Quantum Computing Research Directions

Kenneth W. Regan1
University at Buffalo (SUNY)

19 March, 2019

1Joint work with Amlan Chakrabarti, U. Calcutta, and Chaowen Guan, UB.
Algebraic and Logical QC Simulations

- Idea is to postpone exponential blowup until the end...
- ...when a full spec can be fed to equation solvers or SAT solvers.
- Algebraic side is joint work with Amlan Chakrabarti (U. Calcutta) since 2007. [show GLL page]
- Logic-based full QC simulator, 8,000+ lines of C++.
- Partly included in textbook with Richard Lipton, Quantum Algorithms Via Linear Algebra (MIT Press, 2014; 2nd. ed. to come this year).
Notable Theoretical Advance (just this past month)

- **Stabilizer circuits** (≡ **Clifford circuits**) are the most salient classically solvable case.
- Vital in quantum error-correcting codes for fault-tolerant QC.
- Classical simulation of \(n \) qubits takes \(O(n^2) \) time per single-qubit measurement [Aaronson-Gottesman, 2004], \(O(n^3) \) time to measure all \(n \) qubits.
- We improve to time \(O(n^\omega) \) where \(\omega < 2.3729 \) is the known exponent for \(n \times n \) matrix multiplication.
- Also give \(O(N) \)-time reduction \((N = n^2) \) from computing \(n \times n \) matrix rank over \(\mathbb{F}_2 \) to the QC simulation.
- Means that the \(n^2 \)-vs.-\(n^\omega \) weak/strong simulation gap cannot be closed unless matrix rank is in \(O(n^2) \) time over \(\mathbb{F}_2 \).
How Achieved

- Stabilizer circuits C yield *classical* quadratic forms q_C over \mathbb{Z}_4.
- Exploit normal form q' for q_C by Schmidt [2009].
- Apply new algorithm for LDU decompositions over \mathbb{F}_2 by Dumas-Pernet [2018].
- Invert the LDU process but calculating in \mathbb{Z}_4.
- Painstaking analysis of how distributions of values were mapped yields a simple recursion then gives the result from the final “spectrum.”
- Also yields an apparently new class of undirected graphs:
Allocate free variables x_i for every input (qu)bit, z_i for corresponding outputs, and y_j for every nondeterministic gate (wlog. Hadamard gate).

Also maintain “forced” variables giving the current phase and location of every Feynman path.

Translation from circuit C to Boolean formula ϕ_C is again real-time.

Solution counts over each phase for a target location yield its amplitude.

#SAT solvers such as sharpSAT and Cachet give hope of heuristic simulations of harder classes of circuits.

Our C++ simulator outputs DIMACS-compliant files for these solvers. SAT solvers have seen great success in many areas, but maybe not QC...

Second main purpose of simulator [show] is to enable tinkering with approximative methods.
Invariants based on Strassen’s *geometric degree* $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.

Baur-Strassen showed that $\Omega(\log_2 \gamma(f))$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?

Already hard to formulate n-partite entanglement of (pure or mixed) states. How to define for circuits? Plausible axioms:

\[
e(C^*) = e(C),
\]

\[
e(C_1 \otimes C_2) = e(C_1) + e(C_2),
\]

\[
e(C; \text{measure}) \leq e(C),
\]

\[
e(C + \text{LOCC}) = e(C)
\]

Also apply to study T-*gate count*, singular points...
Summary

- Novel research ideas.
- Development of program infrastructure to experiment with them.
- Indo-US collaboration.
- Avenues for dissemination: Gödel’s Lost Letter blog, textbook with MIT Press going to second edition this summer.
- Involvement in the general debate over Quantum Advantage.