
Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Kolkata Algorithms Short Course: III-IV
Parallel/Streamable Algorithms and Equation

Solving

Kenneth W. Regan
University at Buffalo (SUNY)

University of Calcutta, 3 August 2016

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Sorting and Sub-Quadratic Time

Given a list of n words—figure the list is very long—how time does
it take to determine whether there are two or more occurrences of
the very same word?

Comparing every pair of words would take time of order n2.
Sorting the list can be done in O(n logn) time—e.g. by Heapsort
as described—then any duplicates will be adjacent.
So overall time is O(n logn). Recall that n times any power of
logn gives quasilinear time.
A second substantial efficiency of sorting is that its work can be
distributed.
One sense of this is that sorting is streamable, especially Mergesort.
Another is that sorting has Boolean circuits a power of logn in
depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Sorting and Sub-Quadratic Time

Given a list of n words—figure the list is very long—how time does
it take to determine whether there are two or more occurrences of
the very same word?
Comparing every pair of words would take time of order n2.

Sorting the list can be done in O(n logn) time—e.g. by Heapsort
as described—then any duplicates will be adjacent.
So overall time is O(n logn). Recall that n times any power of
logn gives quasilinear time.
A second substantial efficiency of sorting is that its work can be
distributed.
One sense of this is that sorting is streamable, especially Mergesort.
Another is that sorting has Boolean circuits a power of logn in
depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Sorting and Sub-Quadratic Time

Given a list of n words—figure the list is very long—how time does
it take to determine whether there are two or more occurrences of
the very same word?
Comparing every pair of words would take time of order n2.
Sorting the list can be done in O(n logn) time—e.g. by Heapsort
as described—then any duplicates will be adjacent.

So overall time is O(n logn). Recall that n times any power of
logn gives quasilinear time.
A second substantial efficiency of sorting is that its work can be
distributed.
One sense of this is that sorting is streamable, especially Mergesort.
Another is that sorting has Boolean circuits a power of logn in
depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Sorting and Sub-Quadratic Time

Given a list of n words—figure the list is very long—how time does
it take to determine whether there are two or more occurrences of
the very same word?
Comparing every pair of words would take time of order n2.
Sorting the list can be done in O(n logn) time—e.g. by Heapsort
as described—then any duplicates will be adjacent.
So overall time is O(n logn). Recall that n times any power of
logn gives quasilinear time.

A second substantial efficiency of sorting is that its work can be
distributed.
One sense of this is that sorting is streamable, especially Mergesort.
Another is that sorting has Boolean circuits a power of logn in
depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Sorting and Sub-Quadratic Time

Given a list of n words—figure the list is very long—how time does
it take to determine whether there are two or more occurrences of
the very same word?
Comparing every pair of words would take time of order n2.
Sorting the list can be done in O(n logn) time—e.g. by Heapsort
as described—then any duplicates will be adjacent.
So overall time is O(n logn). Recall that n times any power of
logn gives quasilinear time.
A second substantial efficiency of sorting is that its work can be
distributed.

One sense of this is that sorting is streamable, especially Mergesort.
Another is that sorting has Boolean circuits a power of logn in
depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Sorting and Sub-Quadratic Time

Given a list of n words—figure the list is very long—how time does
it take to determine whether there are two or more occurrences of
the very same word?
Comparing every pair of words would take time of order n2.
Sorting the list can be done in O(n logn) time—e.g. by Heapsort
as described—then any duplicates will be adjacent.
So overall time is O(n logn). Recall that n times any power of
logn gives quasilinear time.
A second substantial efficiency of sorting is that its work can be
distributed.
One sense of this is that sorting is streamable, especially Mergesort.

Another is that sorting has Boolean circuits a power of logn in
depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Sorting and Sub-Quadratic Time

Given a list of n words—figure the list is very long—how time does
it take to determine whether there are two or more occurrences of
the very same word?
Comparing every pair of words would take time of order n2.
Sorting the list can be done in O(n logn) time—e.g. by Heapsort
as described—then any duplicates will be adjacent.
So overall time is O(n logn). Recall that n times any power of
logn gives quasilinear time.
A second substantial efficiency of sorting is that its work can be
distributed.
One sense of this is that sorting is streamable, especially Mergesort.
Another is that sorting has Boolean circuits a power of logn in
depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Parallel Prefix Sum (PPS): Depth 2 logn

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.

Looking left-to-right, we we have an O(logn)-width stream.
The same algorithm works for any binary associative operation �.
The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.
Applying an operation at every point in a list is called map.
Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.
Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.What it must avoid is
(n)-width
random access. Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.
Looking left-to-right, we we have an O(logn)-width stream.

The same algorithm works for any binary associative operation �.
The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.
Applying an operation at every point in a list is called map.
Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.
Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.What it must avoid is
(n)-width
random access. Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.
Looking left-to-right, we we have an O(logn)-width stream.
The same algorithm works for any binary associative operation �.

The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.
Applying an operation at every point in a list is called map.
Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.
Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.What it must avoid is
(n)-width
random access. Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.
Looking left-to-right, we we have an O(logn)-width stream.
The same algorithm works for any binary associative operation �.
The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.

Applying an operation at every point in a list is called map.
Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.
Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.What it must avoid is
(n)-width
random access. Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.
Looking left-to-right, we we have an O(logn)-width stream.
The same algorithm works for any binary associative operation �.
The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.
Applying an operation at every point in a list is called map.

Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.
Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.What it must avoid is
(n)-width
random access. Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.
Looking left-to-right, we we have an O(logn)-width stream.
The same algorithm works for any binary associative operation �.
The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.
Applying an operation at every point in a list is called map.
Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.

Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.What it must avoid is
(n)-width
random access. Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.
Looking left-to-right, we we have an O(logn)-width stream.
The same algorithm works for any binary associative operation �.
The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.
Applying an operation at every point in a list is called map.
Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.
Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.

What it must avoid is
(n)-width
random access. Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.
Looking left-to-right, we we have an O(logn)-width stream.
The same algorithm works for any binary associative operation �.
The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.
Applying an operation at every point in a list is called map.
Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.
Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.What it must avoid is
(n)-width
random access.

Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Generalization

Looking top-to-bottom, we have O(logn)-delay parallel processing.
Looking left-to-right, we we have an O(logn)-width stream.
The same algorithm works for any binary associative operation �.
The act of computing a list (a1; a2; : : : ; an) into a value
a1 � a2 � � � � � an is called reduce.
Applying an operation at every point in a list is called map.
Thus (a1; a1 � a2; a1 � a2 � a3; : : : ; a1 � a2 � � � � � an) is
the “Map-Reduce” of the list.
Wikipedia says this “inspired” the much more general “MapReduce”
architecture for cloud computing, which retains the idea of a
poly-log(n)-width stream.What it must avoid is
(n)-width
random access. Sorting and PPS give a toolkit.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finite State Machine Example

A fnite state transducer (FST) is a Turing machine
T = (Q ;�; �; �; s ; �) with a read-only input tape and a write-only
output tape.

Besides � : Q � �! Q we have the output function
� : Q � �! �� and a final-output function � : Q ! ��.
Output can be more than one char or can be empty; it is fixed into
the code of T .
At end when machine halts in a state q the machine appends �(q)
to its output; if q is not an accepting state then �(q) = “Cancel!”
Examples: “zoom in,” “zoom out,” parity check, running sums. . .
Execution problem: given a string x , compute T (x).
Streaming is easy, but parallel execution is harder: how do we
know ahead of time what state T will be in towad the end?
Answer: use PPS to compose the maps gc(q) = �(q ; c) for each
character; gc � gd = take q to gd(gc(q)) [show on board].

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finite State Machine Example

A fnite state transducer (FST) is a Turing machine
T = (Q ;�; �; �; s ; �) with a read-only input tape and a write-only
output tape.
Besides � : Q � �! Q we have the output function
� : Q � �! �� and a final-output function � : Q ! ��.

Output can be more than one char or can be empty; it is fixed into
the code of T .
At end when machine halts in a state q the machine appends �(q)
to its output; if q is not an accepting state then �(q) = “Cancel!”
Examples: “zoom in,” “zoom out,” parity check, running sums. . .
Execution problem: given a string x , compute T (x).
Streaming is easy, but parallel execution is harder: how do we
know ahead of time what state T will be in towad the end?
Answer: use PPS to compose the maps gc(q) = �(q ; c) for each
character; gc � gd = take q to gd(gc(q)) [show on board].

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finite State Machine Example

A fnite state transducer (FST) is a Turing machine
T = (Q ;�; �; �; s ; �) with a read-only input tape and a write-only
output tape.
Besides � : Q � �! Q we have the output function
� : Q � �! �� and a final-output function � : Q ! ��.
Output can be more than one char or can be empty; it is fixed into
the code of T .

At end when machine halts in a state q the machine appends �(q)
to its output; if q is not an accepting state then �(q) = “Cancel!”
Examples: “zoom in,” “zoom out,” parity check, running sums. . .
Execution problem: given a string x , compute T (x).
Streaming is easy, but parallel execution is harder: how do we
know ahead of time what state T will be in towad the end?
Answer: use PPS to compose the maps gc(q) = �(q ; c) for each
character; gc � gd = take q to gd(gc(q)) [show on board].

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finite State Machine Example

A fnite state transducer (FST) is a Turing machine
T = (Q ;�; �; �; s ; �) with a read-only input tape and a write-only
output tape.
Besides � : Q � �! Q we have the output function
� : Q � �! �� and a final-output function � : Q ! ��.
Output can be more than one char or can be empty; it is fixed into
the code of T .
At end when machine halts in a state q the machine appends �(q)
to its output; if q is not an accepting state then �(q) = “Cancel!”

Examples: “zoom in,” “zoom out,” parity check, running sums. . .
Execution problem: given a string x , compute T (x).
Streaming is easy, but parallel execution is harder: how do we
know ahead of time what state T will be in towad the end?
Answer: use PPS to compose the maps gc(q) = �(q ; c) for each
character; gc � gd = take q to gd(gc(q)) [show on board].

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finite State Machine Example

A fnite state transducer (FST) is a Turing machine
T = (Q ;�; �; �; s ; �) with a read-only input tape and a write-only
output tape.
Besides � : Q � �! Q we have the output function
� : Q � �! �� and a final-output function � : Q ! ��.
Output can be more than one char or can be empty; it is fixed into
the code of T .
At end when machine halts in a state q the machine appends �(q)
to its output; if q is not an accepting state then �(q) = “Cancel!”
Examples: “zoom in,” “zoom out,” parity check, running sums. . .

Execution problem: given a string x , compute T (x).
Streaming is easy, but parallel execution is harder: how do we
know ahead of time what state T will be in towad the end?
Answer: use PPS to compose the maps gc(q) = �(q ; c) for each
character; gc � gd = take q to gd(gc(q)) [show on board].

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finite State Machine Example

A fnite state transducer (FST) is a Turing machine
T = (Q ;�; �; �; s ; �) with a read-only input tape and a write-only
output tape.
Besides � : Q � �! Q we have the output function
� : Q � �! �� and a final-output function � : Q ! ��.
Output can be more than one char or can be empty; it is fixed into
the code of T .
At end when machine halts in a state q the machine appends �(q)
to its output; if q is not an accepting state then �(q) = “Cancel!”
Examples: “zoom in,” “zoom out,” parity check, running sums. . .
Execution problem: given a string x , compute T (x).

Streaming is easy, but parallel execution is harder: how do we
know ahead of time what state T will be in towad the end?
Answer: use PPS to compose the maps gc(q) = �(q ; c) for each
character; gc � gd = take q to gd(gc(q)) [show on board].

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finite State Machine Example

A fnite state transducer (FST) is a Turing machine
T = (Q ;�; �; �; s ; �) with a read-only input tape and a write-only
output tape.
Besides � : Q � �! Q we have the output function
� : Q � �! �� and a final-output function � : Q ! ��.
Output can be more than one char or can be empty; it is fixed into
the code of T .
At end when machine halts in a state q the machine appends �(q)
to its output; if q is not an accepting state then �(q) = “Cancel!”
Examples: “zoom in,” “zoom out,” parity check, running sums. . .
Execution problem: given a string x , compute T (x).
Streaming is easy, but parallel execution is harder: how do we
know ahead of time what state T will be in towad the end?

Answer: use PPS to compose the maps gc(q) = �(q ; c) for each
character; gc � gd = take q to gd(gc(q)) [show on board].

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finite State Machine Example

A fnite state transducer (FST) is a Turing machine
T = (Q ;�; �; �; s ; �) with a read-only input tape and a write-only
output tape.
Besides � : Q � �! Q we have the output function
� : Q � �! �� and a final-output function � : Q ! ��.
Output can be more than one char or can be empty; it is fixed into
the code of T .
At end when machine halts in a state q the machine appends �(q)
to its output; if q is not an accepting state then �(q) = “Cancel!”
Examples: “zoom in,” “zoom out,” parity check, running sums. . .
Execution problem: given a string x , compute T (x).
Streaming is easy, but parallel execution is harder: how do we
know ahead of time what state T will be in towad the end?
Answer: use PPS to compose the maps gc(q) = �(q ; c) for each
character; gc � gd = take q to gd(gc(q)) [show on board].

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.

A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).
Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row. But what if not,
and what about parallel?
We will do O(logn) recursive passes over the lists.
Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.
Strangely, compare first half of A with first half of B 0 not B , then
second halves.
The four outputs of size n=2 are bitonic so we can recurse.
Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.
A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).

Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row. But what if not,
and what about parallel?
We will do O(logn) recursive passes over the lists.
Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.
Strangely, compare first half of A with first half of B 0 not B , then
second halves.
The four outputs of size n=2 are bitonic so we can recurse.
Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.
A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).
Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row.

But what if not,
and what about parallel?
We will do O(logn) recursive passes over the lists.
Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.
Strangely, compare first half of A with first half of B 0 not B , then
second halves.
The four outputs of size n=2 are bitonic so we can recurse.
Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.
A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).
Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row. But what if not,
and what about parallel?

We will do O(logn) recursive passes over the lists.
Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.
Strangely, compare first half of A with first half of B 0 not B , then
second halves.
The four outputs of size n=2 are bitonic so we can recurse.
Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.
A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).
Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row. But what if not,
and what about parallel?
We will do O(logn) recursive passes over the lists.

Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.
Strangely, compare first half of A with first half of B 0 not B , then
second halves.
The four outputs of size n=2 are bitonic so we can recurse.
Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.
A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).
Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row. But what if not,
and what about parallel?
We will do O(logn) recursive passes over the lists.
Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.

Strangely, compare first half of A with first half of B 0 not B , then
second halves.
The four outputs of size n=2 are bitonic so we can recurse.
Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.
A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).
Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row. But what if not,
and what about parallel?
We will do O(logn) recursive passes over the lists.
Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.
Strangely, compare first half of A with first half of B 0 not B , then
second halves.

The four outputs of size n=2 are bitonic so we can recurse.
Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.
A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).
Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row. But what if not,
and what about parallel?
We will do O(logn) recursive passes over the lists.
Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.
Strangely, compare first half of A with first half of B 0 not B , then
second halves.
The four outputs of size n=2 are bitonic so we can recurse.

Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Batcher’s Bitonic Merge and Sort

Given two already-sorted lists A = a1 � a2 � � � � � an and
B = b1 � b2 � � � � � bn of equal length n , you want to merge them
into one sorted list.
A comparator gate g maps g(a ; b) = (b; a) if b < a , else (a ; b).
Stream is easy if you can “pause” the flow of one of the lists—in
case the other list has many lesser items in a row. But what if not,
and what about parallel?
We will do O(logn) recursive passes over the lists.
Key idea is that if you reverse B into B 0, then the list A;B 0 is
bitonic—like a valley.
Strangely, compare first half of A with first half of B 0 not B , then
second halves.
The four outputs of size n=2 are bitonic so we can recurse.
Gives Mergesort in O(n logn) time with O((logn)2) depth.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Python code from Wikipedia

de f bitonic_merge (up , x) : # assume input x i s b i t on i c
i f l en (x) == 1 :

re turn x
e l s e :

bitonic_compare (up , x)
f i r s t = bitonic_merge (up , x [: l en (x) / 2])
second = bitonic_merge (up , x [l en (x) / 2 :])
r e turn f i r s t + second

de f bitonic_compare (up , x) :
d i s t = len (x) / 2
f o r i in range (d i s t) :

i f (x [i] > x [i+d i s t]) == up :
x [i] , x [i+d i s t] = x [i+d i s t] , x [i] #swap

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Picture (from Wikipedia)

Theorem: Every decision problem or function in nondeterministc
logspace can be processed in parallel by circuits of nO(1) size and
O((logn)2) depth.

Thus one reason to care about the theoretical distinction of the “BFS
class” is being able to make better parallel/cloud-friendly algorithms.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Picture (from Wikipedia)

Theorem: Every decision problem or function in nondeterministc
logspace can be processed in parallel by circuits of nO(1) size and
O((logn)2) depth.

Thus one reason to care about the theoretical distinction of the “BFS
class” is being able to make better parallel/cloud-friendly algorithms.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Solving Arithmetical Equations

A famous example:

z = x 3 + y3;

z = u3 + v3;

w � (x � u) � (x � v) = 1:

About 100 years ago, the English mathematician G.H. Hardy hailed
a taxicab with Srinivasa Ramanujan that had the number
z = 1; 729.
Ramanujan solved it instantly with x = 1, y = 12, u = 9, v = 10.
The w clause prevents just taking x = u or x = v so the answers
ae different.
But it goes away from integers. . .
General question: When are equations solvable? in reals or
integers? or in 0-1 values only?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Solving Arithmetical Equations

A famous example:

z = x 3 + y3;

z = u3 + v3;

w � (x � u) � (x � v) = 1:

About 100 years ago, the English mathematician G.H. Hardy hailed
a taxicab with Srinivasa Ramanujan that had the number
z = 1; 729.

Ramanujan solved it instantly with x = 1, y = 12, u = 9, v = 10.
The w clause prevents just taking x = u or x = v so the answers
ae different.
But it goes away from integers. . .
General question: When are equations solvable? in reals or
integers? or in 0-1 values only?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Solving Arithmetical Equations

A famous example:

z = x 3 + y3;

z = u3 + v3;

w � (x � u) � (x � v) = 1:

About 100 years ago, the English mathematician G.H. Hardy hailed
a taxicab with Srinivasa Ramanujan that had the number
z = 1; 729.
Ramanujan solved it instantly with x = 1, y = 12, u = 9, v = 10.

The w clause prevents just taking x = u or x = v so the answers
ae different.
But it goes away from integers. . .
General question: When are equations solvable? in reals or
integers? or in 0-1 values only?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Solving Arithmetical Equations

A famous example:

z = x 3 + y3;

z = u3 + v3;

w � (x � u) � (x � v) = 1:

About 100 years ago, the English mathematician G.H. Hardy hailed
a taxicab with Srinivasa Ramanujan that had the number
z = 1; 729.
Ramanujan solved it instantly with x = 1, y = 12, u = 9, v = 10.
The w clause prevents just taking x = u or x = v so the answers
ae different.

But it goes away from integers. . .
General question: When are equations solvable? in reals or
integers? or in 0-1 values only?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Solving Arithmetical Equations

A famous example:

z = x 3 + y3;

z = u3 + v3;

w � (x � u) � (x � v) = 1:

About 100 years ago, the English mathematician G.H. Hardy hailed
a taxicab with Srinivasa Ramanujan that had the number
z = 1; 729.
Ramanujan solved it instantly with x = 1, y = 12, u = 9, v = 10.
The w clause prevents just taking x = u or x = v so the answers
ae different.
But it goes away from integers. . .

General question: When are equations solvable? in reals or
integers? or in 0-1 values only?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Solving Arithmetical Equations

A famous example:

z = x 3 + y3;

z = u3 + v3;

w � (x � u) � (x � v) = 1:

About 100 years ago, the English mathematician G.H. Hardy hailed
a taxicab with Srinivasa Ramanujan that had the number
z = 1; 729.
Ramanujan solved it instantly with x = 1, y = 12, u = 9, v = 10.
The w clause prevents just taking x = u or x = v so the answers
ae different.
But it goes away from integers. . .
General question: When are equations solvable?

in reals or
integers? or in 0-1 values only?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Solving Arithmetical Equations

A famous example:

z = x 3 + y3;

z = u3 + v3;

w � (x � u) � (x � v) = 1:

About 100 years ago, the English mathematician G.H. Hardy hailed
a taxicab with Srinivasa Ramanujan that had the number
z = 1; 729.
Ramanujan solved it instantly with x = 1, y = 12, u = 9, v = 10.
The w clause prevents just taking x = u or x = v so the answers
ae different.
But it goes away from integers. . .
General question: When are equations solvable? in reals or
integers?

or in 0-1 values only?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Solving Arithmetical Equations

A famous example:

z = x 3 + y3;

z = u3 + v3;

w � (x � u) � (x � v) = 1:

About 100 years ago, the English mathematician G.H. Hardy hailed
a taxicab with Srinivasa Ramanujan that had the number
z = 1; 729.
Ramanujan solved it instantly with x = 1, y = 12, u = 9, v = 10.
The w clause prevents just taking x = u or x = v so the answers
ae different.
But it goes away from integers. . .
General question: When are equations solvable? in reals or
integers? or in 0-1 values only?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.

We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class.

But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.

Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).

Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .

Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .

If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .

General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.

Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.

Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Big Obstacle!—?

Let’s recall the logical Satisfiability problem from Day 2, only this
time for 3CNF formulas not 2CNF.
We showed 2SAT is easy to solve—indeed in the BFS class. But
3SAT is NP-complete.
Typical 3CNF formula: (u _ w) ^ (v _ w) ^ (�u _ �v _ �w).
Expresses the correct behavior of a NAND gate: w = u NAND v .
Equation form: w = 1� uv .
If the NAND gate has multiple outgoing wires wi , add equations
wi = w .
General 3-clause (u _ �v _w) becomes equation (1�u)v(1�w) = 0.
Add equations u2 � u = 0, v2 � v = 0, and w2 � w = 0 to limit to
0-1 solutions.
Thus equation solving is NP-hard.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

NP-Hard and Complete

Recall we defined NP = NTIME[nO(1)].

What does this mean?
It means you have a yes/no problem where if the answer is yes, an
inspired guess will give an answer that you can easily prove.
If the answer is no, there may be no short proof—that’s OK.
For 3SAT the inspired quess is an assignment a 2 f0; 1gn making
�(a) = true.
For equations the inspired guess is a solution; it is easy to check
unless the math is too Complex.
So 3SAT is in NP and basically so is equation solving—over
f0; 1g-solutions anyway.

Definition. A decision problem B is NP-hard if for all problems A in
NP there is a polynomial-time computable translation function f such
that for all inputs x of problem A, the string y = f (x) is an equivalent
input of problem B . And B is NP-complete if also B is in NP.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

NP-Hard and Complete

Recall we defined NP = NTIME[nO(1)]. What does this mean?

It means you have a yes/no problem where if the answer is yes, an
inspired guess will give an answer that you can easily prove.
If the answer is no, there may be no short proof—that’s OK.
For 3SAT the inspired quess is an assignment a 2 f0; 1gn making
�(a) = true.
For equations the inspired guess is a solution; it is easy to check
unless the math is too Complex.
So 3SAT is in NP and basically so is equation solving—over
f0; 1g-solutions anyway.

Definition. A decision problem B is NP-hard if for all problems A in
NP there is a polynomial-time computable translation function f such
that for all inputs x of problem A, the string y = f (x) is an equivalent
input of problem B . And B is NP-complete if also B is in NP.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

NP-Hard and Complete

Recall we defined NP = NTIME[nO(1)]. What does this mean?
It means you have a yes/no problem where if the answer is yes, an
inspired guess will give an answer that you can easily prove.

If the answer is no, there may be no short proof—that’s OK.
For 3SAT the inspired quess is an assignment a 2 f0; 1gn making
�(a) = true.
For equations the inspired guess is a solution; it is easy to check
unless the math is too Complex.
So 3SAT is in NP and basically so is equation solving—over
f0; 1g-solutions anyway.

Definition. A decision problem B is NP-hard if for all problems A in
NP there is a polynomial-time computable translation function f such
that for all inputs x of problem A, the string y = f (x) is an equivalent
input of problem B . And B is NP-complete if also B is in NP.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

NP-Hard and Complete

Recall we defined NP = NTIME[nO(1)]. What does this mean?
It means you have a yes/no problem where if the answer is yes, an
inspired guess will give an answer that you can easily prove.
If the answer is no, there may be no short proof—that’s OK.

For 3SAT the inspired quess is an assignment a 2 f0; 1gn making
�(a) = true.
For equations the inspired guess is a solution; it is easy to check
unless the math is too Complex.
So 3SAT is in NP and basically so is equation solving—over
f0; 1g-solutions anyway.

Definition. A decision problem B is NP-hard if for all problems A in
NP there is a polynomial-time computable translation function f such
that for all inputs x of problem A, the string y = f (x) is an equivalent
input of problem B . And B is NP-complete if also B is in NP.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

NP-Hard and Complete

Recall we defined NP = NTIME[nO(1)]. What does this mean?
It means you have a yes/no problem where if the answer is yes, an
inspired guess will give an answer that you can easily prove.
If the answer is no, there may be no short proof—that’s OK.
For 3SAT the inspired quess is an assignment a 2 f0; 1gn making
�(a) = true.

For equations the inspired guess is a solution; it is easy to check
unless the math is too Complex.
So 3SAT is in NP and basically so is equation solving—over
f0; 1g-solutions anyway.

Definition. A decision problem B is NP-hard if for all problems A in
NP there is a polynomial-time computable translation function f such
that for all inputs x of problem A, the string y = f (x) is an equivalent
input of problem B . And B is NP-complete if also B is in NP.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

NP-Hard and Complete

Recall we defined NP = NTIME[nO(1)]. What does this mean?
It means you have a yes/no problem where if the answer is yes, an
inspired guess will give an answer that you can easily prove.
If the answer is no, there may be no short proof—that’s OK.
For 3SAT the inspired quess is an assignment a 2 f0; 1gn making
�(a) = true.
For equations the inspired guess is a solution; it is easy to check
unless the math is too Complex.

So 3SAT is in NP and basically so is equation solving—over
f0; 1g-solutions anyway.

Definition. A decision problem B is NP-hard if for all problems A in
NP there is a polynomial-time computable translation function f such
that for all inputs x of problem A, the string y = f (x) is an equivalent
input of problem B . And B is NP-complete if also B is in NP.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

NP-Hard and Complete

Recall we defined NP = NTIME[nO(1)]. What does this mean?
It means you have a yes/no problem where if the answer is yes, an
inspired guess will give an answer that you can easily prove.
If the answer is no, there may be no short proof—that’s OK.
For 3SAT the inspired quess is an assignment a 2 f0; 1gn making
�(a) = true.
For equations the inspired guess is a solution; it is easy to check
unless the math is too Complex.
So 3SAT is in NP and basically so is equation solving—over
f0; 1g-solutions anyway.

Definition. A decision problem B is NP-hard if for all problems A in
NP there is a polynomial-time computable translation function f such
that for all inputs x of problem A, the string y = f (x) is an equivalent
input of problem B . And B is NP-complete if also B is in NP.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Cook-Levin Theorem: 3SAT is NP-Complete

Given A 2 NP there is a deterministic TM M that verifies the
relation “y is a lucky guess for x 2 A” in polynomial time.

The memory map for M includes the bits x1; : : : ; xn of x and
y1; : : : ; ym of potential verifying strings y , where m = nO(1).
The function f (x) will produce a 3CNF formula � such that x 2 A
(meaning the answer for x is ‘yes’) if and only if � is satisfiable.
Most of � doesn’t involve x—only at the end we will substitute the
actual bits of x for the variables x1; : : : ; xn .
The left-over variables in � will be y1; : : : ; ym and extra wire
variables u ; v ;w ; : : : including a variable wo for the output value.
Each of these variables can appear negated: �y1; : : : ; �ym ; �u ; �v ; �w etc.
The key is what we covered in day 2: the memory map of M can
be converted into Boolean circuits Cn , one for each n (and the
corresponding m) such that M accepts (x ; y) if and only if
Cn(x ; y) = 1. We can build Cn using only NAND gates.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Cook-Levin Theorem: 3SAT is NP-Complete

Given A 2 NP there is a deterministic TM M that verifies the
relation “y is a lucky guess for x 2 A” in polynomial time.
The memory map for M includes the bits x1; : : : ; xn of x and
y1; : : : ; ym of potential verifying strings y , where m = nO(1).

The function f (x) will produce a 3CNF formula � such that x 2 A
(meaning the answer for x is ‘yes’) if and only if � is satisfiable.
Most of � doesn’t involve x—only at the end we will substitute the
actual bits of x for the variables x1; : : : ; xn .
The left-over variables in � will be y1; : : : ; ym and extra wire
variables u ; v ;w ; : : : including a variable wo for the output value.
Each of these variables can appear negated: �y1; : : : ; �ym ; �u ; �v ; �w etc.
The key is what we covered in day 2: the memory map of M can
be converted into Boolean circuits Cn , one for each n (and the
corresponding m) such that M accepts (x ; y) if and only if
Cn(x ; y) = 1. We can build Cn using only NAND gates.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Cook-Levin Theorem: 3SAT is NP-Complete

Given A 2 NP there is a deterministic TM M that verifies the
relation “y is a lucky guess for x 2 A” in polynomial time.
The memory map for M includes the bits x1; : : : ; xn of x and
y1; : : : ; ym of potential verifying strings y , where m = nO(1).
The function f (x) will produce a 3CNF formula � such that x 2 A
(meaning the answer for x is ‘yes’) if and only if � is satisfiable.

Most of � doesn’t involve x—only at the end we will substitute the
actual bits of x for the variables x1; : : : ; xn .
The left-over variables in � will be y1; : : : ; ym and extra wire
variables u ; v ;w ; : : : including a variable wo for the output value.
Each of these variables can appear negated: �y1; : : : ; �ym ; �u ; �v ; �w etc.
The key is what we covered in day 2: the memory map of M can
be converted into Boolean circuits Cn , one for each n (and the
corresponding m) such that M accepts (x ; y) if and only if
Cn(x ; y) = 1. We can build Cn using only NAND gates.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Cook-Levin Theorem: 3SAT is NP-Complete

Given A 2 NP there is a deterministic TM M that verifies the
relation “y is a lucky guess for x 2 A” in polynomial time.
The memory map for M includes the bits x1; : : : ; xn of x and
y1; : : : ; ym of potential verifying strings y , where m = nO(1).
The function f (x) will produce a 3CNF formula � such that x 2 A
(meaning the answer for x is ‘yes’) if and only if � is satisfiable.
Most of � doesn’t involve x—only at the end we will substitute the
actual bits of x for the variables x1; : : : ; xn .

The left-over variables in � will be y1; : : : ; ym and extra wire
variables u ; v ;w ; : : : including a variable wo for the output value.
Each of these variables can appear negated: �y1; : : : ; �ym ; �u ; �v ; �w etc.
The key is what we covered in day 2: the memory map of M can
be converted into Boolean circuits Cn , one for each n (and the
corresponding m) such that M accepts (x ; y) if and only if
Cn(x ; y) = 1. We can build Cn using only NAND gates.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Cook-Levin Theorem: 3SAT is NP-Complete

Given A 2 NP there is a deterministic TM M that verifies the
relation “y is a lucky guess for x 2 A” in polynomial time.
The memory map for M includes the bits x1; : : : ; xn of x and
y1; : : : ; ym of potential verifying strings y , where m = nO(1).
The function f (x) will produce a 3CNF formula � such that x 2 A
(meaning the answer for x is ‘yes’) if and only if � is satisfiable.
Most of � doesn’t involve x—only at the end we will substitute the
actual bits of x for the variables x1; : : : ; xn .
The left-over variables in � will be y1; : : : ; ym and extra wire
variables u ; v ;w ; : : : including a variable wo for the output value.

Each of these variables can appear negated: �y1; : : : ; �ym ; �u ; �v ; �w etc.
The key is what we covered in day 2: the memory map of M can
be converted into Boolean circuits Cn , one for each n (and the
corresponding m) such that M accepts (x ; y) if and only if
Cn(x ; y) = 1. We can build Cn using only NAND gates.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Cook-Levin Theorem: 3SAT is NP-Complete

Given A 2 NP there is a deterministic TM M that verifies the
relation “y is a lucky guess for x 2 A” in polynomial time.
The memory map for M includes the bits x1; : : : ; xn of x and
y1; : : : ; ym of potential verifying strings y , where m = nO(1).
The function f (x) will produce a 3CNF formula � such that x 2 A
(meaning the answer for x is ‘yes’) if and only if � is satisfiable.
Most of � doesn’t involve x—only at the end we will substitute the
actual bits of x for the variables x1; : : : ; xn .
The left-over variables in � will be y1; : : : ; ym and extra wire
variables u ; v ;w ; : : : including a variable wo for the output value.
Each of these variables can appear negated: �y1; : : : ; �ym ; �u ; �v ; �w etc.

The key is what we covered in day 2: the memory map of M can
be converted into Boolean circuits Cn , one for each n (and the
corresponding m) such that M accepts (x ; y) if and only if
Cn(x ; y) = 1. We can build Cn using only NAND gates.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Cook-Levin Theorem: 3SAT is NP-Complete

Given A 2 NP there is a deterministic TM M that verifies the
relation “y is a lucky guess for x 2 A” in polynomial time.
The memory map for M includes the bits x1; : : : ; xn of x and
y1; : : : ; ym of potential verifying strings y , where m = nO(1).
The function f (x) will produce a 3CNF formula � such that x 2 A
(meaning the answer for x is ‘yes’) if and only if � is satisfiable.
Most of � doesn’t involve x—only at the end we will substitute the
actual bits of x for the variables x1; : : : ; xn .
The left-over variables in � will be y1; : : : ; ym and extra wire
variables u ; v ;w ; : : : including a variable wo for the output value.
Each of these variables can appear negated: �y1; : : : ; �ym ; �u ; �v ; �w etc.
The key is what we covered in day 2: the memory map of M can
be converted into Boolean circuits Cn , one for each n (and the
corresponding m) such that M accepts (x ; y) if and only if
Cn(x ; y) = 1. We can build Cn using only NAND gates.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finishing the Proof

For each NAND gate g , let ug and vg be its two incoming wires
(these can be inputs xi or yj) and w1; : : : ;w` its output wires.

Add to � the clauses (ug _ wk) ^ (vg _ wk) ^ (�ug _ �vg _ �wg) for each
k , 1 � k � `.
And add to � the “singleton clause” (wo) for the output wire—to
satisfy �, this must have value 1.
Finally substitute the bits of x for x1; : : : ; xn . This finishes
� = f (x).
Then � is satisfiable () there is a setting of y1; : : : ; ym and all
other ug ; vg ;wk variables that satisfies � () there is a y that M
verifies for x () x 2 A.
Since the memory map has size at worst quadratic in the time and
space by M , which are both nO(1), and since the rules for building
� are so regular, f (x) = � is computed in polynomial time.
So 3SAT is NP-hard, and since it is in NP, it is NP-complete. �

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finishing the Proof

For each NAND gate g , let ug and vg be its two incoming wires
(these can be inputs xi or yj) and w1; : : : ;w` its output wires.
Add to � the clauses (ug _ wk) ^ (vg _ wk) ^ (�ug _ �vg _ �wg) for each
k , 1 � k � `.

And add to � the “singleton clause” (wo) for the output wire—to
satisfy �, this must have value 1.
Finally substitute the bits of x for x1; : : : ; xn . This finishes
� = f (x).
Then � is satisfiable () there is a setting of y1; : : : ; ym and all
other ug ; vg ;wk variables that satisfies � () there is a y that M
verifies for x () x 2 A.
Since the memory map has size at worst quadratic in the time and
space by M , which are both nO(1), and since the rules for building
� are so regular, f (x) = � is computed in polynomial time.
So 3SAT is NP-hard, and since it is in NP, it is NP-complete. �

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finishing the Proof

For each NAND gate g , let ug and vg be its two incoming wires
(these can be inputs xi or yj) and w1; : : : ;w` its output wires.
Add to � the clauses (ug _ wk) ^ (vg _ wk) ^ (�ug _ �vg _ �wg) for each
k , 1 � k � `.
And add to � the “singleton clause” (wo) for the output wire—to
satisfy �, this must have value 1.

Finally substitute the bits of x for x1; : : : ; xn . This finishes
� = f (x).
Then � is satisfiable () there is a setting of y1; : : : ; ym and all
other ug ; vg ;wk variables that satisfies � () there is a y that M
verifies for x () x 2 A.
Since the memory map has size at worst quadratic in the time and
space by M , which are both nO(1), and since the rules for building
� are so regular, f (x) = � is computed in polynomial time.
So 3SAT is NP-hard, and since it is in NP, it is NP-complete. �

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finishing the Proof

For each NAND gate g , let ug and vg be its two incoming wires
(these can be inputs xi or yj) and w1; : : : ;w` its output wires.
Add to � the clauses (ug _ wk) ^ (vg _ wk) ^ (�ug _ �vg _ �wg) for each
k , 1 � k � `.
And add to � the “singleton clause” (wo) for the output wire—to
satisfy �, this must have value 1.
Finally substitute the bits of x for x1; : : : ; xn . This finishes
� = f (x).

Then � is satisfiable () there is a setting of y1; : : : ; ym and all
other ug ; vg ;wk variables that satisfies � () there is a y that M
verifies for x () x 2 A.
Since the memory map has size at worst quadratic in the time and
space by M , which are both nO(1), and since the rules for building
� are so regular, f (x) = � is computed in polynomial time.
So 3SAT is NP-hard, and since it is in NP, it is NP-complete. �

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finishing the Proof

For each NAND gate g , let ug and vg be its two incoming wires
(these can be inputs xi or yj) and w1; : : : ;w` its output wires.
Add to � the clauses (ug _ wk) ^ (vg _ wk) ^ (�ug _ �vg _ �wg) for each
k , 1 � k � `.
And add to � the “singleton clause” (wo) for the output wire—to
satisfy �, this must have value 1.
Finally substitute the bits of x for x1; : : : ; xn . This finishes
� = f (x).
Then � is satisfiable () there is a setting of y1; : : : ; ym and all
other ug ; vg ;wk variables that satisfies � () there is a y that M
verifies for x () x 2 A.

Since the memory map has size at worst quadratic in the time and
space by M , which are both nO(1), and since the rules for building
� are so regular, f (x) = � is computed in polynomial time.
So 3SAT is NP-hard, and since it is in NP, it is NP-complete. �

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finishing the Proof

For each NAND gate g , let ug and vg be its two incoming wires
(these can be inputs xi or yj) and w1; : : : ;w` its output wires.
Add to � the clauses (ug _ wk) ^ (vg _ wk) ^ (�ug _ �vg _ �wg) for each
k , 1 � k � `.
And add to � the “singleton clause” (wo) for the output wire—to
satisfy �, this must have value 1.
Finally substitute the bits of x for x1; : : : ; xn . This finishes
� = f (x).
Then � is satisfiable () there is a setting of y1; : : : ; ym and all
other ug ; vg ;wk variables that satisfies � () there is a y that M
verifies for x () x 2 A.
Since the memory map has size at worst quadratic in the time and
space by M , which are both nO(1), and since the rules for building
� are so regular, f (x) = � is computed in polynomial time.

So 3SAT is NP-hard, and since it is in NP, it is NP-complete. �

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Finishing the Proof

For each NAND gate g , let ug and vg be its two incoming wires
(these can be inputs xi or yj) and w1; : : : ;w` its output wires.
Add to � the clauses (ug _ wk) ^ (vg _ wk) ^ (�ug _ �vg _ �wg) for each
k , 1 � k � `.
And add to � the “singleton clause” (wo) for the output wire—to
satisfy �, this must have value 1.
Finally substitute the bits of x for x1; : : : ; xn . This finishes
� = f (x).
Then � is satisfiable () there is a setting of y1; : : : ; ym and all
other ug ; vg ;wk variables that satisfies � () there is a y that M
verifies for x () x 2 A.
Since the memory map has size at worst quadratic in the time and
space by M , which are both nO(1), and since the rules for building
� are so regular, f (x) = � is computed in polynomial time.
So 3SAT is NP-hard, and since it is in NP, it is NP-complete. �

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

And for Equation Solving...

To finish that equation solving is NP-hard: for each NAND gate g
with incoming wires ug ; vg and outgoing wire wg we give the
equation

1� ugvg � wg = 0:

For any other outgoing wires wk , use wg � wk = 0 to set them all
equal.
And we have 1� wo = 0 for the output wire and the “Boolean
equations” u2

g � ug = 0 (etc.) for every variable. That’s it.
This makes the sokving problem for simple equations likewise
NP-complete. �

The equations in this proof are indeed very simple—degree 2 for the
ugvg terms and the Boolean equations. Does this really mean that
solving them is hard in practice?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

And for Equation Solving...

To finish that equation solving is NP-hard: for each NAND gate g
with incoming wires ug ; vg and outgoing wire wg we give the
equation

1� ugvg � wg = 0:

For any other outgoing wires wk , use wg � wk = 0 to set them all
equal.

And we have 1� wo = 0 for the output wire and the “Boolean
equations” u2

g � ug = 0 (etc.) for every variable. That’s it.
This makes the sokving problem for simple equations likewise
NP-complete. �

The equations in this proof are indeed very simple—degree 2 for the
ugvg terms and the Boolean equations. Does this really mean that
solving them is hard in practice?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

And for Equation Solving...

To finish that equation solving is NP-hard: for each NAND gate g
with incoming wires ug ; vg and outgoing wire wg we give the
equation

1� ugvg � wg = 0:

For any other outgoing wires wk , use wg � wk = 0 to set them all
equal.
And we have 1� wo = 0 for the output wire and the “Boolean
equations” u2

g � ug = 0 (etc.) for every variable. That’s it.

This makes the sokving problem for simple equations likewise
NP-complete. �

The equations in this proof are indeed very simple—degree 2 for the
ugvg terms and the Boolean equations. Does this really mean that
solving them is hard in practice?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

And for Equation Solving...

To finish that equation solving is NP-hard: for each NAND gate g
with incoming wires ug ; vg and outgoing wire wg we give the
equation

1� ugvg � wg = 0:

For any other outgoing wires wk , use wg � wk = 0 to set them all
equal.
And we have 1� wo = 0 for the output wire and the “Boolean
equations” u2

g � ug = 0 (etc.) for every variable. That’s it.
This makes the sokving problem for simple equations likewise
NP-complete. �

The equations in this proof are indeed very simple—degree 2 for the
ugvg terms and the Boolean equations. Does this really mean that
solving them is hard in practice?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

And for Equation Solving...

To finish that equation solving is NP-hard: for each NAND gate g
with incoming wires ug ; vg and outgoing wire wg we give the
equation

1� ugvg � wg = 0:

For any other outgoing wires wk , use wg � wk = 0 to set them all
equal.
And we have 1� wo = 0 for the output wire and the “Boolean
equations” u2

g � ug = 0 (etc.) for every variable. That’s it.
This makes the sokving problem for simple equations likewise
NP-complete. �

The equations in this proof are indeed very simple—degree 2 for the
ugvg terms and the Boolean equations.

Does this really mean that
solving them is hard in practice?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

And for Equation Solving...

To finish that equation solving is NP-hard: for each NAND gate g
with incoming wires ug ; vg and outgoing wire wg we give the
equation

1� ugvg � wg = 0:

For any other outgoing wires wk , use wg � wk = 0 to set them all
equal.
And we have 1� wo = 0 for the output wire and the “Boolean
equations” u2

g � ug = 0 (etc.) for every variable. That’s it.
This makes the sokving problem for simple equations likewise
NP-complete. �

The equations in this proof are indeed very simple—degree 2 for the
ugvg terms and the Boolean equations. Does this really mean that
solving them is hard in practice?

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Practical Sea-Change

Classic course and attitude: reduce from (3)SAT to other problems
to show they are hard.

Newer tide: reduce problems to SAT and to equation solving
because many individual instances terminate acceptably quickly.
General reason: the formulas/equations used in the hardness proof
are specialized enough that many real-world instances avoid their
“region of hardness.”
Indeed, randomly generated instances of 3SAT with n variables
and m clauses tend to be easily solved. If m is larger than a certain
window the formula tends to have an easily-seen contradiction. if m
is smaller than the window, then “standard greedy” tends to work.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Practical Sea-Change

Classic course and attitude: reduce from (3)SAT to other problems
to show they are hard.
Newer tide: reduce problems to SAT and to equation solving
because many individual instances terminate acceptably quickly.

General reason: the formulas/equations used in the hardness proof
are specialized enough that many real-world instances avoid their
“region of hardness.”
Indeed, randomly generated instances of 3SAT with n variables
and m clauses tend to be easily solved. If m is larger than a certain
window the formula tends to have an easily-seen contradiction. if m
is smaller than the window, then “standard greedy” tends to work.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Practical Sea-Change

Classic course and attitude: reduce from (3)SAT to other problems
to show they are hard.
Newer tide: reduce problems to SAT and to equation solving
because many individual instances terminate acceptably quickly.
General reason: the formulas/equations used in the hardness proof
are specialized enough that many real-world instances avoid their
“region of hardness.”

Indeed, randomly generated instances of 3SAT with n variables
and m clauses tend to be easily solved. If m is larger than a certain
window the formula tends to have an easily-seen contradiction. if m
is smaller than the window, then “standard greedy” tends to work.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Practical Sea-Change

Classic course and attitude: reduce from (3)SAT to other problems
to show they are hard.
Newer tide: reduce problems to SAT and to equation solving
because many individual instances terminate acceptably quickly.
General reason: the formulas/equations used in the hardness proof
are specialized enough that many real-world instances avoid their
“region of hardness.”
Indeed, randomly generated instances of 3SAT with n variables
and m clauses tend to be easily solved.

If m is larger than a certain
window the formula tends to have an easily-seen contradiction. if m
is smaller than the window, then “standard greedy” tends to work.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Practical Sea-Change

Classic course and attitude: reduce from (3)SAT to other problems
to show they are hard.
Newer tide: reduce problems to SAT and to equation solving
because many individual instances terminate acceptably quickly.
General reason: the formulas/equations used in the hardness proof
are specialized enough that many real-world instances avoid their
“region of hardness.”
Indeed, randomly generated instances of 3SAT with n variables
and m clauses tend to be easily solved. If m is larger than a certain
window the formula tends to have an easily-seen contradiction.

if m
is smaller than the window, then “standard greedy” tends to work.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Practical Sea-Change

Classic course and attitude: reduce from (3)SAT to other problems
to show they are hard.
Newer tide: reduce problems to SAT and to equation solving
because many individual instances terminate acceptably quickly.
General reason: the formulas/equations used in the hardness proof
are specialized enough that many real-world instances avoid their
“region of hardness.”
Indeed, randomly generated instances of 3SAT with n variables
and m clauses tend to be easily solved. If m is larger than a certain
window the formula tends to have an easily-seen contradiction. if m
is smaller than the window, then “standard greedy” tends to work.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Standard Greedy Heuristic Algorithm

set<Clause> TODO = c l au s e s (phi) ;
set<Variable> FREE = {x_1 , . . . , x_n}
whi le (TODO and FREE are both nonempty) {

Choose the x_i or �x_i in most c l a u s e s TODO;
Set a_i = true or f a l s e ac co rd ing ly ;
TODO \= {newly s a t i s f i e d c l a u s e s } ;
FREE \= {x_i } ;

}
i f (empty TODO) {

return s a t i s f y i n g assignment (a_1 , . . . , a_n) ;
} e l s e {

f a i l ; maybe re�t ry with randomised x_i cho i c e s ?
}

Current “SAT Solvers” use more-sophisticated heuristics.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

A Standard Greedy Heuristic Algorithm

set<Clause> TODO = c l au s e s (phi) ;
set<Variable> FREE = {x_1 , . . . , x_n}
whi le (TODO and FREE are both nonempty) {

Choose the x_i or �x_i in most c l a u s e s TODO;
Set a_i = true or f a l s e ac co rd ing ly ;
TODO \= {newly s a t i s f i e d c l a u s e s } ;
FREE \= {x_i } ;

}
i f (empty TODO) {

return s a t i s f y i n g assignment (a_1 , . . . , a_n) ;
} e l s e {

f a i l ; maybe re�t ry with randomised x_i cho i c e s ?
}

Current “SAT Solvers” use more-sophisticated heuristics.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Equation Solvers Use a Hammer

Represent a given set of pure-arithmetic equations abstractly as

p1(z1; : : : ; zn) = 0;
p2(z1; : : : ; zn) = 0;

... = 0;
ps(z1; : : : ; zn) = 0;

where each pi is a multi-variable polynomial. Now observe:

For any polynomials q1; : : : ; qs in the same variables ~z , the polynomial

r(~z) = q1(~z)p1(~z) + q2(~z)p2(~z) + � � � qs(~z)ps(~z)

must also be equated to 0. Call it an “algebraic consequence.”

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Equation Solvers Use a Hammer

Represent a given set of pure-arithmetic equations abstractly as

p1(z1; : : : ; zn) = 0;
p2(z1; : : : ; zn) = 0;

... = 0;
ps(z1; : : : ; zn) = 0;

where each pi is a multi-variable polynomial. Now observe:

For any polynomials q1; : : : ; qs in the same variables ~z , the polynomial

r(~z) = q1(~z)p1(~z) + q2(~z)p2(~z) + � � � qs(~z)ps(~z)

must also be equated to 0. Call it an “algebraic consequence.”

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Idea of Buchberger’s Algorithm

Technically the algebraic consequences form a polynomial ideal.

Some r(~z have cancellations that make solutions easier to see.
Ditto the lack of a solution: David Hilbert proved in his
Nullstellensatz (“Theorem About Zeroes”) that if the equations
have no solution over the complex numbers, then the constant 1
(which would give the contradictory equation 1 = 0) is an algebraic
consequence!
Buchberger’s Algorithm (BA) compiles a certain exhaustive list of
non-redundant consequence called a Gr’́obner basis.
Often the basis finds simplified equations that allow solutions to be
read off.
Sometimes BA runs for time � 2d

n
where d is the max degre of the

given polynomials p1; : : : ; ps , which in worst case is
double-exponentially horrible.
But in many cases it finishes quickly enough, so people use it. . .

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Idea of Buchberger’s Algorithm

Technically the algebraic consequences form a polynomial ideal.
Some r(~z have cancellations that make solutions easier to see.

Ditto the lack of a solution: David Hilbert proved in his
Nullstellensatz (“Theorem About Zeroes”) that if the equations
have no solution over the complex numbers, then the constant 1
(which would give the contradictory equation 1 = 0) is an algebraic
consequence!
Buchberger’s Algorithm (BA) compiles a certain exhaustive list of
non-redundant consequence called a Gr’́obner basis.
Often the basis finds simplified equations that allow solutions to be
read off.
Sometimes BA runs for time � 2d

n
where d is the max degre of the

given polynomials p1; : : : ; ps , which in worst case is
double-exponentially horrible.
But in many cases it finishes quickly enough, so people use it. . .

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Idea of Buchberger’s Algorithm

Technically the algebraic consequences form a polynomial ideal.
Some r(~z have cancellations that make solutions easier to see.
Ditto the lack of a solution: David Hilbert proved in his
Nullstellensatz (“Theorem About Zeroes”) that if the equations
have no solution over the complex numbers, then the constant 1
(which would give the contradictory equation 1 = 0) is an algebraic
consequence!

Buchberger’s Algorithm (BA) compiles a certain exhaustive list of
non-redundant consequence called a Gr’́obner basis.
Often the basis finds simplified equations that allow solutions to be
read off.
Sometimes BA runs for time � 2d

n
where d is the max degre of the

given polynomials p1; : : : ; ps , which in worst case is
double-exponentially horrible.
But in many cases it finishes quickly enough, so people use it. . .

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Idea of Buchberger’s Algorithm

Technically the algebraic consequences form a polynomial ideal.
Some r(~z have cancellations that make solutions easier to see.
Ditto the lack of a solution: David Hilbert proved in his
Nullstellensatz (“Theorem About Zeroes”) that if the equations
have no solution over the complex numbers, then the constant 1
(which would give the contradictory equation 1 = 0) is an algebraic
consequence!
Buchberger’s Algorithm (BA) compiles a certain exhaustive list of
non-redundant consequence called a Gr’́obner basis.

Often the basis finds simplified equations that allow solutions to be
read off.
Sometimes BA runs for time � 2d

n
where d is the max degre of the

given polynomials p1; : : : ; ps , which in worst case is
double-exponentially horrible.
But in many cases it finishes quickly enough, so people use it. . .

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Idea of Buchberger’s Algorithm

Technically the algebraic consequences form a polynomial ideal.
Some r(~z have cancellations that make solutions easier to see.
Ditto the lack of a solution: David Hilbert proved in his
Nullstellensatz (“Theorem About Zeroes”) that if the equations
have no solution over the complex numbers, then the constant 1
(which would give the contradictory equation 1 = 0) is an algebraic
consequence!
Buchberger’s Algorithm (BA) compiles a certain exhaustive list of
non-redundant consequence called a Gr’́obner basis.
Often the basis finds simplified equations that allow solutions to be
read off.

Sometimes BA runs for time � 2d
n
where d is the max degre of the

given polynomials p1; : : : ; ps , which in worst case is
double-exponentially horrible.
But in many cases it finishes quickly enough, so people use it. . .

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Idea of Buchberger’s Algorithm

Technically the algebraic consequences form a polynomial ideal.
Some r(~z have cancellations that make solutions easier to see.
Ditto the lack of a solution: David Hilbert proved in his
Nullstellensatz (“Theorem About Zeroes”) that if the equations
have no solution over the complex numbers, then the constant 1
(which would give the contradictory equation 1 = 0) is an algebraic
consequence!
Buchberger’s Algorithm (BA) compiles a certain exhaustive list of
non-redundant consequence called a Gr’́obner basis.
Often the basis finds simplified equations that allow solutions to be
read off.
Sometimes BA runs for time � 2d

n
where d is the max degre of the

given polynomials p1; : : : ; ps , which in worst case is
double-exponentially horrible.

But in many cases it finishes quickly enough, so people use it. . .

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Idea of Buchberger’s Algorithm

Technically the algebraic consequences form a polynomial ideal.
Some r(~z have cancellations that make solutions easier to see.
Ditto the lack of a solution: David Hilbert proved in his
Nullstellensatz (“Theorem About Zeroes”) that if the equations
have no solution over the complex numbers, then the constant 1
(which would give the contradictory equation 1 = 0) is an algebraic
consequence!
Buchberger’s Algorithm (BA) compiles a certain exhaustive list of
non-redundant consequence called a Gr’́obner basis.
Often the basis finds simplified equations that allow solutions to be
read off.
Sometimes BA runs for time � 2d

n
where d is the max degre of the

given polynomials p1; : : : ; ps , which in worst case is
double-exponentially horrible.
But in many cases it finishes quickly enough, so people use it. . .

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with “atoms” and then without.]

[show equations on board, maybe run them?]

[show Buchberger’s notes]

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with “atoms” and then without.]

[show equations on board, maybe run them?]

[show Buchberger’s notes]

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with “atoms” and then without.]

[show equations on board, maybe run them?]

[show Buchberger’s notes]

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with “atoms” and then without.]

[show equations on board, maybe run them?]

[show Buchberger’s notes]

