Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Kolkata Algorithms Short Course: I. The

Algorithm-Complexity Landscape

Kenneth W. Regan
University at Buffalo (SUNY)

University of Calcutta, 3 August 2016

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

© Breadth-First Search: Time over Space.
© Depth-First Search: Space over Time.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

© Breadth-First Search: Time over Space.
© Depth-First Search: Space over Time.

@ Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.

@ Graph nodes are snapshots I, J, K,... of the memory map.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

© Breadth-First Search: Time over Space.
© Depth-First Search: Space over Time.

@ Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.

@ Graph nodes are snapshots I, J, K,... of the memory map.

e Called configurations or instantaneous descriptions (IDs).

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

© Breadth-First Search: Time over Space.
© Depth-First Search: Space over Time.

@ Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.

@ Graph nodes are snapshots I, J, K,... of the memory map.
e Called configurations or instantaneous descriptions (IDs).

@ [+ J means “I can go to J in one step.” Directed edge.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Two Cardinal Directions

© Breadth-First Search: Time over Space.
© Depth-First Search: Space over Time.

@ Models of computation are commonly introduced as “machines” or
“grammars” but we will emphasize graphs.

Graph nodes are snapshots I, J, K, ... of the memory map.
Called configurations or instantaneous descriptions (IDs).

I+ J means “I can go to J in one step.” Directed edge.

Desired that the string representations of I and J have edit
distance at most 1 or at most 2.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q, %, T, 4, B, s, F') where:

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q, %, T, 4, B, s, F') where:
@ () is a finite set of states.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q, %, T, 4, B, s, F') where:
@ () is a finite set of states.

@ s, a member of @), is the start state.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q, %, T, 4, B, s, F') where:
@ () is a finite set of states.
@ s, a member of @), is the start state.

@ F', a subset of @, is the set of desired final states, also called
accepting states.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q, %, T, 4, B, s, F') where:
@ () is a finite set of states.
@ s, a member of @), is the start state.

@ F', a subset of @, is the set of desired final states, also called
accepting states.

e X is the wnput alphabet; often ¥ = {0, 1}.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q, %, T, 4, B, s, F') where:
@ () is a finite set of states.
@ s, a member of @), is the start state.

@ F', a subset of @, is the set of desired final states, also called
accepting states.

e X is the wnput alphabet; often ¥ = {0, 1}.
o I' is the work alphabet and contains ¥ and the blank B.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Turing Machines

A Turing Machine (TM) is a 7-tuple M = (Q, %, T, 4, B, s, F') where:
@ () is a finite set of states.
@ s, a member of @), is the start state.

@ F', a subset of @, is the set of desired final states, also called
accepting states.

e X is the wnput alphabet; often ¥ = {0, 1}.
o I' is the work alphabet and contains ¥ and the blank B.

@ ¢ is a finite set of instructions (aka. “tuples” or “transitions”) of the
form
7= (p,cd,D,q)
where p,q € Q, c,d €T, and the “direction’ D is either Left,
Right, or Stay.
A multitape Turing machine makes § C Q x I'* x I'* x {L, R, S}* x Q
instead for some k& > 1. [Show “O-O” notation and “3n+1” example.|

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

@ The definition allows two different instructions
(p,c,d,D,q),(p,c,d,D', q") to begin with the same p ad c (or
k-tuple of chars).

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

@ The definition allows two different instructions
(p,c,d,D,q),(p,c,d,D', q") to begin with the same p ad c (or
k-tuple of chars).

@ When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

@ The definition allows two different instructions
(p,c,d,D,q),(p,c,d,D', q") to begin with the same p ad c (or
k-tuple of chars).

@ When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.

o If it never happens, then M is deterministic and is called a DTM.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

@ The definition allows two different instructions
(p,c,d,D,q),(p,c,d,D', q") to begin with the same p ad c (or
k-tuple of chars).

@ When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.

o If it never happens, then M is deterministic and is called a DTM.

o If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading ¢, M halts. Then M
accepts if and only if p € F.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

@ The definition allows two different instructions
(p,c,d,D,q),(p,c,d,D', q") to begin with the same p ad c (or
k-tuple of chars).

@ When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.

o If it never happens, then M is deterministic and is called a DTM.

o If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading ¢, M halts. Then M
accepts if and only if p € F.

e On any input string z over the alphabet ¥ (notation: z € £*—the
* means “zero or more” chars so the empty string A is included),
M starts with z on its first tape and any other tapes completely
blank, and its head scans the first char z; of z.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

DTM and NTM and Halting

@ The definition allows two different instructions
(p,c,d,D,q),(p,c,d,D', q") to begin with the same p ad c (or
k-tuple of chars).

@ When that happens, M has nondeterminism at state p reading c.
Any such case makes it an NTM for nondeterministic Turing
machine.

o If it never happens, then M is deterministic and is called a DTM.

o If there is no instruction for a state p and char(s) c, then if and
when M reaches state p where it is reading ¢, M halts. Then M
accepts if and only if p € F.

e On any input string z over the alphabet ¥ (notation: z € £*—the
* means “zero or more” chars so the empty string A is included),
M starts with z on its first tape and any other tapes completely
blank, and its head scans the first char z; of z.

o If z = A then all tapes are blank and the head scans B.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

o Configurations of a 1-tape TM can have the form
I=u(@)v
where ¢ is the current stats, ¢ the character scanned, u € I'*

stretches out to the leftmost nonblank cell, and v € I'* stretches
out to the rightmost nonblank cell.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

o Configurations of a 1-tape TM can have the form
I= (v

where ¢ is the current stats, ¢ the character scanned, u € I'*
stretches out to the leftmost nonblank cell, and v € I'* stretches
out to the rightmost nonblank cell.

@ Possibly u, v = A and possibly ¢ = B. All cells not included in ucv
are blank.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

o Configurations of a 1-tape TM can have the form
I= (v

where ¢ is the current stats, ¢ the character scanned, u € I'*
stretches out to the leftmost nonblank cell, and v € I'* stretches
out to the rightmost nonblank cell.

@ Possibly u, v = A and possibly ¢ = B. All cells not included in ucv
are blank.

@ Initial ID on an input z € B™ is

b(z) = Gz 2a; D(A) = (B)-

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

o Configurations of a 1-tape TM can have the form
I= (v

where ¢ is the current stats, ¢ the character scanned, u € I'*
stretches out to the leftmost nonblank cell, and v € I'* stretches
out to the rightmost nonblank cell.

@ Possibly u, v = A and possibly ¢ = B. All cells not included in ucv
are blank.

@ Initial ID on an input z € B™ is

b(z) = Gz 2a; D(A) = (B)-

o Note this is a string over the “ID alphabet” I' =T U (Q x I').

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Configurations

o Configurations of a 1-tape TM can have the form
I= (v

where ¢ is the current stats, ¢ the character scanned, u € I'*
stretches out to the leftmost nonblank cell, and v € I'* stretches
out to the rightmost nonblank cell.

@ Possibly u, v = A and possibly ¢ = B. All cells not included in ucv
are blank.

@ Initial ID on an input z € B™ is

b(z) = Gz 2a; D(A) = (B)-

o Note this is a string over the “ID alphabet” I' =T U (Q x I').

o For multitape TMs we get k-tuples of strings, each indicating the
current location of the head on its tape, but we treat the whole
thing as one memory map.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The Computation Graph

@ Write I), J if there is an instruction 7 = (p, ¢, d, D, q) such that
I = u(?)v and carrying out the action of 7 on I leaves J.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The Computation Graph

@ Write I), J if there is an instruction 7 = (p, ¢, d, D, q) such that
I = u(?)v and carrying out the action of 7 on I leaves J.

@ (A precise formal definition is a self-study exercise; the “edge cases”
are tricky when I involves expanding out to a new cell or
contracting by blanking out a cell on the end.)

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The Computation Graph

@ Write I), J if there is an instruction 7 = (p, ¢, d, D, q) such that
I = u(?)v and carrying out the action of 7 on I leaves J.

4l

@ (A precise formal definition is a self-study exercise; the “edge cases’
are tricky when I involves expanding out to a new cell or
contracting by blanking out a cell on the end.)

e Write I 9, I for all I, and for k > 2, define I %, J if there are
IDs Iy,...,Ix_1 such that

Ity hby by by Igma g J.

This just expresses that there is a path from node I to node J in
the directed graph we've defined.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The Computation Graph

@ Write I), J if there is an instruction 7 = (p, ¢, d, D, q) such that
I = u(?)v and carrying out the action of 7 on I leaves J.

@ (A precise formal definition is a self-study exercise; the “edge cases”

are tricky when I involves expanding out to a new cell or
contracting by blanking out a cell on the end.)

e Write I 9, I for all I, and for k > 2, define I %, J if there are
IDs I,..., Ir_1 such that

Ity hby by by Igma g J.

This just expresses that there is a path from node I to node J in
the directed graph we've defined.

@ Then M accepts z if there is a path from Ip(z) to some halting ID
J = u(?)v in which ¢ € F. And L(M) = {z € &* : M accepts z}.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state ¢ reading ¢, we can always add a transition
(g,c,c, R,q') with a new state ¢’ that begins a routine doing the
following:

@ Move to the rightmost non-blank character (on each tape).

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state ¢ reading ¢, we can always add a transition
(g,c,c, R,q') with a new state ¢’ that begins a routine doing the
following:

@ Move to the rightmost non-blank character (on each tape).

@ Sweep right-to-left blanking out the entire tape(s).

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state ¢ reading ¢, we can always add a transition
(g,c,c, R,q') with a new state ¢’ that begins a routine doing the
following:
@ Move to the rightmost non-blank character (on each tape).
@ Sweep right-to-left blanking out the entire tape(s).
o If ¢ was accepting, end in a unique accepting state ¢, scanning a
solitary 1.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state ¢ reading ¢, we can always add a transition
(g,c,c, R,q') with a new state ¢’ that begins a routine doing the
following:
@ Move to the rightmost non-blank character (on each tape).
@ Sweep right-to-left blanking out the entire tape(s).
o If ¢ was accepting, end in a unique accepting state ¢, scanning a
solitary 1. If not, end in the rejecting ID I, = (') instead.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state ¢ reading ¢, we can always add a transition
(g,c,c, R,q') with a new state ¢’ that begins a routine doing the
following:
@ Move to the rightmost non-blank character (on each tape).
@ Sweep right-to-left blanking out the entire tape(s).
o If ¢ was accepting, end in a unique accepting state ¢, scanning a
solitary 1. If not, end in the rejecting ID I, = (') instead.

Needed for this is that M never writes B except in ths final phase, so
ucv never has an ¢nternal blank which could deceive this routine,
and/or maintains endmarkers A, $ to bound the tape(s). We always
assume this form—many texts including Sipser’s define it.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

“Good Housekeeping” Normal Form

If M halts in state ¢ reading ¢, we can always add a transition
(g,c,c, R,q') with a new state ¢’ that begins a routine doing the
following:
@ Move to the rightmost non-blank character (on each tape).
@ Sweep right-to-left blanking out the entire tape(s).
o If ¢ was accepting, end in a unique accepting state ¢, scanning a
solitary 1. If not, end in the rejecting ID I, = (') instead.

Needed for this is that M never writes B except in ths final phase, so
ucv never has an ¢nternal blank which could deceive this routine,
and/or maintains endmarkers A, $ to bound the tape(s). We always
assume this form—many texts including Sipser’s define it.

Thus the “ID Graph” Gy has a unique goal node Iy = ({*)
and one other sink I,.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

@ The time for an accepting computation Ip(z) I—?M I; is just the
number ¢ of steps.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

@ The time for an accepting computation Ip(z) I—?M I; is just the
number ¢ of steps.

@ The space is the number of cells whose contents were changed to
another non-blank char.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

@ The time for an accepting computation Ip(z) I—?M I; is just the
number ¢ of steps.

@ The space is the number of cells whose contents were changed to
another non-blank char.

@ So if the cells holding the input bits zy, ..., z, are left alone (until
the final erasure) they are not charged against the space bound.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

@ The time for an accepting computation Ip(z) I—?M I; is just the
number ¢ of steps.

@ The space is the number of cells whose contents were changed to
another non-blank char.

@ So if the cells holding the input bits zy, ..., z, are left alone (until
the final erasure) they are not charged against the space bound.

o Convenient to hold z on a separate read-only input tape.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

@ The time for an accepting computation Ip(z) I—?M I; is just the
number ¢ of steps.

@ The space is the number of cells whose contents were changed to
another non-blank char.

@ So if the cells holding the input bits zy, ..., z, are left alone (until
the final erasure) they are not charged against the space bound.

o Convenient to hold z on a separate read-only input tape.

o A DTM runs within time t(n) and space s(n) if for all n and
inputs z € ", the ungiue computation halts within ¢(n) steps
having used space at most s(n).

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

@ The time for an accepting computation Ip(z) I—?M I; is just the
number ¢ of steps.

@ The space is the number of cells whose contents were changed to
another non-blank char.

@ So if the cells holding the input bits zy, ..., z, are left alone (until
the final erasure) they are not charged against the space bound.

o Convenient to hold z on a separate read-only input tape.

o A DTM runs within time t(n) and space s(n) if for all n and
inputs z € ", the ungiue computation halts within ¢(n) steps
having used space at most s(n).

@ For NTMs we require this of all computation paths.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

@ The time for an accepting computation Ip(z) I—?M I; is just the
number ¢ of steps.

@ The space is the number of cells whose contents were changed to
another non-blank char.

@ So if the cells holding the input bits zy, ..., z, are left alone (until
the final erasure) they are not charged against the space bound.

o Convenient to hold z on a separate read-only input tape.

o A DTM runs within time t(n) and space s(n) if for all n and
inputs z € ", the ungiue computation halts within ¢(n) steps
having used space at most s(n).

@ For NTMs we require this of all computation paths.

e DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Time and Space Consumed

@ The time for an accepting computation Ip(z) I—?M I; is just the
number ¢ of steps.

@ The space is the number of cells whose contents were changed to
another non-blank char.

@ So if the cells holding the input bits zy, ..., z, are left alone (until
the final erasure) they are not charged against the space bound.

o Convenient to hold z on a separate read-only input tape.

o A DTM runs within time t(n) and space s(n) if for all n and
inputs z € ", the ungiue computation halts within ¢(n) steps
having used space at most s(n).

@ For NTMs we require this of all computation paths.

e DTIME[t(n)] = the class of languages L(M) for DTMs that run
within time t(n).

e DSPACE[s(n)], NTIME[t(n)], and NSPACE[s(n)] are defined
analogously. P = UyDTIME[n*], NP = UgNTIME[nF].

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

The “Meanings” of Complexity Classes

Polynomial time can be stated in terms of “scalability”

There is a constant K such that whenever your data size doubles,
the time to process it goes up by a factor of no more than X.

Well, if the time is O(n?), then K = 4, if O(n?), then K = 8, and so
on. But still “linear scaling.”

With O(n) time we have K = 2 strictly. With O(nlogn) time, or even
O(n(log n)*) time for k > 1, we have “K = 27 scaling.” This is called
quastlinear time and will be contrasted with quadratic time later.

For space we can define sub-linear bounds, even “space zero.” Space
zero is achieved by DTMs and NTMs that do one left-to-right scan and
halt upon reading the B after the input in step n + 1. They are called
(deterministic and nondeterministic) finite automata and accept
reqular languages.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

What Low Space Means

A theorem:
REG = DSPACE][0] = NSPACEJ[0].

This states that NFAs and DFAs are equivalent for defining regular
languages.

Logarithmac space represents problems that we can decide with finitely
many fingers into a read-only data structure. We define:

L = DSPACE[O(logn)], NL = NSPACE[O(log n)].

A typical problem in NL is, given a directed graph G and nodes s, f, is
there a path from s to f in G?

[Lecture transits to board showing logspace graph examples:
TRIANGLE and GAP\]

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Breadth-First Search for GAP

set <Node> FOUND = {s}
bool novel = true;
while (novel) {
novel = false;
foreach (u in FOUND) {
foreach (v: u—>v) {
if (v not in FOUND) {
novel = true;
FOUND += {v};
}

}
}

accept iff t in FOUND.

Kolkata Algorithms Short Course: I. The Algorithm-Complexity Landscape

Better Version: Queue Found Nodes

set <Node> FOUND = {s}, POPPED = {};
bool novel = true;
while (novel) {
novel = false;
foreach (u in FOUND \ POPPED) {
foreach (v: u—>v) {
if (v not in FOUND) {
novel = true;
FOUND += {v};
}
}
}
POPPED += {u}; //Each edge polled at most once,
} //so time = O(|V|+|E|) = O(m) = O(n"2).
accept iff t in FOUND.

