
- The space is the number of cells whose contents were changed to another non-blank char.

Time and Space Consumed

- The time for an accepting computation $I_{0}(x) \vdash^{t}{ }_{M} I_{f}$ is just the number t of steps.
- The space is the number of cells whose contents were changed to another non-blank char.
- So if the cells holding the input bits x_{1}, \ldots, x_{n} are left alone (until the final erasure) they are not charged against the space bound.

Time and Space Consumed

- The time for an accepting computation $I_{0}(x) \vdash^{t}{ }_{M} I_{f}$ is just the number t of steps.
- The space is the number of cells whose contents were changed to another non-blank char.
- So if the cells holding the input bits x_{1}, \ldots, x_{n} are left alone (until the final erasure) they are not charged against the space bound.
- Convenient to hold x on a separate read-only input tape.

Time and Space Consumed

- The time for an accepting computation $I_{0}(x) \vdash^{t}{ }_{M} I_{f}$ is just the number t of steps.
- The space is the number of cells whose contents were changed to another non-blank char.
- So if the cells holding the input bits x_{1}, \ldots, x_{n} are left alone (until the final erasure) they are not charged against the space bound.
- Convenient to hold x on a separate read-only input tape.
- A DTM runs within time $t(n)$ and space $s(n)$ if for all n and inputs $x \in \Sigma^{n}$, the unqiue computation halts within $t(n)$ steps having used space at most $s(n)$.

Time and Space Consumed

- The time for an accepting computation $I_{0}(x) \vdash^{t}{ }_{M} I_{f}$ is just the number t of steps.
- The space is the number of cells whose contents were changed to another non-blank char.
- So if the cells holding the input bits x_{1}, \ldots, x_{n} are left alone (until the final erasure) they are not charged against the space bound.
- Convenient to hold x on a separate read-only input tape.
- A DTM runs within time $t(n)$ and space $s(n)$ if for all n and inputs $x \in \Sigma^{n}$, the unqiue computation halts within $t(n)$ steps having used space at most $s(n)$.
- For NTMs we require this of all computation paths.

Time and Space Consumed

- The time for an accepting computation $I_{0}(x) \vdash_{M}^{t} I_{f}$ is just the number t of steps.
- The space is the number of cells whose contents were changed to another non-blank char.
- So if the cells holding the input bits x_{1}, \ldots, x_{n} are left alone (until the final erasure) they are not charged against the space bound.
- Convenient to hold x on a separate read-only input tape.
- A DTM runs within time $t(n)$ and space $s(n)$ if for all n and inputs $x \in \Sigma^{n}$, the unqiue computation halts within $t(n)$ steps having used space at most $s(n)$.
- For NTMs we require this of all computation paths.
- DTIME $[t(n)]=$ the class of languages $L(M)$ for DTMs that run within time $t(n)$.

Time and Space Consumed

- The time for an accepting computation $I_{0}(x) \vdash_{M}^{t} I_{f}$ is just the number t of steps.
- The space is the number of cells whose contents were changed to another non-blank char.
- So if the cells holding the input bits x_{1}, \ldots, x_{n} are left alone (until the final erasure) they are not charged against the space bound.
- Convenient to hold x on a separate read-only input tape.
- A DTM runs within time $t(n)$ and space $s(n)$ if for all n and inputs $x \in \Sigma^{n}$, the unqiue computation halts within $t(n)$ steps having used space at most $s(n)$.
- For NTMs we require this of all computation paths.
- $\operatorname{DTIME}[t(n)]=$ the class of languages $L(M)$ for DTMs that run within time $t(n)$.
- $\operatorname{DSPACE}[s(n)]$, $\operatorname{NTIME}[t(n)]$, and $\operatorname{NSPACE}[s(n)]$ are defined analogously. $\mathrm{P}=\cup_{k} \mathrm{DTIME}\left[n^{k}\right], \mathrm{NP}=\cup_{k}$ NTIME $\left[n^{k}\right]$.

The "Meanings" of Complexity Classes

Polynomial time can be stated in terms of "scalability":

There is a constant K such that whenever your data size doubles, the time to process it goes up by a factor of no more than K.

Well, if the time is $O\left(n^{2}\right)$, then $K=4$, if $O\left(n^{3}\right)$, then $K=8$, and so on. But still "linear scaling."
With $O(n)$ time we have $K=2$ strictly. With $O(n \log n)$ time, or even $O\left(n(\log n)^{k}\right)$ time for $k>1$, we have " $K=2^{+}$scaling." This is called quasilinear time and will be contrasted with quadratic time later.

For space we can define sub-linear bounds, even "space zero." Space zero is achieved by DTMs and NTMs that do one left-to-right scan and halt upon reading the B after the input in step $n+1$. They are called (deterministic and nondeterministic) finite automata and accept regular languages.

What Low Space Means

A theorem:

$$
\operatorname{REG}=\operatorname{DSPACE}[0]=\operatorname{NSPACE}[0] .
$$

This states that NFAs and DFAs are equivalent for defining regular languages.

Logarithmic space represents problems that we can decide with finitely many fingers into a read-only data structure. We define:

$$
\mathrm{L}=\operatorname{DSPACE}[O(\log n)], \quad \mathrm{NL}=\operatorname{NSPACE}[O(\log n)] .
$$

A typical problem in NL is, given a directed graph G and nodes s, f, is there a path from s to f in G ?
[Lecture transits to board showing logspace graph examples: TRIANGLE and GAP.]

Breadth-First Search for GAP

```
set<Node> FOUND = {s}
bool novel = true;
while (novel) {
    novel = false;
    foreach (u in FOUND) {
        foreach (v: u->v) {
            if (v not in FOUND) {
                                novel = true;
                                FOUND += {v };
        }
        }
        }
}
accept iff t in FOUND.
```


Better Version: Queue Found Nodes

```
set<Node> FOUND = {s}, POPPED = {};
bool novel = true;
while (novel) {
    novel = false;
    foreach (u in FOUND \ POPPED) {
    foreach (v: u—>v) {
        if (v not in FOUND) {
                novel = true;
                FOUND += {v };
            }
        }
    }
    POPPED += {u}; //Each edge polled at most once,
} //so time = O(|V|+|E|) = O(m)=O(n^2).
accept iff t in FOUND.
```

