Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Kenneth W. Regan University at Buffalo (SUNY)

University of Calcutta, 3 August 2016

Sorting and Sub-Quadratic Time

- Given a list of n words-figure the list is very long-how time does it take to determine whether there are two or more occurrences of the very same word?

Sorting and Sub-Quadratic Time

- Given a list of n words-figure the list is very long-how time does it take to determine whether there are two or more occurrences of the very same word?
- Comparing every pair of words would take time of order n^{2}.

Sorting and Sub-Quadratic Time

- Given a list of n words-figure the list is very long-how time does it take to determine whether there are two or more occurrences of the very same word?
- Comparing every pair of words would take time of order n^{2}.
- Sorting the list can be done in $O(n \log n)$ time-e.g. by Heapsort as described-then any duplicates will be adjacent.

Sorting and Sub-Quadratic Time

- Given a list of n words-figure the list is very long-how time does it take to determine whether there are two or more occurrences of the very same word?
- Comparing every pair of words would take time of order n^{2}.
- Sorting the list can be done in $O(n \log n)$ time-e.g. by Heapsort as described-then any duplicates will be adjacent.
- So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.

Sorting and Sub-Quadratic Time

- Given a list of n words-figure the list is very long-how time does it take to determine whether there are two or more occurrences of the very same word?
- Comparing every pair of words would take time of order n^{2}.
- Sorting the list can be done in $O(n \log n)$ time-e.g. by Heapsort as described-then any duplicates will be adjacent.
- So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.
- A second substantial efficiency of sorting is that its work can be distributed.

Sorting and Sub-Quadratic Time

- Given a list of n words-figure the list is very long-how time does it take to determine whether there are two or more occurrences of the very same word?
- Comparing every pair of words would take time of order n^{2}.
- Sorting the list can be done in $O(n \log n)$ time-e.g. by Heapsort as described-then any duplicates will be adjacent.
- So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.
- A second substantial efficiency of sorting is that its work can be distributed.
- One sense of this is that sorting is streamable, especially Mergesort.

Sorting and Sub-Quadratic Time

- Given a list of n words-figure the list is very long-how time does it take to determine whether there are two or more occurrences of the very same word?
- Comparing every pair of words would take time of order n^{2}.
- Sorting the list can be done in $O(n \log n)$ time-e.g. by Heapsort as described-then any duplicates will be adjacent.
- So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.
- A second substantial efficiency of sorting is that its work can be distributed.
- One sense of this is that sorting is streamable, especially Mergesort.
- Another is that sorting has Boolean circuits a power of $\log n$ in depth.

Parallel Prefix Sum (PPS): Depth $2 \log n$

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ into a value $a_{1} \odot a_{2} \odot \cdots \odot a_{n}$ is called reduce.

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ into a value $a_{1} \odot a_{2} \odot \cdots \odot a_{n}$ is called reduce.
- Applying an operation at every point in a list is called map.

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ into a value $a_{1} \odot a_{2} \odot \cdots \odot a_{n}$ is called reduce.
- Applying an operation at every point in a list is called map.
- Thus $\left(a_{1}, \quad a_{1} \odot a_{2}, \quad a_{1} \odot a_{2} \odot a_{3}, \quad \ldots, \quad a_{1} \odot a_{2} \odot \cdots \odot a_{n}\right)$ is the "Map-Reduce" of the list.

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ into a value $a_{1} \odot a_{2} \odot \cdots \odot a_{n}$ is called reduce.
- Applying an operation at every point in a list is called map.
- Thus ($a_{1}, \quad a_{1} \odot a_{2}, \quad a_{1} \odot a_{2} \odot a_{3}, \quad \ldots, \quad a_{1} \odot a_{2} \odot \cdots \odot a_{n}$) is the "Map-Reduce" of the list.
- Wikipedia says this "inspired" the much more general "MapReduce" architecture for cloud computing, which retains the idea of a poly- $\log (n)$-width stream.

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ into a value $a_{1} \odot a_{2} \odot \cdots \odot a_{n}$ is called reduce.
- Applying an operation at every point in a list is called map.
- Thus ($a_{1}, \quad a_{1} \odot a_{2}, \quad a_{1} \odot a_{2} \odot a_{3}, \quad \ldots, \quad a_{1} \odot a_{2} \odot \cdots \odot a_{n}$) is the "Map-Reduce" of the list.
- Wikipedia says this "inspired" the much more general "MapReduce" architecture for cloud computing, which retains the idea of a poly- $\log (n)$-width stream. What it must avoid is $\Omega(n)$-width random access.

Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ into a value $a_{1} \odot a_{2} \odot \cdots \odot a_{n}$ is called reduce.
- Applying an operation at every point in a list is called map.
- Thus ($a_{1}, \quad a_{1} \odot a_{2}, \quad a_{1} \odot a_{2} \odot a_{3}, \quad \ldots, \quad a_{1} \odot a_{2} \odot \cdots \odot a_{n}$) is the "Map-Reduce" of the list.
- Wikipedia says this "inspired" the much more general "MapReduce" architecture for cloud computing, which retains the idea of a poly- $\log (n)$-width stream. What it must avoid is $\Omega(n)$-width random access. Sorting and PPS give a toolkit.

Finite State Machine Example

- A fnite state transducer (FST) is a Turing machine $T=(Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.

Finite State Machine Example

- A fnite state transducer (FST) is a Turing machine $T=(Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta: Q \times \Sigma \rightarrow Q$ we have the output function $\rho: Q \times \Sigma \rightarrow \Sigma^{*}$ and a final-output function $\phi: Q \rightarrow \Sigma^{*}$.

Finite State Machine Example

- A fnite state transducer (FST) is a Turing machine $T=(Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta: Q \times \Sigma \rightarrow Q$ we have the output function $\rho: Q \times \Sigma \rightarrow \Sigma^{*}$ and a final-output function $\phi: Q \rightarrow \Sigma^{*}$.
- Output can be more than one char or can be empty; it is fixed into the code of T.

Finite State Machine Example

- A fnite state transducer (FST) is a Turing machine $T=(Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta: Q \times \Sigma \rightarrow Q$ we have the output function $\rho: Q \times \Sigma \rightarrow \Sigma^{*}$ and a final-output function $\phi: Q \rightarrow \Sigma^{*}$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q)=$ "Cancel!"

Finite State Machine Example

- A fnite state transducer (FST) is a Turing machine $T=(Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta: Q \times \Sigma \rightarrow Q$ we have the output function $\rho: Q \times \Sigma \rightarrow \Sigma^{*}$ and a final-output function $\phi: Q \rightarrow \Sigma^{*}$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q)=$ "Cancel!"
- Examples: "zoom in," "zoom out," parity check, running sums...

Finite State Machine Example

- A fnite state transducer (FST) is a Turing machine $T=(Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta: Q \times \Sigma \rightarrow Q$ we have the output function $\rho: Q \times \Sigma \rightarrow \Sigma^{*}$ and a final-output function $\phi: Q \rightarrow \Sigma^{*}$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q)=$ "Cancel!"
- Examples: "zoom in," "zoom out," parity check, running sums...
- Execution problem: given a string x, compute $T(x)$.

Finite State Machine Example

- A fnite state transducer (FST) is a Turing machine $T=(Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta: Q \times \Sigma \rightarrow Q$ we have the output function $\rho: Q \times \Sigma \rightarrow \Sigma^{*}$ and a final-output function $\phi: Q \rightarrow \Sigma^{*}$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q)=$ "Cancel!"
- Examples: "zoom in," "zoom out," parity check, running sums...
- Execution problem: given a string x, compute $T(x)$.
- Streaming is easy, but parallel execution is harder: how do we know ahead of time what state T will be in towad the end?

Finite State Machine Example

- A fnite state transducer (FST) is a Turing machine $T=(Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta: Q \times \Sigma \rightarrow Q$ we have the output function $\rho: Q \times \Sigma \rightarrow \Sigma^{*}$ and a final-output function $\phi: Q \rightarrow \Sigma^{*}$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q)=$ "Cancel!"
- Examples: "zoom in," "zoom out," parity check, running sums...
- Execution problem: given a string x, compute $T(x)$.
- Streaming is easy, but parallel execution is harder: how do we know ahead of time what state T will be in towad the end?
- Answer: use PPS to compose the maps $g_{c}(q)=\delta(q, c)$ for each character; $g_{c} \odot g_{d}=$ take q to $g_{d}\left(g_{c}(q)\right)$ [show on board].

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b)=(b, a)$ if $b<a$, else (a, b).

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b)=(b, a)$ if $b<a$, else (a, b).
- Stream is easy if you can "pause" the flow of one of the lists-in case the other list has many lesser items in a row.

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b)=(b, a)$ if $b<a$, else (a, b).
- Stream is easy if you can "pause" the flow of one of the lists-in case the other list has many lesser items in a row. But what if not, and what about parallel?

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b)=(b, a)$ if $b<a$, else (a, b).
- Stream is easy if you can "pause" the flow of one of the lists-in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do $O(\log n)$ recursive passes over the lists.

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b)=(b, a)$ if $b<a$, else (a, b).
- Stream is easy if you can "pause" the flow of one of the lists-in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do $O(\log n)$ recursive passes over the lists.
- Key idea is that if you reverse B into B^{\prime}, then the list A, B^{\prime} is bitonic-like a valley.

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b)=(b, a)$ if $b<a$, else (a, b).
- Stream is easy if you can "pause" the flow of one of the lists-in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do $O(\log n)$ recursive passes over the lists.
- Key idea is that if you reverse B into B^{\prime}, then the list A, B^{\prime} is bitonic-like a valley.
- Strangely, compare first half of A with first half of B^{\prime} not B, then second halves.

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b)=(b, a)$ if $b<a$, else (a, b).
- Stream is easy if you can "pause" the flow of one of the lists-in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do $O(\log n)$ recursive passes over the lists.
- Key idea is that if you reverse B into B^{\prime}, then the list A, B^{\prime} is bitonic-like a valley.
- Strangely, compare first half of A with first half of B^{\prime} not B, then second halves.
- The four outputs of size $n / 2$ are bitonic so we can recurse.

Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A=a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $B=b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b)=(b, a)$ if $b<a$, else (a, b).
- Stream is easy if you can "pause" the flow of one of the lists-in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do $O(\log n)$ recursive passes over the lists.
- Key idea is that if you reverse B into B^{\prime}, then the list A, B^{\prime} is bitonic-like a valley.
- Strangely, compare first half of A with first half of B^{\prime} not B, then second halves.
- The four outputs of size $n / 2$ are bitonic so we can recurse.
- Gives Mergesort in $O(n \log n)$ time with $O\left((\log n)^{2}\right)$ depth.

Python code from Wikipedia

def bitonic_merge(up, $x): \#$ assume input x is bitonic if $\operatorname{len}(x)=1$: return x
else:
bitonic_compare(up, x)
first = bitonic_merge(up, $x[: \operatorname{len}(x) / 2])$ second $=$ bitonic_merge(up, $x[\operatorname{len}(x) / 2:])$ return first + second
def bitonic_compare(up, x):
dist $=\operatorname{len}(x) / 2$
for i in range(dist):
if $(x[i]>x[i+d i s t])=u p:$
$\mathrm{x}[\mathrm{i}], \mathrm{x}[\mathrm{i}+\mathrm{dist}]=\mathrm{x}[\mathrm{i}+\mathrm{dist}], \mathrm{x}[\mathrm{i}]$ \#swap

Picture (from Wikipedia)

Theorem: Every decision problem or function in nondeterministc logspace can be processed in parallel by circuits of $n^{O(1)}$ size and $O\left((\log n)^{2}\right)$ depth.

Picture (from Wikipedia)

Theorem: Every decision problem or function in nondeterministc logspace can be processed in parallel by circuits of $n^{O(1)}$ size and $O\left((\log n)^{2}\right)$ depth.

Thus one reason to care about the theoretical distinction of the "BFS class" is being able to make better parallel/cloud-friendly algorithms.

Solving Arithmetical Equations

A famous example:

$$
\begin{aligned}
z & =x^{3}+y^{3} \\
z & =u^{3}+v^{3} \\
w *(x-u) *(x-v) & =1
\end{aligned}
$$

Solving Arithmetical Equations

A famous example:

$$
\begin{aligned}
z & =x^{3}+y^{3} \\
z & =u^{3}+v^{3} \\
w *(x-u) *(x-v) & =1
\end{aligned}
$$

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number $z=1,729$.

Solving Arithmetical Equations

A famous example:

$$
\begin{aligned}
z & =x^{3}+y^{3} \\
z & =u^{3}+v^{3} \\
w *(x-u) *(x-v) & =1
\end{aligned}
$$

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number $z=1,729$.
- Ramanujan solved it instantly with $x=1, y=12, u=9, v=10$.

Solving Arithmetical Equations

A famous example:

$$
\begin{aligned}
z & =x^{3}+y^{3} \\
z & =u^{3}+v^{3} \\
w *(x-u) *(x-v) & =1
\end{aligned}
$$

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number $z=1,729$.
- Ramanujan solved it instantly with $x=1, y=12, u=9, v=10$.
- The w clause prevents just taking $x=u$ or $x=v$ so the answers ae different.

Solving Arithmetical Equations

A famous example:

$$
\begin{aligned}
z & =x^{3}+y^{3} \\
z & =u^{3}+v^{3} \\
w *(x-u) *(x-v) & =1
\end{aligned}
$$

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number $z=1,729$.
- Ramanujan solved it instantly with $x=1, y=12, u=9, v=10$.
- The w clause prevents just taking $x=u$ or $x=v$ so the answers ae different.
- But it goes away from integers...

Solving Arithmetical Equations

A famous example:

$$
\begin{aligned}
z & =x^{3}+y^{3} \\
z & =u^{3}+v^{3} \\
w *(x-u) *(x-v) & =1
\end{aligned}
$$

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number $z=1,729$.
- Ramanujan solved it instantly with $x=1, y=12, u=9, v=10$.
- The w clause prevents just taking $x=u$ or $x=v$ so the answers ae different.
- But it goes away from integers...
- General question: When are equations solvable?

Solving Arithmetical Equations

A famous example:

$$
\begin{aligned}
z & =x^{3}+y^{3} \\
z & =u^{3}+v^{3} \\
w *(x-u) *(x-v) & =1
\end{aligned}
$$

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number $z=1,729$.
- Ramanujan solved it instantly with $x=1, y=12, u=9, v=10$.
- The w clause prevents just taking $x=u$ or $x=v$ so the answers ae different.
- But it goes away from integers...
- General question: When are equations solvable? in reals or integers?

Solving Arithmetical Equations

A famous example:

$$
\begin{aligned}
z & =x^{3}+y^{3} \\
z & =u^{3}+v^{3} \\
w *(x-u) *(x-v) & =1
\end{aligned}
$$

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number $z=1,729$.
- Ramanujan solved it instantly with $x=1, y=12, u=9, v=10$.
- The w clause prevents just taking $x=u$ or $x=v$ so the answers ae different.
- But it goes away from integers...
- General question: When are equations solvable? in reals or integers? or in 0-1 values only?

A Big Obstacle!—?

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.

A Big Obstacle!-?

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed $2 S A T$ is easy to solve-indeed in the BFS class.

A Big Obstacle!-?

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve-indeed in the BFS class. But 3SAT is NP-complete.

A Big Obstacle!-?

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve-indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: $(u \vee w) \wedge(v \vee w) \wedge(\bar{u} \vee \bar{v} \vee \bar{w})$.

A Big Obstacle!-?

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve-indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: $(u \vee w) \wedge(v \vee w) \wedge(\bar{u} \vee \bar{v} \vee \bar{w})$.
- Expresses the correct behavior of a NAND gate: $w=u$ NAND v.

A Big Obstacle!-?

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve-indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: $(u \vee w) \wedge(v \vee w) \wedge(\bar{u} \vee \bar{v} \vee \bar{w})$.
- Expresses the correct behavior of a NAND gate: $w=u$ NAND v.
- Equation form: $w=1$ - uv.

A Big Obstacle!

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve-indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: $(u \vee w) \wedge(v \vee w) \wedge(\bar{u} \vee \bar{v} \vee \bar{w})$.
- Expresses the correct behavior of a NAND gate: $w=u$ NAND v.
- Equation form: $w=1$ - uv.
- If the NAND gate has multiple outgoing wires w_{i}, add equations $w_{i}=w$.

A Big Obstacle!

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve-indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: $(u \vee w) \wedge(v \vee w) \wedge(\bar{u} \vee \bar{v} \vee \bar{w})$.
- Expresses the correct behavior of a NAND gate: $w=u$ NAND v.
- Equation form: $w=1$ - uv.
- If the NAND gate has multiple outgoing wires w_{i}, add equations $w_{i}=w$.
- General 3-clause $(u \vee \bar{v} \vee w)$ becomes equation $(1-u) v(1-w)=0$.

A Big Obstacle!

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed $2 S A T$ is easy to solve-indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: $(u \vee w) \wedge(v \vee w) \wedge(\bar{u} \vee \bar{v} \vee \bar{w})$.
- Expresses the correct behavior of a NAND gate: $w=u$ NAND v.
- Equation form: $w=1$ - uv.
- If the NAND gate has multiple outgoing wires w_{i}, add equations $w_{i}=w$.
- General 3-clause $(u \vee \bar{v} \vee w)$ becomes equation $(1-u) v(1-w)=0$.
- Add equations $u^{2}-u=0, v^{2}-v=0$, and $w^{2}-w=0$ to limit to 0-1 solutions.

A Big Obstacle!

- Let's recall the logical Satisfiability problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve-indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: $(u \vee w) \wedge(v \vee w) \wedge(\bar{u} \vee \bar{v} \vee \bar{w})$.
- Expresses the correct behavior of a NAND gate: $w=u$ NAND v.
- Equation form: $w=1$ - uv.
- If the NAND gate has multiple outgoing wires w_{i}, add equations $w_{i}=w$.
- General 3-clause $(u \vee \bar{v} \vee w)$ becomes equation $(1-u) v(1-w)=0$.
- Add equations $u^{2}-u=0, v^{2}-v=0$, and $w^{2}-w=0$ to limit to 0-1 solutions.
- Thus equation solving is NP-hard.

NP-Hard and Complete

- Recall we defined NP $=\operatorname{NTIME}\left[n^{O(1)}\right]$.

NP-Hard and Complete

- Recall we defined NP $=\operatorname{NTIME}\left[n^{O(1)}\right]$. What does this mean?

NP-Hard and Complete

- Recall we defined NP $=\operatorname{NTIME}\left[n^{O(1)}\right]$. What does this mean?
- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.

NP-Hard and Complete

- Recall we defined NP $=\operatorname{NTIME}\left[n^{O(1)}\right]$. What does this mean?
- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof-that's OK.

NP-Hard and Complete

- Recall we defined NP $=\operatorname{NTIME}\left[n^{O(1)}\right]$. What does this mean?
- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof-that's OK.
- For 3SAT the inspired quess is an assignment $a \in\{0,1\}^{n}$ making $\phi(a)=$ true .

NP-Hard and Complete

- Recall we defined NP $=\operatorname{NTIME}\left[n^{O(1)}\right]$. What does this mean?
- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof-that's OK.
- For 3SAT the inspired quess is an assignment $a \in\{0,1\}^{n}$ making $\phi(a)=$ true .
- For equations the inspired guess is a solution; it is easy to check unless the math is too Complex.

NP-Hard and Complete

- Recall we defined NP $=\operatorname{NTIME}\left[n^{O(1)}\right]$. What does this mean?
- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof-that's OK.
- For 3SAT the inspired quess is an assignment $a \in\{0,1\}^{n}$ making $\phi(a)=$ true .
- For equations the inspired guess is a solution; it is easy to check unless the math is too Complex.
- So 3SAT is in NP and basically so is equation solving-over $\{0,1\}$-solutions anyway.
Definition. A decision problem B is $N P$-hard if for all problems A in NP there is a polynomial-time computable translation function f such that for all inputs x of problem A, the string $y=f(x)$ is an equivalent input of problem B. And B is $N P$-complete if also B is in NP.

Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in$ NP there is a deterministic TM M that verifies the relation " y is a lucky guess for $x \in A$ " in polynomial time.

Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in$ NP there is a deterministic TM M that verifies the relation " y is a lucky guess for $x \in A$ " in polynomial time.
- The memory map for M includes the bits x_{1}, \ldots, x_{n} of x and y_{1}, \ldots, y_{m} of potential verifying strings y, where $m=n^{O(1)}$.

Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in$ NP there is a deterministic TM M that verifies the relation " y is a lucky guess for $x \in A$ " in polynomial time.
- The memory map for M includes the bits x_{1}, \ldots, x_{n} of x and y_{1}, \ldots, y_{m} of potential verifying strings y, where $m=n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is 'yes') if and only if ϕ is satisfiable.

Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in$ NP there is a deterministic TM M that verifies the relation " y is a lucky guess for $x \in A$ " in polynomial time.
- The memory map for M includes the bits x_{1}, \ldots, x_{n} of x and y_{1}, \ldots, y_{m} of potential verifying strings y, where $m=n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is 'yes') if and only if ϕ is satisfiable.
- Most of ϕ doesn't involve x-only at the end we will substitute the actual bits of x for the variables x_{1}, \ldots, x_{n}.

Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in$ NP there is a deterministic TM M that verifies the relation " y is a lucky guess for $x \in A$ " in polynomial time.
- The memory map for M includes the bits x_{1}, \ldots, x_{n} of x and y_{1}, \ldots, y_{m} of potential verifying strings y, where $m=n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is 'yes') if and only if ϕ is satisfiable.
- Most of ϕ doesn't involve x-only at the end we will substitute the actual bits of x for the variables x_{1}, \ldots, x_{n}.
- The left-over variables in ϕ will be y_{1}, \ldots, y_{m} and extra wire variables u, v, w, \ldots including a variable w_{o} for the output value.

Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in$ NP there is a deterministic TM M that verifies the relation " y is a lucky guess for $x \in A$ " in polynomial time.
- The memory map for M includes the bits x_{1}, \ldots, x_{n} of x and y_{1}, \ldots, y_{m} of potential verifying strings y, where $m=n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is 'yes') if and only if ϕ is satisfiable.
- Most of ϕ doesn't involve x-only at the end we will substitute the actual bits of x for the variables x_{1}, \ldots, x_{n}.
- The left-over variables in ϕ will be y_{1}, \ldots, y_{m} and extra wire variables u, v, w, \ldots including a variable w_{0} for the output value.
- Each of these variables can appear negated: $\bar{y}_{1}, \ldots, \bar{y}_{m}, \bar{u}, \bar{v}, \bar{w}$ etc.

Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in$ NP there is a deterministic TM M that verifies the relation " y is a lucky guess for $x \in A$ " in polynomial time.
- The memory map for M includes the bits x_{1}, \ldots, x_{n} of x and y_{1}, \ldots, y_{m} of potential verifying strings y, where $m=n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is 'yes') if and only if ϕ is satisfiable.
- Most of ϕ doesn't involve x-only at the end we will substitute the actual bits of x for the variables x_{1}, \ldots, x_{n}.
- The left-over variables in ϕ will be y_{1}, \ldots, y_{m} and extra wire variables u, v, w, \ldots including a variable w_{0} for the output value.
- Each of these variables can appear negated: $\bar{y}_{1}, \ldots, \bar{y}_{m}, \bar{u}, \bar{v}, \bar{w}$ etc.
- The key is what we covered in day 2: the memory map of M can be converted into Boolean circuits C_{n}, one for each n (and the corresponding m) such that M accepts (x, y) if and only if $C_{n}(x, y)=1$. We can build C_{n} using only NAND gates.

Finishing the Proof

- For each NAND gate g, let u_{g} and v_{g} be its two incoming wires (these can be inputs x_{i} or y_{j}) and w_{1}, \ldots, w_{ℓ} its output wires.

Finishing the Proof

- For each NAND gate g, let u_{g} and v_{g} be its two incoming wires (these can be inputs x_{i} or y_{j}) and w_{1}, \ldots, w_{ℓ} its output wires.
- Add to ϕ the clauses $\left(u_{g} \vee w_{k}\right) \wedge\left(v_{g} \vee w_{k}\right) \wedge\left(\bar{u}_{g} \vee \bar{v}_{g} \vee \bar{w}_{g}\right)$ for each $k, 1 \leq k \leq \ell$.

Finishing the Proof

- For each NAND gate g, let u_{g} and v_{g} be its two incoming wires (these can be inputs x_{i} or y_{j}) and w_{1}, \ldots, w_{ℓ} its output wires.
- Add to ϕ the clauses $\left(u_{g} \vee w_{k}\right) \wedge\left(v_{g} \vee w_{k}\right) \wedge\left(\bar{u}_{g} \vee \bar{v}_{g} \vee \bar{w}_{g}\right)$ for each $k, 1 \leq k \leq \ell$.
- And add to ϕ the "singleton clause" $\left(w_{o}\right)$ for the output wire-to satisfy ϕ, this must have value 1 .

Finishing the Proof

- For each NAND gate g, let u_{g} and v_{g} be its two incoming wires (these can be inputs x_{i} or y_{j}) and w_{1}, \ldots, w_{ℓ} its output wires.
- Add to ϕ the clauses $\left(u_{g} \vee w_{k}\right) \wedge\left(v_{g} \vee w_{k}\right) \wedge\left(\bar{u}_{g} \vee \bar{v}_{g} \vee \bar{w}_{g}\right)$ for each $k, 1 \leq k \leq \ell$.
- And add to ϕ the "singleton clause" $\left(w_{o}\right)$ for the output wire-to satisfy ϕ, this must have value 1 .
- Finally substitute the bits of x for x_{1}, \ldots, x_{n}. This finishes $\phi=f(x)$.

Finishing the Proof

- For each NAND gate g, let u_{g} and v_{g} be its two incoming wires (these can be inputs x_{i} or y_{j}) and w_{1}, \ldots, w_{ℓ} its output wires.
- Add to ϕ the clauses $\left(u_{g} \vee w_{k}\right) \wedge\left(v_{g} \vee w_{k}\right) \wedge\left(\bar{u}_{g} \vee \bar{v}_{g} \vee \bar{w}_{g}\right)$ for each $k, 1 \leq k \leq \ell$.
- And add to ϕ the "singleton clause" $\left(w_{o}\right)$ for the output wire-to satisfy ϕ, this must have value 1 .
- Finally substitute the bits of x for x_{1}, \ldots, x_{n}. This finishes $\phi=f(x)$.
- Then ϕ is satisfiable \Longleftrightarrow there is a setting of y_{1}, \ldots, y_{m} and all other u_{g}, v_{g}, w_{k} variables that satisfies $\phi \Longleftrightarrow$ there is a y that M verifies for $x \Longleftrightarrow x \in A$.

Finishing the Proof

- For each NAND gate g, let u_{g} and v_{g} be its two incoming wires (these can be inputs x_{i} or y_{j}) and w_{1}, \ldots, w_{ℓ} its output wires.
- Add to ϕ the clauses $\left(u_{g} \vee w_{k}\right) \wedge\left(v_{g} \vee w_{k}\right) \wedge\left(\bar{u}_{g} \vee \bar{v}_{g} \vee \bar{w}_{g}\right)$ for each $k, 1 \leq k \leq \ell$.
- And add to ϕ the "singleton clause" $\left(w_{o}\right)$ for the output wire-to satisfy ϕ, this must have value 1 .
- Finally substitute the bits of x for x_{1}, \ldots, x_{n}. This finishes $\phi=f(x)$.
- Then ϕ is satisfiable \Longleftrightarrow there is a setting of y_{1}, \ldots, y_{m} and all other u_{g}, v_{g}, w_{k} variables that satisfies $\phi \Longleftrightarrow$ there is a y that M verifies for $x \Longleftrightarrow x \in A$.
- Since the memory map has size at worst quadratic in the time and space by M, which are both $n^{O(1)}$, and since the rules for building ϕ are so regular, $f(x)=\phi$ is computed in polynomial time.

Finishing the Proof

- For each NAND gate g, let u_{g} and v_{g} be its two incoming wires (these can be inputs x_{i} or y_{j}) and w_{1}, \ldots, w_{ℓ} its output wires.
- Add to ϕ the clauses $\left(u_{g} \vee w_{k}\right) \wedge\left(v_{g} \vee w_{k}\right) \wedge\left(\bar{u}_{g} \vee \bar{v}_{g} \vee \bar{w}_{g}\right)$ for each $k, 1 \leq k \leq \ell$.
- And add to ϕ the "singleton clause" $\left(w_{o}\right)$ for the output wire-to satisfy ϕ, this must have value 1 .
- Finally substitute the bits of x for x_{1}, \ldots, x_{n}. This finishes $\phi=f(x)$.
- Then ϕ is satisfiable \Longleftrightarrow there is a setting of y_{1}, \ldots, y_{m} and all other u_{g}, v_{g}, w_{k} variables that satisfies $\phi \Longleftrightarrow$ there is a y that M verifies for $x \Longleftrightarrow x \in A$.
- Since the memory map has size at worst quadratic in the time and space by M, which are both $n^{O(1)}$, and since the rules for building ϕ are so regular, $f(x)=\phi$ is computed in polynomial time.
- So 3SAT is NP-hard, and since it is in NP, it is NP-complete. \square

And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_{g}, v_{g} and outgoing wire w_{g} we give the equation

$$
1-u_{g} v_{g}-w_{g}=0 .
$$

And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_{g}, v_{g} and outgoing wire w_{g} we give the equation

$$
1-u_{g} v_{g}-w_{g}=0 .
$$

- For any other outgoing wires w_{k}, use $w_{g}-w_{k}=0$ to set them all equal.

And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_{g}, v_{g} and outgoing wire w_{g} we give the equation

$$
1-u_{g} v_{g}-w_{g}=0
$$

- For any other outgoing wires w_{k}, use $w_{g}-w_{k}=0$ to set them all equal.
- And we have $1-w_{o}=0$ for the output wire and the "Boolean equations" $u_{g}^{2}-u_{g}=0$ (etc.) for every variable. That's it.

And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_{g}, v_{g} and outgoing wire w_{g} we give the equation

$$
1-u_{g} v_{g}-w_{g}=0
$$

- For any other outgoing wires w_{k}, use $w_{g}-w_{k}=0$ to set them all equal.
- And we have $1-w_{o}=0$ for the output wire and the "Boolean equations" $u_{g}^{2}-u_{g}=0$ (etc.) for every variable. That's it.
- This makes the sokving problem for simple equations likewise NP-complete.

And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_{g}, v_{g} and outgoing wire w_{g} we give the equation

$$
1-u_{g} v_{g}-w_{g}=0
$$

- For any other outgoing wires w_{k}, use $w_{g}-w_{k}=0$ to set them all equal.
- And we have $1-w_{o}=0$ for the output wire and the "Boolean equations" $u_{g}^{2}-u_{g}=0$ (etc.) for every variable. That's it.
- This makes the sokving problem for simple equations likewise NP-complete. \square

The equations in this proof are indeed very simple-degree 2 for the $u_{g} v_{g}$ terms and the Boolean equations.

And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_{g}, v_{g} and outgoing wire w_{g} we give the equation

$$
1-u_{g} v_{g}-w_{g}=0
$$

- For any other outgoing wires w_{k}, use $w_{g}-w_{k}=0$ to set them all equal.
- And we have $1-w_{o}=0$ for the output wire and the "Boolean equations" $u_{g}^{2}-u_{g}=0$ (etc.) for every variable. That's it.
- This makes the sokving problem for simple equations likewise NP-complete. \square

The equations in this proof are indeed very simple-degree 2 for the $u_{g} v_{g}$ terms and the Boolean equations. Does this really mean that solving them is hard in practice?

A Practical Sea-Change

- Classic course and attitude: reduce from (3)SAT to other problems to show they are hard.

A Practical Sea-Change

- Classic course and attitude: reduce from (3)SAT to other problems to show they are hard.
- Newer tide: reduce problems to SAT and to equation solving because many individual instances terminate acceptably quickly.

A Practical Sea-Change

- Classic course and attitude: reduce from (3)SAT to other problems to show they are hard.
- Newer tide: reduce problems to SAT and to equation solving because many individual instances terminate acceptably quickly.
- General reason: the formulas/equations used in the hardness proof are specialized enough that many real-world instances avoid their "region of hardness."

A Practical Sea-Change

- Classic course and attitude: reduce from (3)SAT to other problems to show they are hard.
- Newer tide: reduce problems to SAT and to equation solving because many individual instances terminate acceptably quickly.
- General reason: the formulas/equations used in the hardness proof are specialized enough that many real-world instances avoid their "region of hardness."
- Indeed, randomly generated instances of 3SAT with n variables and m clauses tend to be easily solved.

A Practical Sea-Change

- Classic course and attitude: reduce from (3)SAT to other problems to show they are hard.
- Newer tide: reduce problems to SAT and to equation solving because many individual instances terminate acceptably quickly.
- General reason: the formulas/equations used in the hardness proof are specialized enough that many real-world instances avoid their "region of hardness."
- Indeed, randomly generated instances of 3SAT with n variables and m clauses tend to be easily solved. If m is larger than a certain window the formula tends to have an easily-seen contradiction.

A Practical Sea-Change

- Classic course and attitude: reduce from (3)SAT to other problems to show they are hard.
- Newer tide: reduce problems to SAT and to equation solving because many individual instances terminate acceptably quickly.
- General reason: the formulas/equations used in the hardness proof are specialized enough that many real-world instances avoid their "region of hardness."
- Indeed, randomly generated instances of 3SAT with n variables and m clauses tend to be easily solved. If m is larger than a certain window the formula tends to have an easily-seen contradiction. if m is smaller than the window, then "standard greedy" tends to work.

A Standard Greedy Heuristic Algorithm

```
set<Clause> TODO = clauses(phi);
set<Variable> FREE = {x_1,..., x_n}
while (TODO and FREE are both nonempty) {
```

Choose the x i or $-x$ i in most clauses TODO;
Set a_i = true or false accordingly;
TODO $\backslash=$ \{newly satisfied clauses \};
FREE $\backslash=\left\{\mathrm{x} _\mathrm{i}\right\}$;
\}
if (empty TODO) \{
return satisfying assignment (a_1,..., a_n);
\} else \{
fail; maybe re-try with randomised x _i choices?
\}

A Standard Greedy Heuristic Algorithm

```
set<Clause> TODO = clauses(phi);
set<Variable> FREE = {x_1,..., x_n}
while (TODO and FREE are both nonempty) {
Choose the x_i or -x_i in most clauses TODO;
Set a_i = true or false accordingly;
TODO \= {newly satisfied clauses};
FREE \= {x_i};
}
if (empty TODO) {
return satisfying assignment (a_1,...,a_n);
```

\} else \{
fail; maybe re-try with randomised x _i choices?
\}
Current "SAT Solvers" use more-sophisticated heuristics.

Equation Solvers Use a Hammer

Represent a given set of pure-arithmetic equations abstractly as

$$
\begin{aligned}
p_{1}\left(z_{1}, \ldots, z_{n}\right) & =0 ; \\
p_{2}\left(z_{1}, \ldots, z_{n}\right) & =0 ; \\
\vdots & =0 ; \\
p_{s}\left(z_{1}, \ldots, z_{n}\right) & =0 ;
\end{aligned}
$$

where each p_{i} is a multi-variable polynomial. Now observe:

Equation Solvers Use a Hammer

Represent a given set of pure-arithmetic equations abstractly as

$$
\begin{aligned}
p_{1}\left(z_{1}, \ldots, z_{n}\right) & =0 ; \\
p_{2}\left(z_{1}, \ldots, z_{n}\right) & =0 ; \\
\vdots & =0 ; \\
p_{s}\left(z_{1}, \ldots, z_{n}\right) & =0 ;
\end{aligned}
$$

where each p_{i} is a multi-variable polynomial. Now observe:
For any polynomials q_{1}, \ldots, q_{s} in the same variables \vec{z}, the polynomial

$$
r(\vec{z})=q_{1}(\vec{z}) p_{1}(\vec{z})+q_{2}(\vec{z}) p_{2}(\vec{z})+\cdots q_{s}(\vec{z}) p_{s}(\vec{z})
$$

must also be equated to 0 . Call it an "algebraic consequence."

Idea of Buchberger's Algorithm

- Technically the algebraic consequences form a polynomial ideal.

Idea of Buchberger's Algorithm

- Technically the algebraic consequences form a polynomial ideal.
- Some $r(\vec{z}$ have cancellations that make solutions easier to see.

Idea of Buchberger's Algorithm

- Technically the algebraic consequences form a polynomial ideal.
- Some $r(\vec{z}$ have cancellations that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his Nullstellensatz ("Theorem About Zeroes") that if the equations have no solution over the complex numbers, then the constant 1 (which would give the contradictory equation $1=0$) is an algebraic consequence!

Idea of Buchberger's Algorithm

- Technically the algebraic consequences form a polynomial ideal.
- Some $r(\vec{z}$ have cancellations that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his Nullstellensatz ("Theorem About Zeroes") that if the equations have no solution over the complex numbers, then the constant 1 (which would give the contradictory equation $1=0$) is an algebraic consequence!
- Buchberger's Algorithm (BA) compiles a certain exhaustive list of non-redundant consequence called a Gr'obner basis.

Idea of Buchberger's Algorithm

- Technically the algebraic consequences form a polynomial ideal.
- Some $r(\vec{z}$ have cancellations that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his Nullstellensatz ("Theorem About Zeroes") that if the equations have no solution over the complex numbers, then the constant 1 (which would give the contradictory equation $1=0$) is an algebraic consequence!
- Buchberger's Algorithm (BA) compiles a certain exhaustive list of non-redundant consequence called a Gr'obner basis.
- Often the basis finds simplified equations that allow solutions to be read off.

Idea of Buchberger's Algorithm

- Technically the algebraic consequences form a polynomial ideal.
- Some $r(\vec{z}$ have cancellations that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his Nullstellensatz ("Theorem About Zeroes") that if the equations have no solution over the complex numbers, then the constant 1 (which would give the contradictory equation $1=0$) is an algebraic consequence!
- Buchberger's Algorithm (BA) compiles a certain exhaustive list of non-redundant consequence called a Gr'obner basis.
- Often the basis finds simplified equations that allow solutions to be read off.
- Sometimes BA runs for time $\approx 2^{d^{n}}$ where d is the max degre of the given polynomials p_{1}, \ldots, p_{s}, which in worst case is double-exponentially horrible.

Idea of Buchberger's Algorithm

- Technically the algebraic consequences form a polynomial ideal.
- Some $r(\vec{z}$ have cancellations that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his Nullstellensatz ("Theorem About Zeroes") that if the equations have no solution over the complex numbers, then the constant 1 (which would give the contradictory equation $1=0$) is an algebraic consequence!
- Buchberger's Algorithm (BA) compiles a certain exhaustive list of non-redundant consequence called a Gr'obner basis.
- Often the basis finds simplified equations that allow solutions to be read off.
- Sometimes BA runs for time $\approx 2^{d^{n}}$ where d is the max degre of the given polynomials p_{1}, \ldots, p_{s}, which in worst case is double-exponentially horrible.
- But in many cases it finishes quickly enough, so people use it...

Example: Graph 3-Coloring to SAT and EQNs

Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with "atoms" and then without.]

Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with "atoms" and then without.]
[show equations on board, maybe run them?]

Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with "atoms" and then without.]
[show equations on board, maybe run them?]
[show Buchberger's notes]

