Reading, Analyzing, and Simulating Quantum Circuits

(With speculation on the status of "quantum supremacy")

Kenneth W. Regan¹ University at Buffalo (SUNY)

RIT, 24 Apr., 2025

¹Includes joint work with Amlan Chakrabarti, University of Calcutta, and

Is Nature Lexical?

I.e., can all natural processes be simulated in proportional time by computers using today's programming languages?

Pro:

- "It From Bit." "Unreasonable Effectiveness of Mathematics."
- Church-Turing Thesis extended to physics and feasible computation (as formalized e.g. by the polynomial-time class P).
- Stephen Wolfram's cellular automata universe; others' models...
- The classical Simulation Hypothesis presumes it.

Con:

- "Nature isn't classical, dammit!" (Richard Feynman, whole quote)
- Experience with exponential blowups in simulations.
- "It From Qubit."

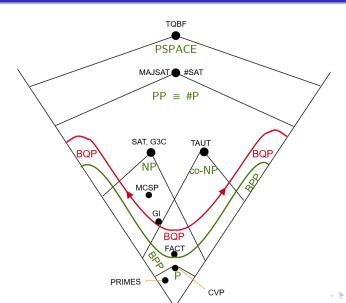
The Reach of Mathematics

- Can define and analyze entities that cannot be computed.
 - $V = \{ \text{true statements about integers in formal arithmetic (PA)} \}.$
 - Tarski, 1923: definable in set theory but not within PA itself.
- Can compute entities in some cases but not others.
 - $A = \{\text{provable statements of PA}\}$. (Gödel, Turing, Church, 1930s)
- Can compute other entities but **not in feasible time**.
 - $B = \{ \text{true statements of PA using } +, = \text{but not } \cdot \}.$
 - Decidable by Presburger, 1929; infeasible by Fischer and Rabin, 1974.
- For other entities we strongly doubt feasibility:
 - $Q = \{\text{true sentences using only } (\land, \lor, \neg, \exists, \forall)\}.$ (PSPACE-complete)
 - SAT = {true sentences using only $(\land, \lor, \neg, \exists)$. (NP-complete)
 - We know $P \subseteq NP \subseteq PSPACE$ but have not proved $P \neq PSPACE$.
- So Math can outpace its own calculations, but can Nature?

Concreteness and Complexity

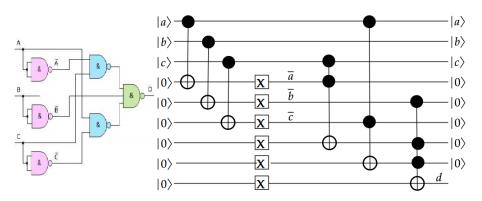
- Perfect chess and Go on $n \times n$ boards are PSPACE-complete (under extensions of common rules limiting the length of games).
- On concrete 8×8 (respectively, 19×19)boards, **perfection** remains a challenge.
 - Perfect chess has been tablebased for up to 7 pieces on the board.
 - A laptop holding 32-piece tables would collapse to a black hole.
- Will we ever compute the Ramsey number R(6,6)? (Erdős quote)
 - We know $102 \le R(6,6) \le 162$.
 - R(5,5) still open, recently tightened to $43 \le R(5,5) \le 46$.
 - Is there a cosmic shortcut? Maybe if NP = P super-concretely??
- Factoring *m*-bit numbers seems concretely hard in most cases.
- Belief in asymptotic classical time lower bound $2^{\tilde{\Omega}(m^{1/3})}$.
 - But no wide-ranging hardness result. (Maybe exponent is $1/4?\ 1/5?$)
- Hence a shock in 1993-94 when Peter Shor put factoring into **BQP**.
- Realizable by quantum circuits of size $\tilde{O}(m^2)$.

The Complexity Class Neighborhood



Classical and Quantum Circuits

$$d = f(a,b,c) = \ \bar{\wedge} \ (c \ \bar{\wedge} \ \bar{a}, \bar{b}, a \ \bar{\wedge} \ \bar{c}) \quad \mathbf{X} = \mathrm{NOT}, \ \bullet - \oplus = \mathrm{controlled-NOT}$$



Quantum circuit computes the **reversible** Boolean function $F(a, b, c, e_1, e_2, e_3, e_4, e_5, e_6) = (a, b, c, e_1, e_2, e_3, e_4, e_5, e_6 \oplus f(a, b, c)).$

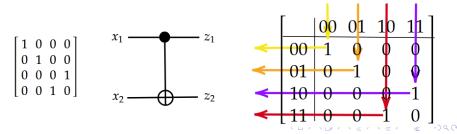
Underlying: a vector of $N = 2^9 = 512$ dimensions.

Quantum Coordinates and the CNOT Gate

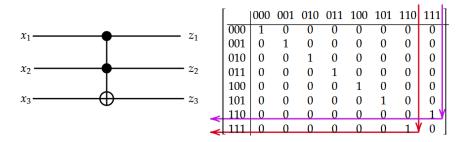
By **linearity**, an *n*-qubit circuit is determined by its actions on the 0-1 standard basis vectors $e_{0^n} = [1, 0, 0, ..., 0]^T$ thru $e_{1^n} = [0, 0, 0, ..., 1]^T$.

For
$$n = 2$$
, $e_{00} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $e_{01} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $e_{10} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$; and $e_{11} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ (in

"big-endian" order). Then $\mathbf{CNOT}e_{00} = e_{00}$ and $\mathbf{CNOT}e_{01} = e_{01}$, while $\mathbf{CNOT}e_{10} = e_{11}$ and $\mathbf{CNOT}e_{11} = e_{10}$. Feynman path visualization:



Toffoli Gate $(n=3, N=2^n=8)$



In **Dirac notation**, e_x is written $|x\rangle$. So we have **Tof** $|000\rangle = |000\rangle$ thru **Tof** $|101\rangle = |101\rangle$, while **Tof** $|110\rangle = |111\rangle$ and **Tof** $|111\rangle = |110\rangle$.

Note that fixing $x_3 = 1$ makes $z_3 = x_1 \bar{\wedge} x_2$. Since NAND is a universal gate, this already suffices to show that quantum circuits simulate classical ones. Their extra power comes from one more gate.

Hadamard Gate, Nondeterminism, and Entanglement

Hadamard gate H = $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ "emits" a free Boolean variable y.

$$x_1 - H$$
 y z_1 z_2 z_2

On input $|00\rangle$, y=0 leads to output $z_1=0$, $z_2=0$, while y=1 leads to $z_1z_2=11$. The other combinations 01 and 10 cannot happen. Matrices:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Measurement and Sampling

- Measuring the state vector $|\phi\rangle = [a_0, a_1, \dots, a_{N-1}]^T$ of all n qubits returns some $i, 0 \le i \le N-1$, with probability $|a_i|^2$. You can say it returns $e_i, |i\rangle$, or the i-th binary string $z_i \in \{0, 1\}^n$.
- This entails that $|\phi\rangle$ is a Euclidean **unit vector**, so that the probabilities sum to 1.
- Unitary matrices A, meaning $AA^* = I$, preserve unit vectors.
- Measuring the **entangled** state $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ returns $|00\rangle$ with probability 0.5 or $|11\rangle$ with probability 0.5, but never $|01\rangle$ or $|10\rangle$.
- So an *n*-qubit circuit C, on any input $|x\rangle$, gives rise to a distribution $D_{C,x}$ on $\{0,1\}^n$ to sample from.
- Google's quantum supremacy methodology creates a family of C such that non-negligible values of $D_{C,-}$ are hard to find classically.
- Shor's algorithm creates $D_{C,x}$ such that sampling often gives z from which the period r of $f_a(u) = a^u \mod x$ can be classically inferred, which in turn often enables factoring x_{n_0}

Some More Gates

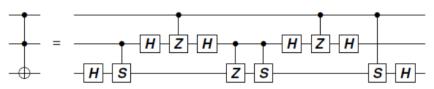
$$\mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$
$$\mathbf{S} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad \mathbf{T} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}, \quad \mathbf{R}_{8} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/8} \end{bmatrix},$$

$$\mathsf{SWAP} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathsf{CZ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad \mathsf{CS} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix}.$$

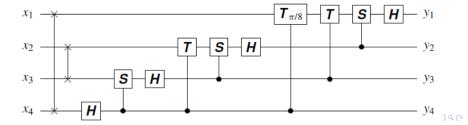
- The gates H, X, Y, Z, S, CNOT, CZ generate *Clifford circuits*, which are simulatable in polynomial time. (Time improved by us.)
- ullet Adding any of T, R₈, CS, or Tof gives the full power of BQP.
- Note: $T^2 = S$, $S^2 = Z$, $Z^2 = I = H^2$, and $CS^2 = CZ$.

Two Notable Circuits

H and **CS** alone can simulate the Toffoli gate:



The 4-qubit Quantum Fourier Transform == the 16×16 Discrete Fourier Transform. In general, QFT_n needs $O(n^2)$ basic gates.



Juxtaposition and Tensor Product

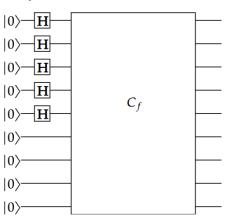
Many QCs begin with m Hadamard gates on each of m qubits

$$|x_1\rangle - H - |x_2\rangle - H - |x_3\rangle - H - |x_4\rangle - |x_4\rangle - H - |x_4\rangle - |x_$$

- Is this "4" units of work? Or "16"? Or "256"?
- On one hand, the rule $\mathbf{H}^{\otimes n}[u,v] = \frac{1}{\sqrt{n}}(-1)^{u \bullet v}$ for entries is simple.
- On the other, some claim this involves splitting off 2^n branches of a multiverse.

Hadamard Transforms and Functions

Suppose $C_f(x,y) = (x,y \oplus f(x))$ computes the reversible form of f. Then



computes what I call the functional superposition

$$\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x\rangle\otimes|f(x)\rangle.$$

- Maybe this has exponentially many "jaggies"?
- We've now seen all the ingredients of Shor's Algorithm.

Three Universal Libraries, Phase Angles, and Noise

- The gate set H + CNOT + T is **efficiently metrically universal**, meaning that any feasible quantum circuit of size s can be approximated to within entrywise error ϵ by a circuit of these gates only in size $O(s) \cdot (\log \frac{s}{\epsilon})^{O(1)}$. (See Solovay-Kitaev theorem.)
- Programmed improvement by Peter Selinger and Neil Ross.
- The gate set H + Tof is not metrically universal—it has no complex scalars—but it is **computationally universal**: It can maintain real and complex parts of quantum states in double-rail manner.
- \bullet The gate set H + CS is efficiently metrically universal.
- Thus we don't need arbitrarily fine-angled gates to compute \mathbf{QFT}_n finely enough with $\tilde{O}(n^2)$ basic gates.
- But fine angles exist in the output and may be especially vulnerable to noise.

Demo of Simulation Code and Its Blue-Sky Ideas

Theorem (Regan-Chakrabarti-Guan): Given an n-qubit circuit C with h nondeterministic (Hadamard) gates, we can efficiently compute [...]:

- A product polynomial $p_C(x_1,...,x_n;\mathbf{y_1},...,\mathbf{y_h};z_1,...,z_n)$.
- An additive polynomial $q_C(x_1,...,x_n; y_1,...,y_h; z_1,...,z_n; w_1,...)$.
- A Boolean representation ϕ_C with various auxiliary variables. Used by the simulator.

Idea 1: Bounds from algebraic-geometric invariants of ∂p_C ? Hard...

- 2. Can SAT solvers—or really #SAT counters—heuristically evaluate C? They perform poorly.
- 3. Simplify intermediate states via logic? Not promising so far...
- 4. Maybe program **non-physical** approximations? **Hmmmmm...**
- 5. Iteratively program tensor network and SVD approximations... On the agenda...

I. Feynman Path Polynomials and Logical Formulas

Let C have "minphase" $K = 2^k$ and let F embed K-th roots of unity ω .

- H + Tof has k = 1, K = 2.
- H + CS has k = 2, K = 4.
- H + CNOT + T has k = 3, K = 8.

Theorem (RC 2007-09, extending Dawson et al. (2004) over \mathbb{Z}_2)

Any QC C of n qubits quickly transforms into a polynomial $P_C = \prod_g P_g$ over gates g and a constant R > 0 such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j (\# y : P_C(x, y, z) = \iota(\omega^j)) = \frac{1}{R} \sum_y \omega^{P_C(x, y, z)},$$

where C has h nondeterministic (Hadamard) gates and $y \in \{0,1\}^h$.

Additive Case (Cf. Bacon-van Dam-Russell [2008])

Theorem (RC (2007-09), RCG (2018))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree O(1) over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j(\#y, w : Q_C(x, y, z, w) = j) = \frac{1}{R'} \sum_{y, w} \omega^{Q_C(x, y, z, w)},$$

where Q_C has the form $\sum_{qates\ q} q_g + \sum_{constraints\ c} q_c$.

- Gives a particularly efficient reduction from BQP to #P.
- In P_C , illegal paths that violate some constraint incur the value 0.
- In Q_C , any violation creates an additive term $T = w_1 \cdots w_{\log_2 K}$ using fresh variables whose assignments give all values in $0 \dots K-1$, which *cancel*. (This trick is my main original contribution.)

Constructing the Polynomials

- Initially $P_C = 1$, $Q_C = 0$.
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1 - u_i y_j)$$

$$Q_C += 2^{k-1} u_i y_j.$$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j u_i u_j$. No change to P_C or Q_C .
- S-gate: Q_C adds u_i^2 .
- CS-gate: Q_C adds $u_i u_j$.
- Thereby CS escapes the easy case over \mathbb{Z}_4 (with k=2).
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.
- T-gate also goes cubic.

Logical Simulation

Theorem (C. Guan in RCG 2018)

Given C, n, K, h as above, we can quickly build a Boolean formula ϕ_C in variables y_1, \ldots, y_h , together with substituted-for $x_1, \ldots, x_n, z_1, \ldots, z_n$, and other "forced" variables such that for all $x, z \in \{0, 1\}^n$:

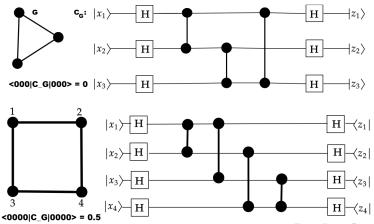
$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j \cdot \#sat(\phi_C).$$

- The ϕ is a conjunction of "controlled bitflips" $p' = p \oplus (u \wedge v)$.
- Easy to transform into 3CNF (i.e., "3SAT" form). (show demo)
- For K = 2, 4 (i.e., for H + Tof and H + CS), we get the acceptance probability as a simple difference:

$$\left|\left\langle z\mid C\mid x\right\rangle\right|^{2}=\frac{1}{R}\left(\#sat(\phi_{C})-\#sat(\phi_{C}')\right).$$

II. Strong Simulation of Graph State Circuits

Computing amplitudes $\langle z \mid C \mid x \rangle$ for Clifford circuits C can be efficiently reduced to computing $\langle 0^n \mid C_G \mid 0^n \rangle$ for **graph-state circuits** C_G of graphs G, using H and CZ gates, as exemplified by:



Improved From $O(n^3)$ to $O(n^{2.37155...})$

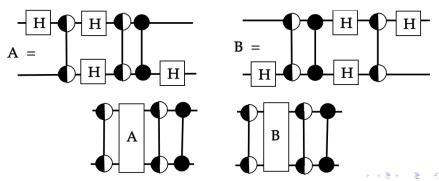
Theorem (Guan-Regan, 2019)

For n-qubit stabilizer circuits of size s, $\langle z \mid C \mid x \rangle$ can be computed in $O(s + n^{\omega})$ time, where $\omega \leq 2.37155...$ is the exponent of multiplying $n \times n$ matrices.

- Although C has K = 2, proof needs to use quadratic forms over \mathbb{Z}_4 . And LDU decompositions over \mathbb{Z}_2 by Dumas-Pernet [2018].
- Corollary: Counting solutions to quadratic polynomials $p(x_1, ..., x_n)$ over \mathbb{Z}_2 is in $O(n^{2.37155...})$ time.
- Improves $O(n^3)$ time of Ehrenfeucht-Karpinski (1990).
- See Beaudrap and Herbert [2021] for other time/size/#H tradeoffs.
- Can we recognize G with $\langle 0^n \mid C_G \mid 0^n \rangle = 0$ more quickly still?

From Graphs to Polymatroids

- A self-loop on node i becomes a Z-gate on qubit line i.
- An S-gate on line i would then be a "half loop."
- A CS gate would then be a "half edge."
- Formalizable as a **polymatroid** (PM). Into universal QC now.
- John Preskill's notes show that the following four widgets, together with their conjugations by $H \otimes H$, suffice:



New Heuristic Forms to Investigate

- Would be a "PM State Circuit"—except for all those H gates in the middle.
- Can we move them to the sides, as with graph state circuits?
- If not, are there other useful canonical forms, a-la this?
- How about the power of PM state circuits by themselves?
- Are they more amenable to algebraic or logical model-counting heuristics than general quantum circuits?
- Chaowen and I also considered graphs that can have:
 - Loops not attached to a vertex, called *circles*.
 - Numbered copies of the empty graph, called wisps.
 - Wisps of negative sign, called *negative isols*.
- They can be formalized via (graphical) 2-polymatroids. Call them "(G)2PMs."
- We took them in a different direction.

Singular Value Decomposition

Unlike with diagonalization, this is *always* possible:

SVD Theorem: For every $m \times n$ matrix A we can efficiently find:

- an $m \times m$ unitary matrix U,
- an $m \times n$ pseudo-diagonal matrix Σ with non-negative entries $\Sigma[i, i] = \sigma_i$, and
- an $n \times n$ unitary matrix V,

such that $A=U\Sigma V^*$. Furthermore, we can arrange that $\sigma_1\geq\sigma_2\geq\cdots\geq\sigma_{\min(m,n)}$, and in consequence:

•
$$||A||_F = \sqrt{\sum_i \sigma_i^2} ||A||_F$$

- $||A||_2 = \sigma_1$,
- $A^*A = V\Sigma^T U^* U\Sigma V^* = V \operatorname{diag}(\sigma_i^2) V^*$, and
- $AA^* = U\Sigma V^* V\Sigma^T U^* = U \operatorname{diag}(\sigma_i^2) U^*$,

so that the squares of the σ_i and associated vectors give the spectral decompositions of the Hermitian PSD matrices A^*A and AA^* , respectively.

III. SVD and Tensor Network Ideas

- Show SVD and truncation idea.
- SVD in Image Compression.
- Strategy for simulating quantum circuits via *classical* tensor networks and SVD truncation.
- Most workable scheme?
- How this might be programmed.

What Is the Status?

- Can quantum hardware open up and widen a gap over classical?
- Can more-clever classical simulations always catch up?
- What does Nature do, anyway? Is it the "rose" in Umberto Eco's maxim *Stat rosa pristina nomine, nomina nuda tenemus*—?
- If so, are human brains left behind with Turing's vision? In verse:

"It From Bit" we once proclaimed, but now the Bit has bit the dust of whizzing quantum chips that gamed coherence, to evade the trust that the Word framed creation's hour: Mother Nature fully lexical. Why not evolve us that same power? It is a status most perplexical.