
Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Kolkata Algorithms Short Course: I. The
Algorithm-Complexity Landscape

Kenneth W. Regan
University at Buffalo (SUNY)

University of Calcutta, 3 August 2016

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

1 Breadth-First Search: Time over Space.
2 Depth-First Search: Space over Time.

Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.
Graph nodes are snapshots I ;J ;K ; : : : of the memory map.
Called configurations or instantaneous descriptions (IDs).
I ` J means “I can go to J in one step.” Directed edge.
Desired that the string representations of I and J have edit
distance at most 1 or at most 2.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

1 Breadth-First Search: Time over Space.
2 Depth-First Search: Space over Time.

Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.
Graph nodes are snapshots I ;J ;K ; : : : of the memory map.

Called configurations or instantaneous descriptions (IDs).
I ` J means “I can go to J in one step.” Directed edge.
Desired that the string representations of I and J have edit
distance at most 1 or at most 2.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

1 Breadth-First Search: Time over Space.
2 Depth-First Search: Space over Time.

Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.
Graph nodes are snapshots I ;J ;K ; : : : of the memory map.
Called configurations or instantaneous descriptions (IDs).

I ` J means “I can go to J in one step.” Directed edge.
Desired that the string representations of I and J have edit
distance at most 1 or at most 2.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

1 Breadth-First Search: Time over Space.
2 Depth-First Search: Space over Time.

Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.
Graph nodes are snapshots I ;J ;K ; : : : of the memory map.
Called configurations or instantaneous descriptions (IDs).
I ` J means “I can go to J in one step.” Directed edge.

Desired that the string representations of I and J have edit
distance at most 1 or at most 2.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

1 Breadth-First Search: Time over Space.
2 Depth-First Search: Space over Time.

Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.
Graph nodes are snapshots I ;J ;K ; : : : of the memory map.
Called configurations or instantaneous descriptions (IDs).
I ` J means “I can go to J in one step.” Directed edge.
Desired that the string representations of I and J have edit
distance at most 1 or at most 2.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q ;�;�; �;B ; s ;F) where:

Q is a finite set of states.
s , a member of Q , is the start state.
F , a subset of Q , is the set of desired final states, also called
accepting states.
� is the input alphabet; often � = f0; 1g.
� is the work alphabet and contains � and the blank B .
� is a finite set of instructions (aka. “tuples” or “transitions”) of the
form

� = (p; c; d ;D ; q)

where p; q 2 Q , c; d 2 �, and the “direction’ D is either Left,
Right, or Stay.

A multitape Turing machine makes � � Q � �k � �k � fL;R;Sgk �Q
instead for some k > 1. [Show “O-O” notation and “3n+1” example.]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q ;�;�; �;B ; s ;F) where:
Q is a finite set of states.

s , a member of Q , is the start state.
F , a subset of Q , is the set of desired final states, also called
accepting states.
� is the input alphabet; often � = f0; 1g.
� is the work alphabet and contains � and the blank B .
� is a finite set of instructions (aka. “tuples” or “transitions”) of the
form

� = (p; c; d ;D ; q)

where p; q 2 Q , c; d 2 �, and the “direction’ D is either Left,
Right, or Stay.

A multitape Turing machine makes � � Q � �k � �k � fL;R;Sgk �Q
instead for some k > 1. [Show “O-O” notation and “3n+1” example.]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q ;�;�; �;B ; s ;F) where:
Q is a finite set of states.
s , a member of Q , is the start state.

F , a subset of Q , is the set of desired final states, also called
accepting states.
� is the input alphabet; often � = f0; 1g.
� is the work alphabet and contains � and the blank B .
� is a finite set of instructions (aka. “tuples” or “transitions”) of the
form

� = (p; c; d ;D ; q)

where p; q 2 Q , c; d 2 �, and the “direction’ D is either Left,
Right, or Stay.

A multitape Turing machine makes � � Q � �k � �k � fL;R;Sgk �Q
instead for some k > 1. [Show “O-O” notation and “3n+1” example.]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q ;�;�; �;B ; s ;F) where:
Q is a finite set of states.
s , a member of Q , is the start state.
F , a subset of Q , is the set of desired final states, also called
accepting states.

� is the input alphabet; often � = f0; 1g.
� is the work alphabet and contains � and the blank B .
� is a finite set of instructions (aka. “tuples” or “transitions”) of the
form

� = (p; c; d ;D ; q)

where p; q 2 Q , c; d 2 �, and the “direction’ D is either Left,
Right, or Stay.

A multitape Turing machine makes � � Q � �k � �k � fL;R;Sgk �Q
instead for some k > 1. [Show “O-O” notation and “3n+1” example.]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q ;�;�; �;B ; s ;F) where:
Q is a finite set of states.
s , a member of Q , is the start state.
F , a subset of Q , is the set of desired final states, also called
accepting states.
� is the input alphabet; often � = f0; 1g.

� is the work alphabet and contains � and the blank B .
� is a finite set of instructions (aka. “tuples” or “transitions”) of the
form

� = (p; c; d ;D ; q)

where p; q 2 Q , c; d 2 �, and the “direction’ D is either Left,
Right, or Stay.

A multitape Turing machine makes � � Q � �k � �k � fL;R;Sgk �Q
instead for some k > 1. [Show “O-O” notation and “3n+1” example.]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q ;�;�; �;B ; s ;F) where:
Q is a finite set of states.
s , a member of Q , is the start state.
F , a subset of Q , is the set of desired final states, also called
accepting states.
� is the input alphabet; often � = f0; 1g.
� is the work alphabet and contains � and the blank B .

� is a finite set of instructions (aka. “tuples” or “transitions”) of the
form

� = (p; c; d ;D ; q)

where p; q 2 Q , c; d 2 �, and the “direction’ D is either Left,
Right, or Stay.

A multitape Turing machine makes � � Q � �k � �k � fL;R;Sgk �Q
instead for some k > 1. [Show “O-O” notation and “3n+1” example.]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q ;�;�; �;B ; s ;F) where:
Q is a finite set of states.
s , a member of Q , is the start state.
F , a subset of Q , is the set of desired final states, also called
accepting states.
� is the input alphabet; often � = f0; 1g.
� is the work alphabet and contains � and the blank B .
� is a finite set of instructions (aka. “tuples” or “transitions”) of the
form

� = (p; c; d ;D ; q)

where p; q 2 Q , c; d 2 �, and the “direction’ D is either Left,
Right, or Stay.

A multitape Turing machine makes � � Q � �k � �k � fL;R;Sgk �Q
instead for some k > 1. [Show “O-O” notation and “3n+1” example.]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

The definition allows two different instructions
(p; c; d ;D ; q); (p; c; d 0;D 0; q 0) to begin with the same p ad c (or
k -tuple of chars).

When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.
If it never happens, then M is deterministic and is called a DTM.
If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading c, M halts. Then M
accepts if and only if p 2 F .
On any input string x over the alphabet � (notation: x 2 ��—the
� means “zero or more” chars so the empty string � is included),
M starts with x on its first tape and any other tapes completely
blank, and its head scans the first char x1 of x .
If x = � then all tapes are blank and the head scans B .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

The definition allows two different instructions
(p; c; d ;D ; q); (p; c; d 0;D 0; q 0) to begin with the same p ad c (or
k -tuple of chars).
When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.

If it never happens, then M is deterministic and is called a DTM.
If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading c, M halts. Then M
accepts if and only if p 2 F .
On any input string x over the alphabet � (notation: x 2 ��—the
� means “zero or more” chars so the empty string � is included),
M starts with x on its first tape and any other tapes completely
blank, and its head scans the first char x1 of x .
If x = � then all tapes are blank and the head scans B .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

The definition allows two different instructions
(p; c; d ;D ; q); (p; c; d 0;D 0; q 0) to begin with the same p ad c (or
k -tuple of chars).
When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.
If it never happens, then M is deterministic and is called a DTM.

If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading c, M halts. Then M
accepts if and only if p 2 F .
On any input string x over the alphabet � (notation: x 2 ��—the
� means “zero or more” chars so the empty string � is included),
M starts with x on its first tape and any other tapes completely
blank, and its head scans the first char x1 of x .
If x = � then all tapes are blank and the head scans B .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

The definition allows two different instructions
(p; c; d ;D ; q); (p; c; d 0;D 0; q 0) to begin with the same p ad c (or
k -tuple of chars).
When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.
If it never happens, then M is deterministic and is called a DTM.
If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading c, M halts. Then M
accepts if and only if p 2 F .

On any input string x over the alphabet � (notation: x 2 ��—the
� means “zero or more” chars so the empty string � is included),
M starts with x on its first tape and any other tapes completely
blank, and its head scans the first char x1 of x .
If x = � then all tapes are blank and the head scans B .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

The definition allows two different instructions
(p; c; d ;D ; q); (p; c; d 0;D 0; q 0) to begin with the same p ad c (or
k -tuple of chars).
When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.
If it never happens, then M is deterministic and is called a DTM.
If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading c, M halts. Then M
accepts if and only if p 2 F .
On any input string x over the alphabet � (notation: x 2 ��—the
� means “zero or more” chars so the empty string � is included),
M starts with x on its first tape and any other tapes completely
blank, and its head scans the first char x1 of x .

If x = � then all tapes are blank and the head scans B .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

The definition allows two different instructions
(p; c; d ;D ; q); (p; c; d 0;D 0; q 0) to begin with the same p ad c (or
k -tuple of chars).
When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.
If it never happens, then M is deterministic and is called a DTM.
If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading c, M halts. Then M
accepts if and only if p 2 F .
On any input string x over the alphabet � (notation: x 2 ��—the
� means “zero or more” chars so the empty string � is included),
M starts with x on its first tape and any other tapes completely
blank, and its head scans the first char x1 of x .
If x = � then all tapes are blank and the head scans B .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

Configurations of a 1-tape TM can have the form

I = u(qc)v

where q is the current stats, c the character scanned, u 2 ��

stretches out to the leftmost nonblank cell, and v 2 �� stretches
out to the rightmost nonblank cell.

Possibly u ; v = � and possibly c = B . All cells not included in ucv
are blank.
Initial ID on an input x 2 �n is

I0(x) = (sx1)x2 � � � xn ; I0(�) = (sB):

Note this is a string over the “ID alphabet” �0 = � [(Q � �).
For multitape TMs we get k -tuples of strings, each indicating the
current location of the head on its tape, but we treat the whole
thing as one memory map.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

Configurations of a 1-tape TM can have the form

I = u(qc)v

where q is the current stats, c the character scanned, u 2 ��

stretches out to the leftmost nonblank cell, and v 2 �� stretches
out to the rightmost nonblank cell.
Possibly u ; v = � and possibly c = B . All cells not included in ucv
are blank.

Initial ID on an input x 2 �n is

I0(x) = (sx1)x2 � � � xn ; I0(�) = (sB):

Note this is a string over the “ID alphabet” �0 = � [(Q � �).
For multitape TMs we get k -tuples of strings, each indicating the
current location of the head on its tape, but we treat the whole
thing as one memory map.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

Configurations of a 1-tape TM can have the form

I = u(qc)v

where q is the current stats, c the character scanned, u 2 ��

stretches out to the leftmost nonblank cell, and v 2 �� stretches
out to the rightmost nonblank cell.
Possibly u ; v = � and possibly c = B . All cells not included in ucv
are blank.
Initial ID on an input x 2 �n is

I0(x) = (sx1)x2 � � � xn ; I0(�) = (sB):

Note this is a string over the “ID alphabet” �0 = � [(Q � �).
For multitape TMs we get k -tuples of strings, each indicating the
current location of the head on its tape, but we treat the whole
thing as one memory map.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

Configurations of a 1-tape TM can have the form

I = u(qc)v

where q is the current stats, c the character scanned, u 2 ��

stretches out to the leftmost nonblank cell, and v 2 �� stretches
out to the rightmost nonblank cell.
Possibly u ; v = � and possibly c = B . All cells not included in ucv
are blank.
Initial ID on an input x 2 �n is

I0(x) = (sx1)x2 � � � xn ; I0(�) = (sB):

Note this is a string over the “ID alphabet” �0 = � [(Q � �).

For multitape TMs we get k -tuples of strings, each indicating the
current location of the head on its tape, but we treat the whole
thing as one memory map.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

Configurations of a 1-tape TM can have the form

I = u(qc)v

where q is the current stats, c the character scanned, u 2 ��

stretches out to the leftmost nonblank cell, and v 2 �� stretches
out to the rightmost nonblank cell.
Possibly u ; v = � and possibly c = B . All cells not included in ucv
are blank.
Initial ID on an input x 2 �n is

I0(x) = (sx1)x2 � � � xn ; I0(�) = (sB):

Note this is a string over the “ID alphabet” �0 = � [(Q � �).
For multitape TMs we get k -tuples of strings, each indicating the
current location of the head on its tape, but we treat the whole
thing as one memory map.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The Computation Graph

Write I `M J if there is an instruction � = (p; c; d ;D ; q) such that
I = u(pc)v and carrying out the action of � on I leaves J .

(A precise formal definition is a self-study exercise; the “edge cases”
are tricky when I involves expanding out to a new cell or
contracting by blanking out a cell on the end.)
Write I `0

M I for all I , and for k � 2, define I `kM J if there are
IDs I1; : : : ; Ik�1 such that

I `M I1 `M I2 `M � � � `M Ik�1 `M J :

This just expresses that there is a path from node I to node J in
the directed graph we’ve defined.
Then M accepts x if there is a path from I0(x) to some halting ID
J = u(qc)v in which q 2 F . And L(M) = fx 2 �� : M accepts xg.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The Computation Graph

Write I `M J if there is an instruction � = (p; c; d ;D ; q) such that
I = u(pc)v and carrying out the action of � on I leaves J .
(A precise formal definition is a self-study exercise; the “edge cases”
are tricky when I involves expanding out to a new cell or
contracting by blanking out a cell on the end.)

Write I `0
M I for all I , and for k � 2, define I `kM J if there are

IDs I1; : : : ; Ik�1 such that

I `M I1 `M I2 `M � � � `M Ik�1 `M J :

This just expresses that there is a path from node I to node J in
the directed graph we’ve defined.
Then M accepts x if there is a path from I0(x) to some halting ID
J = u(qc)v in which q 2 F . And L(M) = fx 2 �� : M accepts xg.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The Computation Graph

Write I `M J if there is an instruction � = (p; c; d ;D ; q) such that
I = u(pc)v and carrying out the action of � on I leaves J .
(A precise formal definition is a self-study exercise; the “edge cases”
are tricky when I involves expanding out to a new cell or
contracting by blanking out a cell on the end.)
Write I `0

M I for all I , and for k � 2, define I `kM J if there are
IDs I1; : : : ; Ik�1 such that

I `M I1 `M I2 `M � � � `M Ik�1 `M J :

This just expresses that there is a path from node I to node J in
the directed graph we’ve defined.

Then M accepts x if there is a path from I0(x) to some halting ID
J = u(qc)v in which q 2 F . And L(M) = fx 2 �� : M accepts xg.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The Computation Graph

Write I `M J if there is an instruction � = (p; c; d ;D ; q) such that
I = u(pc)v and carrying out the action of � on I leaves J .
(A precise formal definition is a self-study exercise; the “edge cases”
are tricky when I involves expanding out to a new cell or
contracting by blanking out a cell on the end.)
Write I `0

M I for all I , and for k � 2, define I `kM J if there are
IDs I1; : : : ; Ik�1 such that

I `M I1 `M I2 `M � � � `M Ik�1 `M J :

This just expresses that there is a path from node I to node J in
the directed graph we’ve defined.
Then M accepts x if there is a path from I0(x) to some halting ID
J = u(qc)v in which q 2 F . And L(M) = fx 2 �� : M accepts xg.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state q reading c, we can always add a transition
(q ; c; c;R; q 0) with a new state q 0 that begins a routine doing the
following:

Move to the rightmost non-blank character (on each tape).

Sweep right-to-left blanking out the entire tape(s).
If q was accepting, end in a unique accepting state qa scanning a
solitary 1. If not, end in the rejecting ID Ir = (

qr
0) instead.

Needed for this is that M never writes B except in ths final phase, so
ucv never has an internal blank which could deceive this routine,
and/or maintains endmarkers ^; $ to bound the tape(s). We always
assume this form—many texts including Sipser’s define it.

Thus the “ID Graph” GM has a unique goal node If = (
qa
1)

and one other sink Ir .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state q reading c, we can always add a transition
(q ; c; c;R; q 0) with a new state q 0 that begins a routine doing the
following:

Move to the rightmost non-blank character (on each tape).
Sweep right-to-left blanking out the entire tape(s).

If q was accepting, end in a unique accepting state qa scanning a
solitary 1. If not, end in the rejecting ID Ir = (

qr
0) instead.

Needed for this is that M never writes B except in ths final phase, so
ucv never has an internal blank which could deceive this routine,
and/or maintains endmarkers ^; $ to bound the tape(s). We always
assume this form—many texts including Sipser’s define it.

Thus the “ID Graph” GM has a unique goal node If = (
qa
1)

and one other sink Ir .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state q reading c, we can always add a transition
(q ; c; c;R; q 0) with a new state q 0 that begins a routine doing the
following:

Move to the rightmost non-blank character (on each tape).
Sweep right-to-left blanking out the entire tape(s).
If q was accepting, end in a unique accepting state qa scanning a
solitary 1.

If not, end in the rejecting ID Ir = (
qr
0) instead.

Needed for this is that M never writes B except in ths final phase, so
ucv never has an internal blank which could deceive this routine,
and/or maintains endmarkers ^; $ to bound the tape(s). We always
assume this form—many texts including Sipser’s define it.

Thus the “ID Graph” GM has a unique goal node If = (
qa
1)

and one other sink Ir .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state q reading c, we can always add a transition
(q ; c; c;R; q 0) with a new state q 0 that begins a routine doing the
following:

Move to the rightmost non-blank character (on each tape).
Sweep right-to-left blanking out the entire tape(s).
If q was accepting, end in a unique accepting state qa scanning a
solitary 1. If not, end in the rejecting ID Ir = (

qr
0) instead.

Needed for this is that M never writes B except in ths final phase, so
ucv never has an internal blank which could deceive this routine,
and/or maintains endmarkers ^; $ to bound the tape(s). We always
assume this form—many texts including Sipser’s define it.

Thus the “ID Graph” GM has a unique goal node If = (
qa
1)

and one other sink Ir .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state q reading c, we can always add a transition
(q ; c; c;R; q 0) with a new state q 0 that begins a routine doing the
following:

Move to the rightmost non-blank character (on each tape).
Sweep right-to-left blanking out the entire tape(s).
If q was accepting, end in a unique accepting state qa scanning a
solitary 1. If not, end in the rejecting ID Ir = (

qr
0) instead.

Needed for this is that M never writes B except in ths final phase, so
ucv never has an internal blank which could deceive this routine,
and/or maintains endmarkers ^; $ to bound the tape(s). We always
assume this form—many texts including Sipser’s define it.

Thus the “ID Graph” GM has a unique goal node If = (
qa
1)

and one other sink Ir .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state q reading c, we can always add a transition
(q ; c; c;R; q 0) with a new state q 0 that begins a routine doing the
following:

Move to the rightmost non-blank character (on each tape).
Sweep right-to-left blanking out the entire tape(s).
If q was accepting, end in a unique accepting state qa scanning a
solitary 1. If not, end in the rejecting ID Ir = (

qr
0) instead.

Needed for this is that M never writes B except in ths final phase, so
ucv never has an internal blank which could deceive this routine,
and/or maintains endmarkers ^; $ to bound the tape(s). We always
assume this form—many texts including Sipser’s define it.

Thus the “ID Graph” GM has a unique goal node If = (
qa
1)

and one other sink Ir .

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

The time for an accepting computation I0(x) `tM If is just the
number t of steps.

The space is the number of cells whose contents were changed to
another non-blank char.
So if the cells holding the input bits x1; : : : ; xn are left alone (until
the final erasure) they are not charged against the space bound.
Convenient to hold x on a separate read-only input tape.
A DTM runs within time t(n) and space s(n) if for all n and
inputs x 2 �n , the unqiue computation halts within t(n) steps
having used space at most s(n).
For NTMs we require this of all computation paths.
DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).
DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = [kDTIME[nk], NP = [kNTIME[nk].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

The time for an accepting computation I0(x) `tM If is just the
number t of steps.
The space is the number of cells whose contents were changed to
another non-blank char.

So if the cells holding the input bits x1; : : : ; xn are left alone (until
the final erasure) they are not charged against the space bound.
Convenient to hold x on a separate read-only input tape.
A DTM runs within time t(n) and space s(n) if for all n and
inputs x 2 �n , the unqiue computation halts within t(n) steps
having used space at most s(n).
For NTMs we require this of all computation paths.
DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).
DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = [kDTIME[nk], NP = [kNTIME[nk].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

The time for an accepting computation I0(x) `tM If is just the
number t of steps.
The space is the number of cells whose contents were changed to
another non-blank char.
So if the cells holding the input bits x1; : : : ; xn are left alone (until
the final erasure) they are not charged against the space bound.

Convenient to hold x on a separate read-only input tape.
A DTM runs within time t(n) and space s(n) if for all n and
inputs x 2 �n , the unqiue computation halts within t(n) steps
having used space at most s(n).
For NTMs we require this of all computation paths.
DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).
DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = [kDTIME[nk], NP = [kNTIME[nk].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

The time for an accepting computation I0(x) `tM If is just the
number t of steps.
The space is the number of cells whose contents were changed to
another non-blank char.
So if the cells holding the input bits x1; : : : ; xn are left alone (until
the final erasure) they are not charged against the space bound.
Convenient to hold x on a separate read-only input tape.

A DTM runs within time t(n) and space s(n) if for all n and
inputs x 2 �n , the unqiue computation halts within t(n) steps
having used space at most s(n).
For NTMs we require this of all computation paths.
DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).
DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = [kDTIME[nk], NP = [kNTIME[nk].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

The time for an accepting computation I0(x) `tM If is just the
number t of steps.
The space is the number of cells whose contents were changed to
another non-blank char.
So if the cells holding the input bits x1; : : : ; xn are left alone (until
the final erasure) they are not charged against the space bound.
Convenient to hold x on a separate read-only input tape.
A DTM runs within time t(n) and space s(n) if for all n and
inputs x 2 �n , the unqiue computation halts within t(n) steps
having used space at most s(n).

For NTMs we require this of all computation paths.
DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).
DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = [kDTIME[nk], NP = [kNTIME[nk].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

The time for an accepting computation I0(x) `tM If is just the
number t of steps.
The space is the number of cells whose contents were changed to
another non-blank char.
So if the cells holding the input bits x1; : : : ; xn are left alone (until
the final erasure) they are not charged against the space bound.
Convenient to hold x on a separate read-only input tape.
A DTM runs within time t(n) and space s(n) if for all n and
inputs x 2 �n , the unqiue computation halts within t(n) steps
having used space at most s(n).
For NTMs we require this of all computation paths.

DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).
DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = [kDTIME[nk], NP = [kNTIME[nk].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

The time for an accepting computation I0(x) `tM If is just the
number t of steps.
The space is the number of cells whose contents were changed to
another non-blank char.
So if the cells holding the input bits x1; : : : ; xn are left alone (until
the final erasure) they are not charged against the space bound.
Convenient to hold x on a separate read-only input tape.
A DTM runs within time t(n) and space s(n) if for all n and
inputs x 2 �n , the unqiue computation halts within t(n) steps
having used space at most s(n).
For NTMs we require this of all computation paths.
DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).

DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = [kDTIME[nk], NP = [kNTIME[nk].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

The time for an accepting computation I0(x) `tM If is just the
number t of steps.
The space is the number of cells whose contents were changed to
another non-blank char.
So if the cells holding the input bits x1; : : : ; xn are left alone (until
the final erasure) they are not charged against the space bound.
Convenient to hold x on a separate read-only input tape.
A DTM runs within time t(n) and space s(n) if for all n and
inputs x 2 �n , the unqiue computation halts within t(n) steps
having used space at most s(n).
For NTMs we require this of all computation paths.
DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).
DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = [kDTIME[nk], NP = [kNTIME[nk].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The “Meanings” of Complexity Classes

Polynomial time can be stated in terms of “scalability”:

There is a constant K such that whenever your data size doubles,
the time to process it goes up by a factor of no more than K .

Well, if the time is O(n2), then K = 4, if O(n3), then K = 8, and so
on. But still “linear scaling.”

With O(n) time we have K = 2 strictly. With O(n logn) time, or even
O(n(logn)k) time for k > 1, we have “K = 2+ scaling.” This is called
quasilinear time and will be contrasted with quadratic time later.

For space we can define sub-linear bounds, even “space zero.” Space
zero is achieved by DTMs and NTMs that do one left-to-right scan and
halt upon reading the B after the input in step n + 1. They are called
(deterministic and nondeterministic) finite automata and accept
regular languages.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

What Low Space Means

A theorem:
REG = DSPACE[0] = NSPACE[0]:

This states that NFAs and DFAs are equivalent for defining regular
languages.

Logarithmic space represents problems that we can decide with finitely
many fingers into a read-only data structure. We define:

L = DSPACE[O(logn)]; NL = NSPACE[O(logn)]:

A typical problem in NL is, given a directed graph G and nodes s ; f , is
there a path from s to f in G?

[Lecture transits to board showing logspace graph examples:
TRIANGLE and GAP.]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Breadth-First Search for GAP

set<Node> FOUND = {s }
bool novel = true ;
whi le (novel) {

novel = f a l s e ;
f o r each (u in FOUND) {

fo r each (v : u��>v) {
i f (v not in FOUND) {

novel = true ;
FOUND += {v } ;

}
}

}
}
accept i f f t in FOUND.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Better Version: Queue Found Nodes

set<Node> FOUND = {s } , POPPED = {} ;
bool novel = true ;
whi le (novel) {

novel = f a l s e ;
f o r each (u in FOUND \ POPPED) {

fo r each (v : u��>v) {
i f (v not in FOUND) {

novel = true ;
FOUND += {v } ;

}
}

}
POPPED += {u} ; //Each edge po l l ed at most once ,

} // so time = O(|V|+|E |) = O(m) = O(n^2) .
accept i f f t in FOUND.

