
Symmetric Functions Capture General Functions

Symmetric Functions Capture General Functions
36th MFCS, 2011, EaGL Workshop 9/11/11

Richard J. Lipton1 Kenneth W. Regan2 Atri Rudra3

Georgia Tech University at Bu�alo (SUNY)

September 11, 2011

1Research connected to blog �Gödel's Lost Letter and P = NP�
2Ditto
3Supported by NSF CAREER grant CCF-0844796



Symmetric Functions Capture General Functions

Symmetric Functions Are. . .

Hard:

Parity =2 AC0.

Majority is complete for TC0.

Easy:

Over x 2 f 0; 1 gn , depend only on #1(x ).

ACC0 � symm(quasi-poly many ^) (Beigel-Tarui)
The elementary symmetric functions are easy even in Zm
(Gromulsz).

Main Theorems: Senses in which every function f is
complexity-equivalent to some symmetric function g .

Why care? Symmetric functions have great algebraic structure.



Symmetric Functions Capture General Functions

Symmetric Functions Over Fields (And Rings R)

f : Rn �! R is symmetric if for all permutations � on [n ],
f (�x ) = f (x ).

Symmetric functions closed under +; �.
Hence for any symmetric functions �1; : : : ; �n : RN

1 �! R0 and
polynomials f : Rn

0 �! R, the function f 0 : RN
1 �! R0 is

symmetric, where

f 0(y1; : : : ; yN ) = f (�1(~y); : : : ; �n(~y)):

Provided each �i (y1; : : : ; yN ) is easy to compute, f 0 � f .

When does f � f 0?
Note: if F is a �nite �eld then every function from Fn to F is a
polynomial.



Symmetric Functions Capture General Functions

Fast Symmetrization

Goal: Compute f (a1; : : : ; an) over R0.

Given: Can compute f 0(~b) = f (�1(~b); : : : ; �n(~b)) for any b 2 RN
1 .

Task: Pick the �i so that given any ~a 2 Rn
0 one can e�ciently �nd

~b 2 RN
1 such that

a1 = �1(~b); a2 = �2(~b); : : : ; an = �n(~b)

Then
f (~a) = f 0(~b):

So f � f 0.



Symmetric Functions Capture General Functions

Coding Via Symmetric Functions

We want � = (�1; : : : ; �n), so that � : RN
1 �! Rn

0 , to be onto Rn
0 and

e�ciently invertible as well as computable.

Complexity considerations:

Size of R1 and N ? De�ne s = 1+ logjR0j(jR1jN =jR0jn).
If N = n , and R0 is a �eld F , then R1 can be the �eld extension F s .

Degree d 0 of f 0 as a symmetric polynomial,vs. degree d of f .

Time u(n) to invert �, i.e. to compute

��1(~a) = ~b:

Time t(n) to compute �.

Two main constructions in paper give di�erent tradeo�s.



Symmetric Functions Capture General Functions

1. Elementary Symmetrization

The elementary symmetric polynomials s1; s2; : : : ; sn : Rn �! R

are de�ned by

si (b1; : : : ; bn) =
X

J�[n ];jJ j=i

Y

j2J
bj :

So s1(~b) = b1 + � � �+ bn ,
s2(~b) = b1b2 + � � �+ b1bn + � � � b2b3 + � � �+ bn�1bn , and
sn = b1b2 � � � bn .
Form an algebra basis for all symmetric polynomials on Rn .

Idea is to de�ne the following, which gives degree d 0 = dn :

f 0(b1; : : : ; bn) = f (s1(~b); : : : ; sn(~b)):

By counting, cannot have jR1j = jR0j = q , so s > 1. Theorem:
s � dlog2 ne � 3.



Symmetric Functions Capture General Functions

Simple Example

The 2� 2 permanent polynomial ad + bc undergoes the substitutions

a 7! e + f + g + h

b 7! ef + eg + eh + fg + fh + gh

c 7! efg + efh + egh + fgh

d 7! efgh

to yield

e2f 2g + e2fg2 + ef 2g2 + e2f 2h + e2g2h + f 2g2h

+e2fh2 + ef 2h2 + e2gh2 + f 2gh2 + eg2h2 + fg2h2

+4e2fgh + 4ef 2gh + 4efg2h + 4efgh2



Symmetric Functions Capture General Functions

Elementary Facts

For a formal single variable x ,
nY

i=1

(x + bi ) = xn +
nX

i=1

si (b1; : : : ; bn)x
i�1: (1)

Fact: All si (~b) are computed in O(n(logn)2) time by using FFT
to multiply out the product on the left-hand side of (1).
For inversion, given (a1; : : : ; an), we want ~b = (b1; : : : ; bn) such
that for each i , ai = si (~b). De�ne

� = �~a(x ) = xn +
nX

i=1

aix
i�1:

By fact (1), our goal is to split � into linear factors:

� =
Y

i

(x + bi ):

This will make ai = si (~b) for each i .



Symmetric Functions Capture General Functions

Splitting Can Be Hard to Do

The problem is that � may not�indeed by the counting, generally will
not�split into linear factors over R0. We need R0 to be a �eld F , and
R1 to be an extension F s . How large must s be?

Lemma (well-known)

The minimum s equals the least common multiple of the degrees of

all irreducible factors of � over F.

Alas, this s can be as high as nO(
p
n), making the extension �eld

elements themselves have exponential size.

Theorem (also known)

Pr~a2Fn [log s > log2 n ] < 2�
(
p

log n).

Thus there are exp-few bad ~a that make s larger than nO(log n).



Symmetric Functions Capture General Functions

Quasi-Good Randomized Algorithm

The theorem gives various deterministic and randomized
quasi-poly(n) time algorithms that work on all except the �bad� ~a
arguments.

To get correctness on all , we employ one more randomization.

Take a random slope ~m for a line through ~a and de�ne

P~a(y) = f (a1 +m1y ; a2 +m2y ; : : : ; an +mny):

A set S of at least 3d + 3 points on this line will contain relatively
few bad points.

Using S and polynomial interpolation, can recover f (~a) = P~a(0).

Theorem (paper has more-general form)

If the symmetric function f is in time v(n), then
f 2 RTIME[dv(n) + nO(log n)qO(1)]. �



Symmetric Functions Capture General Functions

2. Second Symmetrization

Can we do better than quasi-polynomial time overhead?

Answer is yes, but degree of f 0 becomes higher: d 0 = q2dn logq n .

Still needs an extension �eld, but s � 1+ dlogq ne.
Less algebraically simple to de�ne, but running time basically
cannot be beat:

Theorem

Every function f : Fn
q �! Fq is equivalent to a symmetric function

f 0 : Fn
qs �! Fq with above parameters, up to ~O(n) deterministic

time complexity (plus poly(q ; s) pre-processing to represent Fqs ).

Note that f 0 maps from the extension �eld into the original �eld.



Symmetric Functions Capture General Functions

Idea: How to encode information symmetrically?

Recall the task is to pick symmetric �i so that given any ~a 2 Rn
0 one

can e�ciently �nd ~b 2 RN
1 such that

a1 = �1(~b); a2 = �2(~b); : : : ; an = �n(~b)

so that
f 0(b1; : : : ; bn) = f (�1(~b); : : : ; �n(~b)):

Idea is to encode bi = hi ; ai i. In general we have pairs hj ; ai. How do we
know which index j gives us ai? We need to create a Kronecker delta
function �i (j ). Then each ai can be represented symmetrically as a sum

ai =
nX

j=1

�i (j )aj :

Over �nite �elds, all this can be done with polynomials.



Symmetric Functions Capture General Functions

Proof of Second Main Theorem

Pre-process to represent Fqs by an irreducible polynomial with
formal root 
, giving every element � of the extension �eld as

� =
0X

`=s�1
�`


` = (�s�1; : : : ; �0):

By choice of s , n � qs�1, so embed [n ] into �rst s � 1 places.
Next construct polynomials �k that project out the k -th place:

�k (�) = �k :

To do so, de�ne V to be the Vandermonde matrix whose row `,
0 � ` � s � 1, comprises the �rst s powers of 
q

`

. Then using
column vectors,

V (�s�1; : : : ; �0) = (�q
s�1

; : : : ; �q
2

; �q ; �);

so �k is obtained by invering V and dotting its k -th row with the
right-hand side. Use polynomial closed-form for V �1 to get �k .



Symmetric Functions Capture General Functions

Key Coding Lemma

Abbreviate Fqs to E and Fq to F , and let �� stand for � minus its �0

co-ordinate, which may be an embedded value in [n ].

Lemma

For each j 2 [n ] we can construct a symmetric polynomial

�j : E
n �! F of degree at most sqs such that for any elements

�1; : : : ; �n in En ,

�j (�
1; : : : ; �n) =

X

i2[n ]:�i

�

=j

�i0:

The proof picks apart j into the s � 1 co-ordinates (js�1; : : : ; j1) of its
embedded value in F s�1. First idea is to represent the Kronecker delta
function on the embedded values, namely �j (i) = 1 if i = j and 0
otherwise.



Symmetric Functions Capture General Functions

Kronecker Delta and Place Picker

This formula makes �j (j ) = 1 since the fractions are identically 1:

�j (us�1; : : : ;u1) =
s�1Y

`=1

Y

�2Fnf j` g

u` � �

j` � �
:

And �j (i) = 0 for i 6= j because the numerator hits a zero. Now de�ne:

�j (z1; : : : ; zn) =
nX

i=1

�j (�s�1(zi ); : : : ; �1(zi )) � �0(zi ):

This picks out only those �i0 for which the �rst s � 1 co-ordinates yield
j , thus proving the lemma's equation. Moreover �j is symmetric, thus
proving the lemma.



Symmetric Functions Capture General Functions

Completing the Construction

Finally we de�ne f 0 : En �! F by

f 0(~b) = f (�1(~b); �2(~b); : : : ; �n(~b):

Since each �j has degree at most sqs , and s is chosen to make
qs�1 � nq , f 0 has degree at most sndq2.
To compute f 0 from f , one linear scan of ~b can identify all the terms
that will contribute to the sums in the Lemma, giving the arguments of
f .
To compute f (~a) with arguments from the base �eld F , we need to �nd
~b over the extension �eld such that �j (~b) = aj , and �nd it e�ciently.
This is done by using the embedded natural numbers, which pick out
indices, as co-ordinates:

bi = (is�1; : : : ; i1; ai ):

Then for all j , �j (~b) = �0(bj ) = aj , as needed. This is done in O(sn)
time treating entries as units, which gives ~O(n) time overall. �



Symmetric Functions Capture General Functions

In�nite Fields�?

The elementary symmetrization works over any �eld.

The second one does not, because the coding tricks require �nite
�elds.

Di�erent coding tricks work over the reals or complex numbers, but
do not yield polynomials.

Paper gives a result over the reals.



Symmetric Functions Capture General Functions

Open Questions

Can we prove that no symmetrization by polynomials over an
in�nite �eld gives ~O(n) time?

Can the possibility N > n be used to improve either
symmetrization?

Can either symmetrization be used in a positive way to enable
more-structured analysis of, say, symmetrized permanent
polynomials?

Can the idea be used to derive more (conditional) lower bounds?

Are �elds needed? What can be done over the rings Zm for m
composite?


