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Symmetric Functions Are. ..

Hard:
e Parity ¢ ACO.
@ Majority is complete for TCO.
Easy:
e Over z € {0,1}", depend only on #1(z).
e ACCY C symm(quasi-poly many A) (Beigel-Tarui)
@ The elementary symmetric functions are easy even in Z,,
(Gromulsz).

Main Theorems: Senses in which every function f is
complexity-equivalent to some symmetric function g.

Why care? Symmetric functions have great algebraic structure.
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Symmetric Functions Over Fields (And Rings R)

e f: R™ — R is symmetric if for all permutations 7 on [n],
f(rz) = f(z).
o Symmetric functions closed under +, *.

o Hence for any symmetric functions o1,...,0, : R{V — Ry and
polynomials f : R — R, the function f': R — Ry is
symmetric, where

'y yw) = fo1(F), -, an(@).

o Provided each o;(y1,...,yn) is easy to compute, ' < f.
@ When does f < f'?

o Note: if F' is a finite field then every function from F™ to F is a
polynomial.



Symmetric Functions Capture General Functions

Fast Symmetrization

Task: Pick the o; so that given any @ € Ry one can efficiently find
b € RY such that

a1 = 01(b), a2 = 02(b), ..., an = 4(b)

Then

So f < f'.
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Coding Via Symmetric Functions

We want & = (01,...,0,), so that & : RY — RZ, to be onto R} and
efficiently tnvertible as well as computable.

Complexity considerations:
o Size of Ry and N7 Define s = 1 + logg, (| R1|" /| Ro|™).
o If N =n, and Ry is a field F', then R; can be the field extension F'°.

@ Degree d' of f' as a symmetric polynomial,vs. degree d of f.
e Time u(n) to invert X, i.e. to compute
n @) =b.

e Time ¢(n) to compute .

Two main constructions in paper give different tradeofs.
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1. Elementary Symmetrization

o The elementary symmetric polynomials s1,3,...,8, : R® — R
are defined by

Si(bl,...,bn): Z Hbj.
JC[n],|J|=i5€]
So s1(b) = by + -+ + by,
53(b) = bybg + -+ byby + - bybz 4 --- + by 1 by, and
Sp = b1b2--~ bn.
o Form an algebra basis for all symmetric polynomials on R™.

o Idea is to define the following, which gives degree d' = dn:

f'(b1,...,bp) = F(s1(B),..., sn()).

e By counting, cannot have |R;1| = |Rg| = ¢, so s > 1. Theorem:
s > [logon] — 3.
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Simple Example

The 2 x 2 permanent polynomial ad + bc undergoes the substitutions

— e+f+g+h

— ef +eg+ eh+ fg+ fh+ gh
— efg + efh + egh + fgh

— efgh

Q0o o 8

to yield
e?f2g + e%fg® + ef?9% + e?f2h + e2g*h + f2g°h
+e?fh® + ef*h® + e®gh® + f2gh® + eg®h® + fg*h?
+4efgh + 4ef>gh + 4efg’h + 4efgh?
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Elementary Facts

For a formal single variable z,

n n

[[(z+b:)=2"+> si(ba,...,ba)z" % (1)

o Fact: All s;(b) are computed in O(n(logn)?) time by using FFT
to multiply out the product on the left-hand side of (1).

e For inversion, given (ai,..., an), we want b = (b1,..., b,) such
that for each %, a; = s;(?). Define

¢=¢a(z)=2"+ Z a;zt L
i=1

e By fact (1), our goal is to split ¢ into linear factors:

¢ = H(m + b;).

o This will make a; = s;(b) for each 1.
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Splitting Can Be Hard to Do

The problem is that ¢ may not—indeed by the counting, generally will
not—split into linear factors over Rg. We need Ry to be a field F, and
R; to be an extension F'°. How large must s be?

Lemma (well-known)

The mimimum s equals the least common multiple of the degrees of
all 1rreducible factors of ¢ over F.

Alas, this s can be as high as nOW/n), making the extension field
elements themselves have exponential size.

Theorem (also known)

Przcro[log s > log?n] < 5—0(y/logn)

Thus there are exp-few bad @ that make s larger than n©(ogn),
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Quasi-Good Randomized Algorithm

@ The theorem gives various deterministic and randomized
quasi-poly(n) time algorithms that work on all except the “bad” @
arguments.

o To get correctness on all, we employ one more randomization.

o Take a random slope m for a line through @ and define

Pai(y) = flar + my, a2 + may, ..., an + myy).

o A set S of at least 3d + 3 points on this line will contain relatively
few bad points.

e Using S and polynomial interpolation, can recover f(a) = Pz(0).

Theorem (paper has more-general form)

If the symmetric function f s in time v(n), then
f € RTIME[du(n) + nOUen) 0] O
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2. Second Symmetrization

@ Can we do better than quasi-polynomial time overhead?
@ Answer is yes, but degree of f/ becomes higher: d’' = ¢g%dn log, n.
o Still needs an extension field, but s <1+ [log, n].
°

Less algebraically simple to define, but running time basically
cannot be beat:

Bvery function f : F§ — Fq 1s equivalent to a symmetric function
f': Fg — F, with above parameters, up to O(n) deterministic
time complezity (plus poly(q,s) pre-processing to represent Fgs ).

Note that /' maps from the extension field into the original field.
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Idea: How to encode information symmetrically?

Recall the task is to pick symmetric o; so that given any @ € Rj one
can efficiently find b € RY' such that

ap = a1(b), ag = 02(B), .. ., a4 = 0 (b)

so that

—, —,

(b1, bn) = f(o1(D),...,0n(D)).

Idea is to encode b; = (z, a;). In general we have pairs (7, a). How do we
know which index 7 gives us a;?7 We need to create a Kronecker delta
function §,(7). Then each a; can be represented symmetrically as a sum

n

Over finite fields, all this can be done with polynomials.
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Proof of Second Main Theorem

@ Pre-process to represent Fgs by an irreducible polynomial with
formal root v, giving every element a of the extension field as
0
a— Z amyt = (as—1,-..,00).
{=s—1
@ By choice of s, n < ¢° 1, so embed [n] into first s — 1 places.
@ Next construct polynomials 7 that project out the k-th place:

’R'k(a) = Of.

@ To do so, define V to be the Vandermonde matrix whose row £,
0 < £ < s—1, comprises the first s powers of fyql. Then using

column vectors,

-1 2
V(as—h s .,0[0) = (aqs ’e. ';aq zaq7a)z

80 ay is obtained by invering V and dotting its k-th row with the
right-hand side. Use polynomial closed-form for. V=1 to get .
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Key Coding Lemma

Abbreviate Fys to E and F; to F, and let o stand for a minus its ag
co-ordinate, which may be an embedded value in [n].

Lemma

For each j € [n] we can construct a symmetric polynomaial

¢; : E" — F of degree at most sq° such that for any elements

al,...,a™ in B,

The proof picks apart 7 into the s — 1 co-ordinates (js—1,...,71) of its
embedded value in F*~!. First idea is to represent the Kronecker delta
function on the embedded values, namely ¢;(7) = 1if 2 = j and 0
otherwise.
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Kronecker Delta and Place Picker

This formula makes d;(7) = 1 since the fractions are identically 1:

s—1 ul_,B
5]'(’11,571,...,’&1): H H A ,3

e1per iy T
And §;(2) = 0 for ¢+ # 7 because the numerator hits a zero. Now define:

n

¢i(21,...,20) = Zéj(ﬂs_l(zi), ceaym1(25)) - mo(2:).

1=1

This picks out only those aé for which the first s — 1 co-ordinates yield
J, thus proving the lemma’s equation. Moreover ¢; is symmetric, thus
proving the lemma.
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Completing the Construction

Finally we define f' : E™ — F by
F'(8) = F($1(8), $2(b), - - -, $n(b),

Since each ¢; has degree at most sq°, and s is chosen to make

g°~! < ngq, f' has degree at most sndq?.

To compute f’ from f, one linear scan of b can identify all the terms
that will contribute to the sums in the Lemma, giving the arguments of
f

To compute f(&) with arguments from the base field F', we need to find
b over the extension field such that @;(b ) = a;, and find it efficiently.
This is done by using the embedded natural numbers, which pick out
indices, as co-ordinates:

b-; = (’1;571, .. .,'I,j_, a,i).

Then for all 5, ¢;(b) = mo(b;) = a;, as needed. This is done in O(sn)
time treating entries as units, which gives O(n) time overall. []
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Infinite Fields—7?

@ The elementary symmetrization works over any field.

@ The second one does not, because the coding tricks require finite
fields.

o Different coding tricks work over the reals or complex numbers, but
do not yield polynomials.

o Paper gives a result over the reals.
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Open Questions

o Can we prove that no symmetrization by polynomials over an
infinite field gives O(n) time?

o Can the possibility N > n be used to improve either
symmetrization?

o Can either symmetrization be used in a positive way to enable
more-structured analysis of, say, symmetrized permanent
polynomials?

@ Can the idea be used to derive more (conditional) lower bounds?

o Are fields needed? What can be done over the rings Z,, for m
composite?



