
Reading, Analyzing, and Simulating Quantum Circuits

Reading, Analyzing, and Simulating Quantum
Circuits

(With speculation on the status of “quantum supremacy”)

Kenneth W. Regan1

University at Buffalo (SUNY)

RIT, 24 Apr., 2025

1Includes joint work with Amlan Chakrabarti, University of Calcutta, and
Chaowen Guan, University of Cincinnati



Reading, Analyzing, and Simulating Quantum Circuits

Is Nature Lexical?

I.e., can all natural processes be simulated in proportional time by
computers using today’s programming languages?

Pro:

“It From Bit.” “Unreasonable Effectiveness of Mathematics.”

Church-Turing Thesis extended to physics and feasible
computation (as formalized e.g. by the polynomial-time class P).

Stephen Wolfram’s cellular automata universe; others’ models...

The classical Simulation Hypothesis presumes it.

Con:

“Nature isn’t classical, dammit!” (Richard Feynman, whole quote)

Experience with exponential blowups in simulations.

“It From Qubit.”

https://en.wikipedia.org/wiki/Digital_physics
https://www.nature.com/articles/nphys2258
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The Reach of Mathematics

Can define and analyze entities that cannot be computed.

V = {true statements about integers in formal arithmetic (PA)}.
Tarski, 1923: definable in set theory but not within PA itself.

Can compute entities in some cases but not others.

A = {provable statements of PA}. (Gödel, Turing, Church, 1930s)

Can compute other entities but not in feasible time.

B = {true statements of PA using +,= but not ·}.
Decidable by Presburger, 1929; infeasible by Fischer and Rabin, 1974.

For other entities we strongly doubt feasibility:

Q = {true sentences using only (∧,∨,¬,∃,∀)}. (PSPACE-complete)

SAT = {true sentences using only (∧,∨,¬,∃). (NP-complete)

We know P ⊆ NP ⊆ PSPACE but have not proved P 6= PSPACE.

So Math can outpace its own calculations, but can Nature?

https://en.wikipedia.org/wiki/Peano_axioms
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Can compute other entities but not in feasible time.

B = {true statements of PA using +,= but not ·}.
Decidable by Presburger, 1929; infeasible by Fischer and Rabin, 1974.

For other entities we strongly doubt feasibility:

Q = {true sentences using only (∧,∨,¬,∃,∀)}. (PSPACE-complete)

SAT = {true sentences using only (∧,∨,¬,∃). (NP-complete)

We know P ⊆ NP ⊆ PSPACE but have not proved P 6= PSPACE.

So Math can outpace its own calculations, but can Nature?

https://en.wikipedia.org/wiki/Peano_axioms


Reading, Analyzing, and Simulating Quantum Circuits

The Reach of Mathematics

Can define and analyze entities that cannot be computed.

V = {true statements about integers in formal arithmetic (PA)}.
Tarski, 1923: definable in set theory but not within PA itself.

Can compute entities in some cases but not others.

A = {provable statements of PA}. (Gödel, Turing, Church, 1930s)
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Concreteness and Complexity

Perfect chess and Go on n× n boards are PSPACE-complete (under
extensions of common rules limiting the length of games).
On concrete 8× 8 (respectively, 19× 19)boards, perfection
remains a challenge.

Perfect chess has been tablebased for up to 7 pieces on the board.

A laptop holding 32-piece tables would collapse to a black hole.

Will we ever compute the Ramsey number R(6, 6)? (Erdős quote)
We know 102 ≤ R(6, 6) ≤ 162.

R(5, 5) still open, recently tightened to 43 ≤ R(5, 5) ≤ 46.

Is there a cosmic shortcut? Maybe if NP = P super-concretely??

Factoring m-bit numbers seems concretely hard in most cases.

Belief in asymptotic classical time lower bound 2Ω̃(m1/3).
But no wide-ranging hardness result. (Maybe exponent is 1/4? 1/5?)

Hence a shock in 1993-94 when Peter Shor put factoring into BQP.

Realizable by quantum circuits of size Õ(m2).

https://en.wikipedia.org/wiki/Bekenstein_bound
https://en.wikipedia.org/wiki/Ramsey's_theorem#Computational_complexity


Reading, Analyzing, and Simulating Quantum Circuits

Concreteness and Complexity

Perfect chess and Go on n× n boards are PSPACE-complete (under
extensions of common rules limiting the length of games).

On concrete 8× 8 (respectively, 19× 19)boards, perfection
remains a challenge.

Perfect chess has been tablebased for up to 7 pieces on the board.

A laptop holding 32-piece tables would collapse to a black hole.

Will we ever compute the Ramsey number R(6, 6)? (Erdős quote)
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Perfect chess and Go on n× n boards are PSPACE-complete (under
extensions of common rules limiting the length of games).
On concrete 8× 8 (respectively, 19× 19)boards, perfection
remains a challenge.

Perfect chess has been tablebased for up to 7 pieces on the board.

A laptop holding 32-piece tables would collapse to a black hole.
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We know 102 ≤ R(6, 6) ≤ 162.

R(5, 5) still open, recently tightened to 43 ≤ R(5, 5) ≤ 46.

Is there a cosmic shortcut? Maybe if NP = P super-concretely??

Factoring m-bit numbers seems concretely hard in most cases.

Belief in asymptotic classical time lower bound 2Ω̃(m1/3).
But no wide-ranging hardness result. (Maybe exponent is 1/4? 1/5?)

Hence a shock in 1993-94 when Peter Shor put factoring into BQP.

Realizable by quantum circuits of size Õ(m2).
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We know 102 ≤ R(6, 6) ≤ 162.

R(5, 5) still open, recently tightened to 43 ≤ R(5, 5) ≤ 46.

Is there a cosmic shortcut?

Maybe if NP = P super-concretely??

Factoring m-bit numbers seems concretely hard in most cases.

Belief in asymptotic classical time lower bound 2Ω̃(m1/3).
But no wide-ranging hardness result. (Maybe exponent is 1/4? 1/5?)

Hence a shock in 1993-94 when Peter Shor put factoring into BQP.

Realizable by quantum circuits of size Õ(m2).
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Reading, Analyzing, and Simulating Quantum Circuits

Classical and Quantum Circuits

d = f(a, b, c) = Z (c Z ā, b̄, a Z c̄) X = NOT,  −⊕ = controlled-NOT

Quantum circuit computes the reversible Boolean function
F (a, b, c, e1, e2, e3, e4, e5, e6) = (a, b, c, e1, e2, e3, e4, e5, e6 ⊕ f(a, b, c)).
Underlying: a vector of N = 29 = 512 dimensions.
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Quantum Coordinates and the CNOT Gate

By linearity, an n-qubit circuit is determined by its actions on the 0-1
standard basis vectors e0n = [1, 0, 0, . . . , 0]T thru e1n = [0, 0, 0, . . . , 1]T .

For n = 2, e00 =


1
0
0
0

, e01 =


0
1
0
0

, e10 =


0
0
1
0

; and e11 =


0
0
0
1

 (in

“big-endian” order). Then CNOTe00 = e00 and CNOTe01 = e01, while
CNOTe10 = e11 and CNOTe11 = e10. Feynman path visualization:



Reading, Analyzing, and Simulating Quantum Circuits

Toffoli Gate (n = 3, N = 2n = 8)

In Dirac notation, ex is written |x〉. So we have Tof |000〉 = |000〉
thru Tof |101〉 = |101〉, while Tof |110〉 = |111〉 and Tof |111〉 = |110〉.

Note that fixing x3 = 1 makes z3 = x1 Z x2. Since NAND is a universal
gate, this already suffices to show that quantum circuits simulate
classical ones. Their extra power comes from one more gate.
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Hadamard Gate, Nondeterminism, and Entanglement

Hadamard gate H = 1√
2

[
1 1
1 −1

]
“emits” a free Boolean variable y.

On input |00〉, y = 0 leads to output z1 = 0, z2 = 0, while y = 1 leads to
z1z2 = 11. The other combinations 01 and 10 cannot happen. Matrices:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 ·


1
0
0
0

 =


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 ·


1
0
0
0

 =


1
0
0
1

 .



Reading, Analyzing, and Simulating Quantum Circuits

Measurement and Sampling

Measuring the state vector |φ〉 = [a0, a1, . . . , aN−1]T of all n
qubits returns some i, 0 ≤ i ≤ N − 1, with probability |ai|2. You
can say it returns ei, |i〉, or the i-th binary string zi ∈ {0, 1}n.

This entails that |φ〉 is a Euclidean unit vector, so that the
probabilities sum to 1.

Unitary matrices A, meaning AA∗ = I, preserve unit vectors.

Measuring the entangled state |00〉+|11〉√
2

returns |00〉 with

probability 0.5 or |11〉 with probability 0.5, but never |01〉 or |10〉.
So an n-qubit circuit C, on any input |x〉, gives rise to a
distribution DC,x on {0, 1}n to sample from.

Google’s quantum supremacy methodology creates a family of C
such that non-negligible values of DC,− are hard to find classically.

Shor’s algorithm creates DC,x such that sampling often gives z
from which the period r of fa(u) = au mod x can be classically
inferred, which in turn often enables factoring x.

https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Reading, Analyzing, and Simulating Quantum Circuits

Measurement and Sampling

Measuring the state vector |φ〉 = [a0, a1, . . . , aN−1]T of all n
qubits returns some i, 0 ≤ i ≤ N − 1, with probability |ai|2. You
can say it returns ei, |i〉, or the i-th binary string zi ∈ {0, 1}n.

This entails that |φ〉 is a Euclidean unit vector, so that the
probabilities sum to 1.

Unitary matrices A, meaning AA∗ = I, preserve unit vectors.

Measuring the entangled state |00〉+|11〉√
2

returns |00〉 with

probability 0.5 or |11〉 with probability 0.5, but never |01〉 or |10〉.
So an n-qubit circuit C, on any input |x〉, gives rise to a
distribution DC,x on {0, 1}n to sample from.

Google’s quantum supremacy methodology creates a family of C
such that non-negligible values of DC,− are hard to find classically.

Shor’s algorithm creates DC,x such that sampling often gives z
from which the period r of fa(u) = au mod x can be classically
inferred, which in turn often enables factoring x.

https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Reading, Analyzing, and Simulating Quantum Circuits

Measurement and Sampling

Measuring the state vector |φ〉 = [a0, a1, . . . , aN−1]T of all n
qubits returns some i, 0 ≤ i ≤ N − 1, with probability |ai|2. You
can say it returns ei, |i〉, or the i-th binary string zi ∈ {0, 1}n.

This entails that |φ〉 is a Euclidean unit vector, so that the
probabilities sum to 1.

Unitary matrices A, meaning AA∗ = I, preserve unit vectors.

Measuring the entangled state |00〉+|11〉√
2

returns |00〉 with

probability 0.5 or |11〉 with probability 0.5, but never |01〉 or |10〉.
So an n-qubit circuit C, on any input |x〉, gives rise to a
distribution DC,x on {0, 1}n to sample from.

Google’s quantum supremacy methodology creates a family of C
such that non-negligible values of DC,− are hard to find classically.

Shor’s algorithm creates DC,x such that sampling often gives z
from which the period r of fa(u) = au mod x can be classically
inferred, which in turn often enables factoring x.

https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Reading, Analyzing, and Simulating Quantum Circuits

Measurement and Sampling

Measuring the state vector |φ〉 = [a0, a1, . . . , aN−1]T of all n
qubits returns some i, 0 ≤ i ≤ N − 1, with probability |ai|2. You
can say it returns ei, |i〉, or the i-th binary string zi ∈ {0, 1}n.

This entails that |φ〉 is a Euclidean unit vector, so that the
probabilities sum to 1.

Unitary matrices A, meaning AA∗ = I, preserve unit vectors.

Measuring the entangled state |00〉+|11〉√
2

returns |00〉 with

probability 0.5 or |11〉 with probability 0.5, but never |01〉 or |10〉.
So an n-qubit circuit C, on any input |x〉, gives rise to a
distribution DC,x on {0, 1}n to sample from.

Google’s quantum supremacy methodology creates a family of C
such that non-negligible values of DC,− are hard to find classically.

Shor’s algorithm creates DC,x such that sampling often gives z
from which the period r of fa(u) = au mod x can be classically
inferred, which in turn often enables factoring x.

https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Reading, Analyzing, and Simulating Quantum Circuits

Measurement and Sampling

Measuring the state vector |φ〉 = [a0, a1, . . . , aN−1]T of all n
qubits returns some i, 0 ≤ i ≤ N − 1, with probability |ai|2. You
can say it returns ei, |i〉, or the i-th binary string zi ∈ {0, 1}n.

This entails that |φ〉 is a Euclidean unit vector, so that the
probabilities sum to 1.

Unitary matrices A, meaning AA∗ = I, preserve unit vectors.

Measuring the entangled state |00〉+|11〉√
2

returns |00〉 with

probability 0.5 or |11〉 with probability 0.5, but never |01〉 or |10〉.

So an n-qubit circuit C, on any input |x〉, gives rise to a
distribution DC,x on {0, 1}n to sample from.

Google’s quantum supremacy methodology creates a family of C
such that non-negligible values of DC,− are hard to find classically.

Shor’s algorithm creates DC,x such that sampling often gives z
from which the period r of fa(u) = au mod x can be classically
inferred, which in turn often enables factoring x.

https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Reading, Analyzing, and Simulating Quantum Circuits

Measurement and Sampling

Measuring the state vector |φ〉 = [a0, a1, . . . , aN−1]T of all n
qubits returns some i, 0 ≤ i ≤ N − 1, with probability |ai|2. You
can say it returns ei, |i〉, or the i-th binary string zi ∈ {0, 1}n.

This entails that |φ〉 is a Euclidean unit vector, so that the
probabilities sum to 1.

Unitary matrices A, meaning AA∗ = I, preserve unit vectors.

Measuring the entangled state |00〉+|11〉√
2

returns |00〉 with

probability 0.5 or |11〉 with probability 0.5, but never |01〉 or |10〉.
So an n-qubit circuit C, on any input |x〉, gives rise to a
distribution DC,x on {0, 1}n to sample from.

Google’s quantum supremacy methodology creates a family of C
such that non-negligible values of DC,− are hard to find classically.

Shor’s algorithm creates DC,x such that sampling often gives z
from which the period r of fa(u) = au mod x can be classically
inferred, which in turn often enables factoring x.

https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Reading, Analyzing, and Simulating Quantum Circuits

Measurement and Sampling

Measuring the state vector |φ〉 = [a0, a1, . . . , aN−1]T of all n
qubits returns some i, 0 ≤ i ≤ N − 1, with probability |ai|2. You
can say it returns ei, |i〉, or the i-th binary string zi ∈ {0, 1}n.

This entails that |φ〉 is a Euclidean unit vector, so that the
probabilities sum to 1.

Unitary matrices A, meaning AA∗ = I, preserve unit vectors.

Measuring the entangled state |00〉+|11〉√
2

returns |00〉 with

probability 0.5 or |11〉 with probability 0.5, but never |01〉 or |10〉.
So an n-qubit circuit C, on any input |x〉, gives rise to a
distribution DC,x on {0, 1}n to sample from.

Google’s quantum supremacy methodology creates a family of C
such that non-negligible values of DC,− are hard to find classically.

Shor’s algorithm creates DC,x such that sampling often gives z
from which the period r of fa(u) = au mod x can be classically
inferred, which in turn often enables factoring x.

https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Reading, Analyzing, and Simulating Quantum Circuits

Measurement and Sampling

Measuring the state vector |φ〉 = [a0, a1, . . . , aN−1]T of all n
qubits returns some i, 0 ≤ i ≤ N − 1, with probability |ai|2. You
can say it returns ei, |i〉, or the i-th binary string zi ∈ {0, 1}n.

This entails that |φ〉 is a Euclidean unit vector, so that the
probabilities sum to 1.

Unitary matrices A, meaning AA∗ = I, preserve unit vectors.

Measuring the entangled state |00〉+|11〉√
2

returns |00〉 with

probability 0.5 or |11〉 with probability 0.5, but never |01〉 or |10〉.
So an n-qubit circuit C, on any input |x〉, gives rise to a
distribution DC,x on {0, 1}n to sample from.

Google’s quantum supremacy methodology creates a family of C
such that non-negligible values of DC,− are hard to find classically.

Shor’s algorithm creates DC,x such that sampling often gives z
from which the period r of fa(u) = au mod x can be classically
inferred, which in turn often enables factoring x.

https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Reading, Analyzing, and Simulating Quantum Circuits

Some More Gates

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,

S =

[
1 0
0 i

]
, T =

[
1 0

0 eiπ/4

]
, R8 =

[
1 0

0 eiπ/8

]
,

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , CS =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 .

The gates H,X,Y,Z,S,CNOT,CZ generate Clifford circuits, which
are simulatable in polynomial time. (Time improved by us.)

Adding any of T, R8, CS, or Tof gives the full power of BQP.

Note: T2 = S, S2 = Z, Z2 = I = H2, and CS2 = CZ.
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Two Notable Circuits

H and CS alone can simulate the Toffoli gate:

The 4-qubit Quantum Fourier Transform == the 16× 16 Discrete
Fourier Transform. In general, QFTn needs O(n2) basic gates.



Reading, Analyzing, and Simulating Quantum Circuits

Juxtaposition and Tensor Product

Many QCs begin with m Hadamard gates on each of m qubits

Is this “4” units of work? Or “16”? Or “256”?
On one hand, the rule H⊗n[u, v] = 1√

n
(−1)u•v for entries is simple.

On the other, some claim this involves splitting off 2n branches of a
multiverse.
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Reading, Analyzing, and Simulating Quantum Circuits

Three Universal Libraries, Phase Angles, and Noise

The gate set H + CNOT + T is efficiently metrically universal,
meaning that any feasible quantum circuit of size s can be
approximated to within entrywise error ε by a circuit of these gates
only in size O(s) · (log s

ε )
O(1). (See Solovay-Kitaev theorem.)

Programmed improvement by Peter Selinger and Neil Ross.

The gate set H + Tof is not metrically universal—it has no complex
scalars—but it is computationally universal: It can maintain
real and complex parts of quantum states in double-rail manner.

The gate set H + CS is efficiently metrically universal.

Thus we don’t need arbitrarily fine-angled gates to compute QFTn

finely enough with Õ(n2) basic gates.

But fine angles exist in the output and may be especially
vulnerable to noise.

https://en.wikipedia.org/wiki/Solovay-Kitaev_theorem
https://www.mathstat.dal.ca/~selinger/newsynth/
http://theory.caltech.edu/~preskill/ph219/ph219-prob3-fall-2021.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm#Physical_implementation
https://gilkalai.wordpress.com/2025/02/26/quantum-computing-skepticism-part-2-my-view-and-responses-to-skeptical-claims-featuring-john-preskill-scott-aaronson-dave-bacon-aram-harrow-and-boaz-barak/
https://rjlipton.com/2023/06/14/a-little-noise-makes-quantum-factoring-fail/
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Reading, Analyzing, and Simulating Quantum Circuits

Demo of Simulation Code and Its Blue-Sky Ideas

Theorem (Regan-Chakrabarti-Guan): Given an n-qubit circuit C with
h nondeterministic (Hadamard) gates, we can efficiently compute [...]:

A product polynomial pC(x1, ..., xn; y1, ...,yh; z1, ..., zn).

An additive polynomial qC(x1, ..., xn; y1, ...,yh; z1, ..., zn;w1, ...).

A Boolean representation φC with various auxiliary variables.
Used by the simulator.

Idea 1: Bounds from algebraic-geometric invariants of ∂pC? Hard...

2. Can SAT solvers—or really #SAT counters—heuristically evaluate
C? They perform poorly.

3. Simplify intermediate states via logic? Not promising so far...

4. Maybe program non-physical approximations? Hmmmmm...

5. Iteratively program tensor network and SVD approximations...
On the agenda...
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Reading, Analyzing, and Simulating Quantum Circuits

I. Feynman Path Polynomials and Logical Formulas

Let C have “minphase” K = 2k and let F embed K-th roots of unity ω.

H + Tof has k = 1, K = 2.

H + CS has k = 2, K = 4.

H + CNOT + T has k = 3, K = 8.

Theorem (RC 2007-09, extending Dawson et al. (2004) over Z2)

Any QC C of n qubits quickly transforms into a polynomial PC =
∏
g Pg

over gates g and a constant R > 0 such that for all x, z ∈ {0, 1}n:

〈z | C | x〉 =
1

R

K−1∑
j=0

ωj(#y : PC(x, y, z) = ι(ωj)) =
1

R

∑
y

ωPC(x,y,z),

where C has h nondeterministic (Hadamard) gates and y ∈ {0, 1}h.
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Reading, Analyzing, and Simulating Quantum Circuits

Additive Case (Cf. Bacon-van Dam-Russell [2008])

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial
QC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zn, w1, . . . , wt) of degree O(1) over ZK
and a constant R′ such that for all x, z ∈ {0, 1}n:

〈z | C | x〉 =
1

R′

K−1∑
j=0

ωj(#y, w : QC(x, y, z, w) = j)

=
1

R′

∑
y,w

ωQC(x,y,z,w),

where QC has the form
∑

gates g qg +
∑

constraints c qc.

Gives a particularly efficient reduction from BQP to #P.

In PC , illegal paths that violate some constraint incur the value 0.

In QC , any violation creates an additive term T = w1 · · ·wlog2K

using fresh variables whose assignments give all values in 0 .. K−1,
which cancel. (This trick is my main original contribution.)
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Gives a particularly efficient reduction from BQP to #P.

In PC , illegal paths that violate some constraint incur the value 0.

In QC , any violation creates an additive term T = w1 · · ·wlog2K

using fresh variables whose assignments give all values in 0 .. K−1,
which cancel. (This trick is my main original contribution.)
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Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj .

No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.

T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

S-gate: QC adds u2
i .

CS-gate: QC adds uiuj .

Thereby CS escapes the easy case over Z4 (with k = 2).

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
T-gate also goes cubic.



Reading, Analyzing, and Simulating Quantum Circuits

Logical Simulation

Theorem (C. Guan in RCG 2018)

Given C, n,K, h as above, we can quickly build a Boolean formula φC in
variables y1, . . . , yh, together with substituted-for x1, . . . , xn, z1, . . . , zn,
and other “forced” variables such that for all x, z ∈ {0, 1}n:

〈z | C | x〉 =
1

R

K−1∑
j=0

ωj ·#sat(φC).

The φ is a conjunction of “controlled bitflips” p′ = p⊕ (u ∧ v).

Easy to transform into 3CNF (i.e., “3SAT” form). (show demo)

For K = 2, 4 (i.e., for H + Tof and H + CS), we get the acceptance
probability as a simple difference:

|〈z | C | x〉|2 =
1

R

(
#sat(φC)−#sat(φ′C)

)
.



Reading, Analyzing, and Simulating Quantum Circuits

Logical Simulation

Theorem (C. Guan in RCG 2018)

Given C, n,K, h as above, we can quickly build a Boolean formula φC in
variables y1, . . . , yh, together with substituted-for x1, . . . , xn, z1, . . . , zn,
and other “forced” variables such that for all x, z ∈ {0, 1}n:

〈z | C | x〉 =
1

R

K−1∑
j=0

ωj ·#sat(φC).

The φ is a conjunction of “controlled bitflips” p′ = p⊕ (u ∧ v).

Easy to transform into 3CNF (i.e., “3SAT” form). (show demo)

For K = 2, 4 (i.e., for H + Tof and H + CS), we get the acceptance
probability as a simple difference:

|〈z | C | x〉|2 =
1

R

(
#sat(φC)−#sat(φ′C)

)
.



Reading, Analyzing, and Simulating Quantum Circuits

Logical Simulation

Theorem (C. Guan in RCG 2018)

Given C, n,K, h as above, we can quickly build a Boolean formula φC in
variables y1, . . . , yh, together with substituted-for x1, . . . , xn, z1, . . . , zn,
and other “forced” variables such that for all x, z ∈ {0, 1}n:

〈z | C | x〉 =
1

R

K−1∑
j=0

ωj ·#sat(φC).

The φ is a conjunction of “controlled bitflips” p′ = p⊕ (u ∧ v).

Easy to transform into 3CNF (i.e., “3SAT” form). (show demo)

For K = 2, 4 (i.e., for H + Tof and H + CS), we get the acceptance
probability as a simple difference:

|〈z | C | x〉|2 =
1

R

(
#sat(φC)−#sat(φ′C)

)
.



Reading, Analyzing, and Simulating Quantum Circuits

Logical Simulation

Theorem (C. Guan in RCG 2018)

Given C, n,K, h as above, we can quickly build a Boolean formula φC in
variables y1, . . . , yh, together with substituted-for x1, . . . , xn, z1, . . . , zn,
and other “forced” variables such that for all x, z ∈ {0, 1}n:

〈z | C | x〉 =
1

R

K−1∑
j=0

ωj ·#sat(φC).

The φ is a conjunction of “controlled bitflips” p′ = p⊕ (u ∧ v).

Easy to transform into 3CNF (i.e., “3SAT” form). (show demo)

For K = 2, 4 (i.e., for H + Tof and H + CS), we get the acceptance
probability as a simple difference:

|〈z | C | x〉|2 =
1

R

(
#sat(φC)−#sat(φ′C)

)
.



Reading, Analyzing, and Simulating Quantum Circuits

II. Strong Simulation of Graph State Circuits

Computing amplitudes 〈z | C | x〉 for Clifford circuits C can be
efficiently reduced to computing 〈0n | CG | 0n〉 for graph-state
circuits CG of graphs G, using H and CZ gates, as exemplified by:
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Improved From O(n3) to O(n2.37155...)

Theorem (Guan-Regan, 2019)

For n-qubit stabilizer circuits of size s, 〈z | C | x〉 can be computed in
O(s+ nω) time, where ω ≤ 2.37155... is the exponent of multiplying
n× n matrices.

Although C has K = 2, proof needs to use quadratic forms over Z4.
And LDU decompositions over Z2 by Dumas-Pernet [2018].
Corollary: Counting solutions to quadratic polynomials
p(x1, . . . , xn) over Z2 is in O(n2.37155...) time.
Improves O(n3) time of Ehrenfeucht-Karpinski (1990).
See Beaudrap and Herbert [2021] for other time/size/#H tradeoffs.
Can we recognize G with 〈0n | CG | 0n〉 = 0 more quickly still?

https://arxiv.org/abs/1904.00101
https://theory.cs.uni-bonn.de/ftp/reports/cs-reports/1990/8543-CS.pdf
https://arxiv.org/pdf/2109.08629
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From Graphs to Polymatroids

A self-loop on node i becomes a Z-gate on qubit line i.
An S-gate on line i would then be a “half loop.”
A CS gate would then be a “half edge.”
Formalizable as a polymatroid (PM). Into universal QC now.
John Preskill’s notes show that the following four widgets, together
with their conjugations by H⊗ H, suffice:

http://theory.caltech.edu/~preskill/ph219/ph219-prob3-fall-2021.pdf
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New Heuristic Forms to Investigate

Would be a “PM State Circuit”—except for all those H gates in the
middle.

Can we move them to the sides, as with graph state circuits?

If not, are there other useful canonical forms, a-la this?

How about the power of PM state circuits by themselves?

Are they more amenable to algebraic or logical model-counting
heuristics than general quantum circuits?

Chaowen and I also considered graphs that can have:

Loops not attached to a vertex, called circles.
Numbered copies of the empty graph, called wisps.
Wisps of negative sign, called negative isols.

They can be formalized via (graphical) 2-polymatroids. Call them
“(G)2PMs.”

We took them in a different direction.

https://algassert.com/post/1801
https://rjlipton.com/2020/02/11/using-negative-nodes-to-count/
https://dblp.uni-trier.de/rec/conf/acss/GuanR20.html
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heuristics than general quantum circuits?

Chaowen and I also considered graphs that can have:

Loops not attached to a vertex, called circles.
Numbered copies of the empty graph, called wisps.
Wisps of negative sign, called negative isols.

They can be formalized via (graphical) 2-polymatroids. Call them
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Singular Value Decomposition

Unlike with diagonalization, this is always possible:



Reading, Analyzing, and Simulating Quantum Circuits

III. SVD and Tensor Network Ideas

Show SVD and truncation idea.

SVD in Image Compression.

Strategy for simulating quantum circuits via classical tensor
networks and SVD truncation.

Most workable scheme?

How this might be programmed.

https://people.csail.mit.edu/karger/Talks/AMS/sld016.html
https://medium.com/@moh.hussain06/applying-singular-value-decomposition-svd-in-image-compression-ba63a2c558de
https://www.benasque.org/2020scs/talks_contr/106_tensornetworks_lecture1.pdf
https://www.quantumcomputinglab.cineca.it/wp-content/uploads/2021/10/MPS_Lecture.pdf
https://pennylane.ai/qml/demos/tutorial_tn_circuits
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Reading, Analyzing, and Simulating Quantum Circuits

What Is the Status?

Can quantum hardware open up and widen a gap over classical?

Can more-clever classical simulations always catch up?

What does Nature do, anyway? Is it the “rose” in Umberto Eco’s
maxim Stat rosa pristina nomine, nomina nuda tenemus—?

If so, are human brains left behind with Turing’s vision? In verse:

“It From Bit” we once proclaimed,
but now the Bit has bit the dust
of whizzing quantum chips that gamed
coherence, to evade the trust
that the Word framed creation’s hour:
Mother Nature fully lexical.
Why not evolve us that same power?
It is a status most perplexical.
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