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Cheating Detection and Cognitive Modeling at Chess

A Simple Utility-Based Model

Like common econometric models under “Bounded Rationality.”

Utility ≡ values given by strong chess-playing programs (called
“engines”) to possible move choices in a series of chess positions in
games by a player (or aggregate of players).

In familiar units of pawns or (x100) centipawns.

E.g. +1.50 means the player to move is figuratively a pawn and a
half (= 150cp) ahead.

Alternative: as probabilities of winning/drawing (say
pwin + 0.5pdraw).

The model knows nothing else* about chess. No pieces, no board
geometry.

Only other ingredients: player skill parameters s, c, ev (plus
hyperparameters) and their correspondence to Elo chess ratings.

(*The model does track how the calculated values of moves change
as the engine progresses through depths of search.)
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Cheating Detection and Cognitive Modeling at Chess

Elo Chess Ratings—and Why Cheat?

Named for Arpad Elo, number RP rates skill of player P .

Defined by Logistic Curve: expected win % p given by

p =
1

1 + exp(c∆)

where ∆ = RP −RO is the difference to your opponent’s rating.

Taking c = (ln 10)/400 makes ∆ = 200 give about 75% expectation.

Class Units: 2000–2200 = Expert, 2200–2400 = Master,
2400–2600 is typical of International/Senior Master and
Grandmaster ranks, 2600–2800 = “Super GM,”; Carlsen only
player over 2800. Adult beginner ≈ 600, kids → 100.

Stockfish 16 3544, Torch 1.0 3531, Komodo Dragon 3.3
3529.

So computers are at “Class 15.” =⇒ a “Moore’s Law of Games.”

Other Q: How do computer evaluations translate to chances of
winning?

https://cse.buffalo.edu/faculty/regan/papers/pdf/ReganLNCS10000.pdf
https://cse.buffalo.edu/~regan/chess/fidelity/data/Niemann/HavanaCapaMemEliteApr2022cat14_SF11d20-30pv64.txt
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Cheating Detection and Cognitive Modeling at Chess

Move Utilities Example (Kramnik-Anand, 2008)



Cheating Detection and Cognitive Modeling at Chess

Utility-Based Predictive Modeling

Predictive ≡ model gives probabilities pi for each option/event mi.

Relation to utility is usually log-linear:

log(pi) = α+ βui.

Equivalently, if we rank options by best-first utility:

log(p1)− log(pi) = β(u1 − ui) ≡ βδi.

Solved via softmax: pi = exp(βδi)∑`
j=1 exp(βδj)

.

With δ1 = 0, so that exp(βδ1) = 1, this gives p1 = 1/
∑`

j=1 pj and

pi = p1 exp(−βδi)

if you keep β positive. Probabilities are multiples of p1.
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Cheating Detection and Cognitive Modeling at Chess

Loglog-Linear Model

log log(
1

pi
)− log log(

1

p1
) = βδi.

Equivalently,
log(1/pi)

log(1/p1)
= ri = exp(βδi).

This gives

pi = p
exp(βui)
1 ,

so that probabilities are represented as powers of p1.

A rare bird? Relation to power-law phenomena?
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Cheating Detection and Cognitive Modeling at Chess

Parameters and Nonlinearity

Note β cancels the centipawn units of δi, so we write δi
s instead.

Since δi
s is dimensionless, can raise to any power c.

Basic log-linear model becomes: pi = p1 · exp(−
(
δi
s

)c
).

Double-log model becomes: pi = p
exp(

(
δi
s

)c
)

1 .

Intuition either way:

Lower (=better) sensitivity s magnifies effect of small δi, =⇒
better strategic ability to perceive small advantages. Like Anatoly
Karpov.

Higher (=better) consistency c drives down pi for moves of large
δi, ability to survive tactical minefields. Like Mikhail Tal.
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Cheating Detection and Cognitive Modeling at Chess

Karpov & Tal at Montreal “Tourney of Stars” 1979

Tied for first with 12/18 in star-studded double round-robin.

Karpov was rated 2705, Tal only 2615.

Karpov (per SF11): s = 0.01558, c = 0.30702.

Tal (per SF11): s = 0.02623, c = 0.36474.

Trained correspondence to Elo rating gives Karpov 2625 +- 155,
Tal 2730 +- 185.

These are my Intrinsic Performance Ratings (IPRs).

Whole tourney IPR is (only!) 2575 +- 50. (With s = 0.04121,
c = 0.38525.

Average Elo of players, 2621, is within error bars. Surprise is that
the IPR is not near 2700s range.
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Cheating Detection and Cognitive Modeling at Chess

Test Quantities and Parameter Fitting

Over T -many game turns t by a player (or players), solve to make the
following two test quantities into unbiased estimators:

T1-Match: Make the actual number t1a of agreements with the
engine equal

t1proj =

T∑
t=1

p1,t.

ASD: Make the scaled “average centipawn loss” asda of a player’s
moves mit,t—as judged by the testing engine—equal

asdproj =

T∑
t=1

∑̀
i=1

pi,tδi,t.

Alternative fitting methods include maximum-likelihood estimation,
equivalently, minimzing

∑T
t=1 log( 1

pit,t
).
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Cheating Detection and Cognitive Modeling at Chess

Other Quantities of Interest

EV-Match: About 8–10% of positions have multiple optimal
moves. Include them all as a “match.”

T2-Match: Include the second-best move as a “match.” (Unless it
is a blunder...)

M2: p2,t vs. actual frequency of playing second-best move.

T3, M3, etc. “T3-match” much-discussed cheating metric.

Error100: Mistakes mi with δi ≥ 100 (i.e., one pawn).

Error200: Moves mi with δi ≥ 200, “game-losing blunders.”

Delta(u, v): moves with u ≤ δi ≤ v, “small slips.”

Captures, advancing vs. retreating moves, moves with Knights or
other specific pieces...
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Cheating Detection and Cognitive Modeling at Chess

Improving Predictivity

Original Idea (2015–2017): Add a term ρi for “perceived” (change in)
value over lower depths of search. Higher for “trappy” moves. Multiply
by third parameter h:

ri =

(
δi + hρi

s

)c
.

Problem: Observed h� 1. Makes model unstable. Similar issue.

Coped with by replacing h by the parameter ev, which leverages
“swing” of moves whose highest-depth value is equal-optimal, so as
to fit EV as a third unbiased estimator.

This enables deploying EV as a z-test alongside T1 and ASD.

Idea of ρi still impacts ri and hence s and c.

Enables projecting some inferior move as more likely than m1 in
about 15% of positions, improving the “prediction hit” rate by 2–3
percentage points.

https://rjlipton.com/2016/11/08/unskewing-the-election/
https://cse.buffalo.edu/~regan/chess/computer/ModelTradeoffs.png
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Demonstration: 2024 FIDE Candidates Tournaments

(show)

Happy Birthday 29 May to the winners, D. Gukesh and Zhongyi Tan!
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Basic Model Sanity Facts

Whereas the fitted log-linear model grossly underestimates M2 and M3,
the fitted double-log model underestimates them (hence also T2 and
T3) only slightly. Moreover:

For each other metric µ, the “ersatz z-test”

zµ =
µa − µproj

σµ

is tolerably close to Gaussian normalN (0, 1) and with
considerable independence of other zµ′ . This is so
both after fitting and under the rating-based testing
procedure.

The main quantities zT1, zASD, and zEV are expressly adjusted to
conform to the (upper arm of the) bell curve in myriad randomized
resampling trials over (parts of) the training sets.
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Cheating Test Sanity and Sensitivity

Say we test a player on T = 200 relevant moves across 9 games.

Because T1, EV, and ASD are aggregate
quantities—averages—the Central Limit Theorem takes hold...

...despite the 200 positions not drawing from the same distribution
of plausible moves.

The distributions are (evidently) similarly “chessy” enough.

Simple computation of the projected σT1, σEV , and σASD presumes
that the positions-and-their-choices are independent. (Voiceover:
They’re not.)

But it is a sparse, nearest-neighbor dependence, hence approximable
by scalar means without having to model big covariance matrices.

Gets done empirically via said resampling trials.

That ensures safety (against false positives). How about
sensitivity (avoiding false negatves)?
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Cognitive Concepts and Conceits

Many results in cognitive decision making come from studies that

1 are well-targeted to the concept and hypothesis, but

2 have under 100 test subjects...

3 ...under simulated conditions...

4 ...with unclear metrics and alignment of personal vs. test goals...,
and where

5 ...reproducibility is doubtful and arduous.

The chess angle is to trade 1 against wealth of 2,3,4,5: lots of players
and games, real competition, clear goals and metrics (Elo ratings), and
not only reproducible but conducive to abundant falsifiable predictions.
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Some Accompanying Stances

Extreme Corner of Data Science—since I need ultra-high confidence
on any claim.

Concern: Data modelers in less-extreme settings satisfice.

That is, their models are designed up to one particular goal but
don’t explore much of the harder adjacent metaspace.

Nonreproducibility, Mission Creep, and Shifting Sands.
E.g., I do not reproduce the longer conclusions of this study.

Cross-Validation...one point of which is:

How can we distinguish uncovering genuine cognitive phenomena
from artifacts of the model?

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3937878
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Some Cognitive Nuggets

1 Dimensions of Strategy and Tactics (and Depth of Thinking).

But wait—the model has no information specific to chess...
Brain seems to register changes in move values as depth increases.

2 Machine-Like Versus Human Play

Garry Kasparov, as a 2012 Alan Turing Centennial test,
distinguished 5 games played by human 2200-level masters from 5
games by engines “stopped down” to 2200 level.

3 Relationship to Multiple-Choice Tests (with partial credits)

“Solitaire Chess” feature often gives part credits.
Large field of Item Response Theory (IRT).
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Player Development

5 Rating Inflation? Deflation?

Note low Montreal 1979 IPRs.
Even further deflation at the 1986 Men’s and Women’s Olympiads in
Dubai.
“Today’s players deserve their ratings.”
Is human performance at chess improving as with physical sports?
...because of computers?

6 Growth Curves of Improving (Young) Players.

7 Relationship of Quality to Thinking Time Budget. (show graph)
(or this)

https://www.desmos.com/calculator/mt5wzmsijb
https://rjlipton.com/2020/11/03/the-election-night-time-warp/
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7. (New) Time Management

The Women’s Candidates used the FIDE Standard time control:

90 minutes at the start.

30 seconds increment starting from the frst move.

30 minute “lump sum” added after turn 40.

Gives 110 minutes to the turn 40 “time control” and 150 minutes to
turn 60.

The Open (Men’s) section gave 120 minutes at the start, with 30 minute
lump sum after turn 40, but 30 seconds increment only after turn 40.
Thus the moves up to turn 40 were “classic time pressure” without
increment. (Gives only 160 minutes to turn 60.)
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Candidates for Shock?

Let’s first combine the sections and look at positions where players
spent a lot or a little time, irrespective of time pressure.

Combined, they played close to their 2627 rating average.

Predicated on making their move within 5 seconds they
played...well over 3000 level.

Predicated on spending at least 10 minutes on a move, they
played...only about 2200 level.

Spending 15 minutes or more gives even worse performance.

Is Thinking Bad For You?

Similar phenomena observed in blitz chess by Ashton Anderson
(UT), Jon Kleinberg (Cornell), and others in and apart from their
group, from giant corpus of online games.

If we include having little time left into the predicate—average
before turn 40 or overall—then results are closer to expectation.

(From my recent graduate seminar. Q&A phase can begin here.)

https://www.reddit.com/r/chess/comments/nwq4qk/blunder_rate_versus_time_spent_on_move_25_million/
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8. How to Measure “Difficulty”?

Does it equal “Hazard”—meaning the expected loss of value (and
of win/draw probability) from the choice of move?

Or does it have more to do with the chance of finding an optimal
move?

Correspondence to Multiple-Choice Tests.

The “Solitaire Chess” feature by Bruce Pandolfini gives partial
credits for reasonable moves.
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Entropy and Difficulty

Is Hazard maximized when

there are many tempting, somewhat-inferior moves? (High entopy)

Or when all moves except one are tangibly inferior? (Lower
entropy)

Results from my seminar show that difficulty goes with entropy
more than previously expected.
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9. Signal Consistency

Suppose we know an overall Elo skill level E for a set of players in
advance. On (which) subsets of the data should we expect a metric µ to
give consistent readings in the vicinity of E?

T1 match: No—it will show lower match rates in high-entropy
positions.

ASD metric—?

IPR metric—?? By intent, this should give signal consistency.

Reasonable on, say, positions with +1.00 or more advantage, versus
positions with -1.00 or worse disadvantage, versus evenly balanced
positions.
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Examination Grading Analogy

I typically design exams to have about

20% A-level questions (and points)

30% B-level,

30% C-level, and

20% D-level, with 90% the target for an A grade.

Means that getting 60% on the A-level questions is reasonably on-track
for an A, even though 60% by itself is a “C signal.”

Should we use metrics that would say “A” even on the difficult
questions by themselves, rather than rely on the exam being overall
farly designed? Matters for adaptive-difficulty automated exams, which
grade you by finding the level at which you score 50% (or 75% or etc).
(IRT theory again).
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Cancer and Covid (= in-person and online chess)

Say you take a test that is 98% accurate for a cancer that affects
1-in-5,000 people...

...and get a positive. What are the odds that you have the cancer?

Not the same as the odds that any one test result is wrong.

Consider giving the test to 5,000 people, including yourself.

Among them, 1 has the cancer; expect that result to be positive.
But we can also expect about 100 false positives.
All you know at this point is: you are one of 101 positives.

So the odds are still 100-1 against your having the cancer.

The test result knocked down your prior 5,000-to-1 odds-against by
a factor of 50, but not all the way. Need a “Second Opinion.”

IMPHO, 1-in-5,000 ≈ frequency of cheating in-person.

A positive from a “98%” test is like getting z = 2.05. Not enough.

In a 500-player Open, you should see ten such scores.
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The 99.993% Test

Suppose our cancer test were 600 times more accurate:
1-in-30,000 error.

That’s the face-value error rate claimed by a z = 4 result.

Still 1-in-6 chance of false positive among 5,000 people.

(This is really how a “second opinion” operates in practice.)

If the entire world were a 500-player Open, then 1-in-60 chance of
the result being natural.

Still not comfortable satisfaction of the result being unnatural.

IMPHO, the interpretation of CAS comfortable-satisfaction range
of final odds determination is 99%–99.9% confidence.

Target confidence should depend on gravity of consequences. (CAS)

Sweet spot IMHO is 99.5%, meaning 1-in-200 ultimate chance of
wrong decision. Same criterion used by Decision Desk HQ to
“call” US elections.

Higher stringency cuts against timely public service.
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Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?
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Back to Chess...

Suppose we get z = 4 in online chess with adult cheating rate 2%.

Out of 30,000 people:
1 false positive result.
600 factual positives.
So 600-1 odds against the null hypothesis on the z = 4 person.

A z = 3.75 threshold leaves about 200-1 odds. OK here, but not if
factual rate is under 1%.

This analysis does not depend on how many of the factual positives
gave positive test results.

If test is only 10% sensitive, then we will have only about 60
positive results. It sounds like the 1-in-60 case. But the chance of
getting a z = 4 result on the 1 brilliant player also generally goes
down to 1-in-10. The confidence ratio is 60/0.10 = 600-to-1 even so.

Sensitivity and soundness generally remain separate criteria.

This is relevant insofar as I often get a lot of 3.00–4.00 range results.
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Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves.

(Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it.

=⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Internal and External Confidence

Projections also automatically give additive variance, hence σ and
confidence intervals, if we assume turn decisions are independent.

[Voiceover: They’re not.]

But it’s a sparse dependence on neighboring moves. (Not across
games—common “opening book” is removed from the sample.)

=⇒ covariance matrix is banded, hence approximable by scalars.

Could treat as a “reduced-entropy” sample size T ′ < T .

What I actually do is adjust σ up to σ′E with dependence on Elo
rating E determined by millions of randomized resampling trials
from the training sets.

With this patched, justified in saying the model paints chess moves
on a 1,000-sided die and simply rolls it. =⇒ multinomial Bernoulli
trials.



Cheating Detection and Cognitive Modeling at Chess

Pre-Check: The “Screening” Stage

Makes a simple “box score” of agreements to the chess engine being
tested and the scaled average centipawn loss from disagreements.

Creates a Raw Outlier Index (ROI) on the same 0-100 scale as
flipping a fair coin 100 times.

Here 50 is the expectation given one’s rating and 5 is the standard
deviation, so the “two-sigma normal range” is 40-to-60.

Like medical stats except indexed to common normal scale.

65 = amber alert, 70 = code orange, 75 = red. Example.

Completely data driven—no theoretical equation.

Rapid and Blitz trained on in-person events in 2019. Slow chess
trained on in-person FIDE Olympiads from 2010 to 2018.

Does not account for the difficulty of games. That is the job of the
full model.

https://cse.buffalo.edu/~regan/chess/fidelity/data/Niemann/HavanaCapaMemEliteApr2022cat14_SF15d20-30pv1.sc4
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Cheating Detection and Cognitive Modeling at Chess

Z-Scores and Cheating Tests

For the aggregate quantities, the Central Limit Theorem in practice
allows treating

z′ =
(actual)− (predicted)

σ′

as a z-score (after adjustment).

Evaluation Criteria:

Safety: Over fair=playing populations, z′ ∼ bell curve.

Sensitivity: Factual cheaters yield “high enough” z′.

From this point on, let’s suppose my model has these properties. What
about interpreting the results?
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Cheating Detection and Cognitive Modeling at Chess

Suppose We Get z = 3.54

Natural frequency ≈ 1-in-5,000. Is this Evidence?

Transposing it gives “raw face-value odds” of “5,000-to-1
against the null hypothesis of fair play. But:
Prior likelihood of cheating is

1-in-5,000 to 1-in-10,000 for in-person chess.
1-in-50 (greater for kids) to 1-in-200 for online chess.

Look-Elsewhere Effect: How many were playing chess that
day? weekend? week? month? year?

Are these considerations orthogonal, or do they align?
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Fraught Issue #1

What should be the target confidence?

1 Proof beyond reasonable doubt?

2 “Comfortable satisfaction”

3 “Balance of Probability”

CAS Lausanne recognizes all three, but inclines toward 2.

Still doesn’t specify a corresponding confidence target.

Science, of course, demands criterion 1.
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Cheating Detection and Cognitive Modeling at Chess

Fraught Issue #2: Confidence For Chess

I interpret the range of comfortable satisfaction as 99–99.9% final
confidence.

For calling elections, Decision Desk HQ uses 99.5% confidence.

Not quite right to say 1-in-200 error, i.e. a “Florida” every 4 cycles,
because returns often blast past that instantly.

So maybe truer chess analogue is 1-in-500 error.

Judge by “Countenanced Error Rate Per Year.”

E.g. if 10 cases per year reach judgment stage, and you can tolerate
1 error per 20 years, then 99.5

But online chess has 10,000+ cases per year...
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Cheating Detection and Cognitive Modeling at Chess

Issue # 3: Accounting “Look Elsewhere ”

Approximately 100,000 players-in-event per year among “notable”
events.

notable ≡ some or all gamescores preserved.

A highly computerlike game is a “shiny marble”—players do notice.

Accounted over a year, suggests to divide odds by 100,000.

4.75 sigma −→ only 90% confidence.
5.00 sigma −→ 1-in-35 error.

Sounds like 1-in-35 error is still too high based on confidence target.

But reckon against time-scale of actual cases and tolerated error
rate.

.
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Cheating Detection and Cognitive Modeling at Chess

Doomsday to the Rescue?

Why stop at a year? Why not consider “look elsewhere” over an entire
50-year span?

IMHO, the notorious Doomsday Argument kicks in for real to
fend off this level of skepticism...at least for now.

Key point: What are the odds of getting this once-in-50-years event
this (early) year?

(My formal IP agreement with FIDE is 20 months old.)

(But I deployed my model in 2011.)

Better argument?: Balance against the arrival rate of real cases.

Aligns with Bayesian prior on average, but should allow for
variance in the rate.

Figure discount by 25,000 to 50,000. Then 5-sigma is OK.

https://rjlipton.wpcomstaging.com/2020/06/07/the-doomsday-argument-in-chess/
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Issue #4: Event Tiers

But what if we have a top-tier event?

World Championships.

Many of these per year, down to Under-8 Cadets.

Qualifying events for championships.

Major international Opens.

The Carlsen Online Chess Tour.

Chess.com “Titled Tuesdays” ...

The combination of the online 100-1 prior and marquee online events
amps up the calculus.
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Cheating Detection and Cognitive Modeling at Chess

Issue #5: Distinguishing Marks

What if the z = 3.54 is on Hans Niemann? Is he a “marked man”?

Even granting he’s never cheated at in-person chess?

Niemann plays ≈ 25 events per year.

Like giving drug test to same athlete 25x.

But what about a player wearing a heavy winter overcoat in hot
weather?

Or a player wearing neon-green sneakers??

Yet another separate matter from the Bayesian prior.
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Super-Fraught Issue #6: Multi-Testing Samples

Includes Cherry-Picking and other forms of p-hacking.

What if a player seems to have cheated only in games 5–8 of a
nine-game Open?

Or maybe games 4–6 and 8–9?

Proper domain of Bonferroni Correction if it doesn’t wipe out
significance altogether.

Well, z-hacking/p-hacking is a huge area...
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Issue #7: Results on Aggregates of Players

What if you get z = 3.54 on three different players in a 500-player
Open?

Not enough to convict any one player.

But odds against all being fair can be estimated by aggregating
z-scores, presuming (under the null hypothesis of fair play) that the
players’ actions are independent:

z =
z1 + z2 + z3√

3
≈ 6.13 Billion-to-one

Applying “Look-Elsewhere” still leaves astronomical confidence that
some cheating occurred. Still leaves the question of who.
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Cheating Detection and Cognitive Modeling at Chess

Issue #8: Scaling of Estimation Error

My formulas—“screening” as well as the predictive analytic
model—scale as O(

√
n) gracefully to any sample size n of

games/moves:

5-game weekend tournaments;
9-game international Opens;
13-game invitational round-robins;
12–24 game championship matches.

But how about 300+ games played in “Titled Tuesdays” over a
half-year span?

Skew from rating estimation error scales linearly as Ω(n).

Overflows the O(
√
n) levees... Validation by myriad resampling

trials done on n = 4, 9, 16.
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Cheating Detection and Cognitive Modeling at Chess

Issue #9: Biased Inputs

Lag in ratings of rapidly improving young players.

Was exponentiated by the pandemic. “Pandemic Lag” article on
the GLL blog.

Cause of many unwarranted suspicions, even recently.

Also geographical variations in ratings.

As in issue 8, rating estimation bias skews linearly.

My model has enough cross-checks to detect and correct the
bias—mainly need only assume not everyone is cheating. No
“interstellar dust” issue.

https://rjlipton.wpcomstaging.com/2021/07/30/pandemic-lag/
https://rjlipton.wpcomstaging.com/2023/08/04/should-these-quantities-be-linear/
https://en.chessbase.com/post/why-do-some-countries-always-gain-and-other-always-lose-rating-points
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Going Post-Normal

Arguments over the Niemann-Carlsen fracas a year age exposed the
lack of any rigorous studies of the growth curves of young
improving players.

In Sept.-Nov. 2020, I fitted a simple formula from observations of
players in multi-age youth events 5–7 months since their official
ratings were frozen.
I am still using fairly much the same formula, now 43 months in.
Well, with some tweaks:

Reduced multiplier for players under age 12 from 30 Elo per month
to 25; later filled in 20x for ages 12 and 13 as of April 2020.
Gains above Elo 2000 reduced by treating formula as a differential.
Gain estimations reduced for females age 12 and up.
Formula for teenagers (with 15 multiplier) otherwise unchanged.

Adjusted players are often over half the entrants in large Opens.

Basically running a more accurate rating system from the back of
an envelope.
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Cheating Detection and Cognitive Modeling at Chess

Post-Normal II: Time Dependence

The pandemic drove major tournaments online—where chess is
played faster.

Not enough reliable training data for (in-person) fast chess across
skill levels.

Panoply of different speeds anyway: τ = time you can use to play
60 moves.

FIDE standard slow chess gives τ = 150 minutes.

Postulate: Elo reduction RE(τ) if largely independent of the
player’s Elo rating E.

Reasonable a-priori since chess rating system is designed for
additive invariance: only the difference in ratings to the opponent
matters for predictions.
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Cheating Detection and Cognitive Modeling at Chess

Laws of Time and Difficulty

Reliable data for τ = 25 and τ = 5 (as well as τ ≥ 150) from the
elite annual World Rapid and Blitz Championships.

Guess that R(τ) is logistic in log τ , so polynomial rational in τ .

Gives four unknowns to fit, but only three equations. Try getting
fourth from:

Rating estimate of τ = 0, i.e., of completely random chess. Implicitly
done here.
Aitken Extrapolation.

Lo and behold—the two methods agree!

Is the resuting “Rating Time Curve” thereby a natural law?

Does this make time fungible with difficulty, the latter as modeled
by Item Response Theory?

https://www.chess.com/article/view/better-than-ratings-chess-com-s-new-caps-system
https://www.chess.com/article/view/better-than-ratings-chess-com-s-new-caps-system
https://en.wikipedia.org/wiki/Aitken's_delta-squared_process
https://www.desmos.com/calculator/c3suzgx4ti
https://rjlipton.wpcomstaging.com/2018/09/07/sliding-scale-problems/
https://rjlipton.wpcomstaging.com/2018/09/07/sliding-scale-problems/
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Cheating Detection and Cognitive Modeling at Chess

Stance on Data Science

Extreme Corner of Data Science—since I need ultra-high confidence
on any claim. Well, so do you.

Concern: Data modelers in less-extreme settings satisfice.

That is, their models are designed up to one particular goal but
don’t explore much of the harder adjacent metaspace. (Compare
what Scott Aaronson calls the Meatspace.)

Nonreproducibility, Mission Creep, and Shifting Sands.
E.g., I do not reproduce the longer conclusions of this study.

Here is a way of phrasing the question that comes from this stance:

When is it important that our models include gravity?

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3937878
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Q & A

And Thanks.


