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Data Science Lessons From a Predictive Chess Model

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

Example: An insurance company may estimate that:

The probability of a given house having flood damage in a 5-year
period is 10% with “95%” confidence that it’s between 5% and 15%.

This means is that out of 100 homes in similar and independent
locations, they expect 10 to be flooded, with 95% confidence of no
better than 5 but no worse than 15.

Homes being close together does not affect the expectation but does
widen the confidence interval.

In my model, the mj are possible moves in chess positions.



Data Science Lessons From a Predictive Chess Model

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

Example: An insurance company may estimate that:

The probability of a given house having flood damage in a 5-year
period is 10% with “95%” confidence that it’s between 5% and 15%.

This means is that out of 100 homes in similar and independent
locations, they expect 10 to be flooded, with 95% confidence of no
better than 5 but no worse than 15.

Homes being close together does not affect the expectation but does
widen the confidence interval.

In my model, the mj are possible moves in chess positions.



Data Science Lessons From a Predictive Chess Model

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

Example: An insurance company may estimate that:

The probability of a given house having flood damage in a 5-year
period is 10% with “95%” confidence that it’s between 5% and 15%.

This means is that out of 100 homes in similar and independent
locations, they expect 10 to be flooded, with 95% confidence of no
better than 5 but no worse than 15.

Homes being close together does not affect the expectation but does
widen the confidence interval.

In my model, the mj are possible moves in chess positions.



Data Science Lessons From a Predictive Chess Model

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

Example: An insurance company may estimate that:

The probability of a given house having flood damage in a 5-year
period is 10% with “95%” confidence that it’s between 5% and 15%.

This means is that out of 100 homes in similar and independent
locations, they expect 10 to be flooded, with 95% confidence of no
better than 5 but no worse than 15.

Homes being close together does not affect the expectation but does
widen the confidence interval.

In my model, the mj are possible moves in chess positions.



Data Science Lessons From a Predictive Chess Model

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

Example: An insurance company may estimate that:

The probability of a given house having flood damage in a 5-year
period is 10% with “95%” confidence that it’s between 5% and 15%.

This means is that out of 100 homes in similar and independent
locations, they expect 10 to be flooded, with 95% confidence of no
better than 5 but no worse than 15.

Homes being close together does not affect the expectation but does
widen the confidence interval.

In my model, the mj are possible moves in chess positions.



Data Science Lessons From a Predictive Chess Model

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

Example: An insurance company may estimate that:

The probability of a given house having flood damage in a 5-year
period is 10% with “95%” confidence that it’s between 5% and 15%.

This means is that out of 100 homes in similar and independent
locations, they expect 10 to be flooded, with 95% confidence of no
better than 5 but no worse than 15.

Homes being close together does not affect the expectation but does
widen the confidence interval.

In my model, the mj are possible moves in chess positions.



Data Science Lessons From a Predictive Chess Model

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

Example: An insurance company may estimate that:

The probability of a given house having flood damage in a 5-year
period is 10% with “95%” confidence that it’s between 5% and 15%.

This means is that out of 100 homes in similar and independent
locations, they expect 10 to be flooded, with 95% confidence of no
better than 5 but no worse than 15.

Homes being close together does not affect the expectation but does
widen the confidence interval.

In my model, the mj are possible moves in chess positions.



Data Science Lessons From a Predictive Chess Model

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

Example: An insurance company may estimate that:

The probability of a given house having flood damage in a 5-year
period is 10% with “95%” confidence that it’s between 5% and 15%.

This means is that out of 100 homes in similar and independent
locations, they expect 10 to be flooded, with 95% confidence of no
better than 5 but no worse than 15.

Homes being close together does not affect the expectation but does
widen the confidence interval.

In my model, the mj are possible moves in chess positions.



Data Science Lessons From a Predictive Chess Model

Inputs

The model is based on a utility function / loss function in a
standard way—except for being log-log linear, not log-linear (why).

The (dis-)utility comes from (my heavily scaled version of) average
centipawn loss of the played move compared to (what a powerful
chess-playing program thinks is) the best move.

No chess knowledge other than the move values is input.

The (only!) parameters trained against chess Elo Ratings are:

s for “sensitivity”—strategic judgment.

c for “consistency” in surviving tactical minefields.

h for “heave” or “Nudge”—obverse to depth of thinking.

Trained on all available in-person classical games in 2010–2019 between
players within 10 Elo of a marker 1025, 1050, . . . , 275, 2800, 2825.
Wider selection below 1500 and above 2500.

https://rjlipton.wpcomstaging.com/2018/10/18/london-calling/
https://rjlipton.wpcomstaging.com/2016/11/30/when-data-serves-turkey/
https://en.wikipedia.org/wiki/Elo_rating_system
https://fivethirtyeight.com/features/whos-the-team-to-beat-at-the-world-baseball-classic/
https://www.amazon.com/Nudge-Improving-Decisions-Health-Happiness/dp/014311526X
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Data Science Lessons From a Predictive Chess Model

How it Works

Take s, c, h from a player’s rating (or “profile”).

Generate probability pi for each legal move mi.

Paint mi on a 1,000-sided die, 1,000pi times.

Roll the die.

(Correct after-the-fact for chess decisions not being independent.)

The statistical application then follows by math known since
the 1700s. (Example of “Explainable AI” at small cost in power.)

Validate the model on millions of randomized trials involving
“Frankenstein Players” to ensure conformance to the standard bell
curve at all rating levels.

See: Published papers and articles on Richard J. Lipton’s blog Gödel’s
Lost Letter and P=NP which I partner.

https://rjlipton.wpcomstaging.com/
https://rjlipton.wpcomstaging.com/
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Data Science Lessons From a Predictive Chess Model

Text and Subtext

Text: Despite being severely underfitted, the model works checkably
well.

Subtext: Many deployed models satisfice—

—designed toward one prime objective but don’t build in
cross-checks or invest in the space of neighboring objectives.

Nonreproducibility, Mission Creep, and Shifting Sands.
E.g., I do not reproduce the longer conclusions of this study.

Going back to my model, since it is fundamentally incorrect
regarding independence, the cross-checks are a vital basis.

Build not a Model but a Root System.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3937878
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Data Science Lessons From a Predictive Chess Model

Pre-Check: The “Screening” Stage

Makes a simple “box score” of agreements to the chess engine being
tested and the scaled average centipawn loss from disagreements.

Creates a Raw Outlier Index (ROI) on the same 0-100 scale as
flipping a fair coin 100 times.

Here 50 is the expectation given one’s rating and 5 is the standard
deviation, so the “two-sigma normal range” is 40-to-60.

Like medical stats except indexed to common normal scale.

65 = amber alert, 70 = code orange, 75 = red. Example.

Completely data driven. Rapid and Blitz trained on in-person
events in 2019. Slow chess trained on in-person FIDE Olympiads
from 2010 to 2018.

Example: The just-finished European Individual CC.

Does not account for the difficulty of games. That is the job of the
full model.

https://cse.buffalo.edu/~regan/chess/fidelity/data/Niemann/HavanaCapaMemEliteApr2022cat14_SF15d20-30pv1.sc4
https://cse.buffalo.edu/~regan/chess/fidelity/ecusemoi/EICC2023/perfsROIsc4whole.txt
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Data Science Lessons From a Predictive Chess Model

Z-scores

For independent situations whose results add up, one can replace
probabilities by Z-scores, which quantify deviations of averages from
expected means.

Like how raw numbers are indexed by their logarithms on a slide
rule.

A z-value denotes the natural frequency of at least yea-much
deviation.

In our homes and flooding example :

z = 2 indexes the probability that 15 or more homes get flooded.
About 1-in-44, which is somewhat under 2.5% probability.
z = 3 means at least “17.5” homes being flooded, 1-in-741 frequency.
z = 4 means 20 or more flooded, for 1-in-31,575 frequency.
(Ignoring that “half a home” matters here too.)
z = 6 means 25 or more. A “Six-Sigma Deviation”: 1-in-a-billion.

Like with a Richter Scale, +1 matters a lot.
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Data Science Lessons From a Predictive Chess Model

Central Limit Theorem and “Rule of 30”

Theorem (CLT)

For any probability distribution D, the mean of N independent
samples from D is distributed more like the bell curve as N →∞.

Origin in the accuracy of N trials of any scientific measurement.

Convention: closeness to bell curve “kicks in” at N = 30.

Shadable either way. Razieh Fathi used used 3 sets of N = 15 in
her PhD work (paper at EDSIGCON 2022).

In chess, the distribution D isn’t the same for different chess
positions.

But it stays “chessy.” I’m fully comfortable with N = 50.

The severe underfitting causes other problems for N � 500.

https://proc.iscap.info/2022/pdf/5776.pdf
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Data Science Lessons From a Predictive Chess Model

Demonstration

At this point I showed data from the full model results, including
from the recent European Individual Championships.
The model is trained to make MM% (engine move-match) and
ASD (scaled average centipawn loss) into unbiased estimators.
Although the projections on the engine’s second and third moves
are moderately out of true, the 4th moves onward agree closely,
while projections of various levels of mistakes are in fair agreement.
In 10–15% of positions, the model projects an inferior move to be
more likely than the engine’s favored move. This yields 2–3
percentage points gain in predicting the played moves, compared to
“betting the favorite” move. See this GLL blog article.
Advancing moves, capture moves, and moves with the knights are
played far more often than the model projects.
Is it better to leave these human tendencies as “theorems” of the
model in its minimalist form, or alter projections after-the-fact to
match them?

https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/


Data Science Lessons From a Predictive Chess Model

How Well Does It Work?

Internal evidence that it gives (1 + ε) relative error with ε ≈ 0.04 for
most rating levels.

Means it supports betting on chess moves with only
5% “vig” needed to avoid arbitrage. (SF11 issue corrected “by hand.”)
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Data Science Lessons From a Predictive Chess Model

Rating Lag—Natural Versus Systematic

The #1 scientific role I’ve played during the pandemic has
been estimating the true skill growth of young players
while their official ratings have been frozen.

But this has perforce been post-normal science.

My “back of the envelope” formula held up over two years with
only one small revision for preteens.

Larger revision in Oct. 2022 to curtail projections past Elo 2000
level.

Would have been more “normal” if comprehensive studies of the
career arcs (measured by Elo rating) of young players were to hand.

Lack of such studies exposed by the controversy over Hans
Niemann’s rise from 2465 Elo to 2700.

https://rjlipton.wpcomstaging.com/2021/07/30/pandemic-lag/
https://en.wikipedia.org/wiki/Post-normal_science
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Hans Niemann: Platform or Plateau?



Data Science Lessons From a Predictive Chess Model

The Gender Gap in Chess

Is clear: with Judit Polgar retired, there are no women in the top
100 by rating.

Where/when does it begin?

How should one begin to address this question?

What data could corroborate a result—or a proposed explanation?
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Data Science Lessons From a Predictive Chess Model

Q & A

The talk stopped here for Q & A. The remaining slides were in case of
available time or separate interest for more on how the z-scores are
interpreted in chess cheating cases.

Two more concluding points in the meantime:

1 I have accepted lower sensitivity and predictivity in order to
preserve explainability and gain robustness. Neural methods have
been brittle in ways discussed here and here. I present a recent
instance linked in an Update at the bottom of this GLL blog post.

2 Models should promote multiple paths of engagement with reality.

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa
https://arstechnica.com/cars/2017/09/hacking-street-signs-with-stickers-could-confuse-self-driving-cars/
https://rjlipton.wpcomstaging.com/2019/08/15/predicting-chess-and-horses/
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The talk stopped here for Q & A. The remaining slides were in case of
available time or separate interest for more on how the z-scores are
interpreted in chess cheating cases.

Two more concluding points in the meantime:

1 I have accepted lower sensitivity and predictivity in order to
preserve explainability and gain robustness. Neural methods have
been brittle in ways discussed here and here. I present a recent
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Data Science Lessons From a Predictive Chess Model

Using Z-Scores

Golf-shot analogy for why one uses the whole tail.

The common “sigma” units allow combining z-scores of disparate
events.

The z-value gives “Face-Value odds” against the null hypothesis of
the deviation occurring by natural chance.

z = 2.00: 1-in-44 odds, 2.275% natural frequency.

z = 3.00: 1-in-741 odds, 0.135% natural frequency.

z = 4.00: 1-in-31,574 odds, 3.167/100,000 natural frequency.

z = 5.00: 1-in-3,486,914 odds, 2.87/10,000,000 natural freq.

But face-value odds need to be tempered against Bayesian priors,
the look-elsewhere effect, and possible selection bias.

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
https://en.wikipedia.org/wiki/Selection_bias


Data Science Lessons From a Predictive Chess Model

Using Z-Scores

Golf-shot analogy for why one uses the whole tail.

The common “sigma” units allow combining z-scores of disparate
events.

The z-value gives “Face-Value odds” against the null hypothesis of
the deviation occurring by natural chance.

z = 2.00: 1-in-44 odds, 2.275% natural frequency.

z = 3.00: 1-in-741 odds, 0.135% natural frequency.

z = 4.00: 1-in-31,574 odds, 3.167/100,000 natural frequency.

z = 5.00: 1-in-3,486,914 odds, 2.87/10,000,000 natural freq.

But face-value odds need to be tempered against Bayesian priors,
the look-elsewhere effect, and possible selection bias.

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
https://en.wikipedia.org/wiki/Selection_bias


Data Science Lessons From a Predictive Chess Model

Using Z-Scores

Golf-shot analogy for why one uses the whole tail.

The common “sigma” units allow combining z-scores of disparate
events.

The z-value gives “Face-Value odds” against the null hypothesis of
the deviation occurring by natural chance.

z = 2.00: 1-in-44 odds, 2.275% natural frequency.

z = 3.00: 1-in-741 odds, 0.135% natural frequency.

z = 4.00: 1-in-31,574 odds, 3.167/100,000 natural frequency.

z = 5.00: 1-in-3,486,914 odds, 2.87/10,000,000 natural freq.

But face-value odds need to be tempered against Bayesian priors,
the look-elsewhere effect, and possible selection bias.

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
https://en.wikipedia.org/wiki/Selection_bias


Data Science Lessons From a Predictive Chess Model

Using Z-Scores

Golf-shot analogy for why one uses the whole tail.

The common “sigma” units allow combining z-scores of disparate
events.

The z-value gives “Face-Value odds” against the null hypothesis of
the deviation occurring by natural chance.

z = 2.00: 1-in-44 odds, 2.275% natural frequency.

z = 3.00: 1-in-741 odds, 0.135% natural frequency.

z = 4.00: 1-in-31,574 odds, 3.167/100,000 natural frequency.

z = 5.00: 1-in-3,486,914 odds, 2.87/10,000,000 natural freq.

But face-value odds need to be tempered against Bayesian priors,
the look-elsewhere effect, and possible selection bias.

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
https://en.wikipedia.org/wiki/Selection_bias


Data Science Lessons From a Predictive Chess Model

Using Z-Scores

Golf-shot analogy for why one uses the whole tail.

The common “sigma” units allow combining z-scores of disparate
events.

The z-value gives “Face-Value odds” against the null hypothesis of
the deviation occurring by natural chance.

z = 2.00: 1-in-44 odds, 2.275% natural frequency.

z = 3.00: 1-in-741 odds, 0.135% natural frequency.

z = 4.00: 1-in-31,574 odds, 3.167/100,000 natural frequency.

z = 5.00: 1-in-3,486,914 odds, 2.87/10,000,000 natural freq.

But face-value odds need to be tempered against Bayesian priors,
the look-elsewhere effect, and possible selection bias.

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
https://en.wikipedia.org/wiki/Selection_bias


Data Science Lessons From a Predictive Chess Model

Using Z-Scores

Golf-shot analogy for why one uses the whole tail.

The common “sigma” units allow combining z-scores of disparate
events.

The z-value gives “Face-Value odds” against the null hypothesis of
the deviation occurring by natural chance.

z = 2.00: 1-in-44 odds, 2.275% natural frequency.

z = 3.00: 1-in-741 odds, 0.135% natural frequency.

z = 4.00: 1-in-31,574 odds, 3.167/100,000 natural frequency.

z = 5.00: 1-in-3,486,914 odds, 2.87/10,000,000 natural freq.

But face-value odds need to be tempered against Bayesian priors,
the look-elsewhere effect, and possible selection bias.

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
https://en.wikipedia.org/wiki/Selection_bias


Data Science Lessons From a Predictive Chess Model

Using Z-Scores

Golf-shot analogy for why one uses the whole tail.

The common “sigma” units allow combining z-scores of disparate
events.

The z-value gives “Face-Value odds” against the null hypothesis of
the deviation occurring by natural chance.

z = 2.00: 1-in-44 odds, 2.275% natural frequency.

z = 3.00: 1-in-741 odds, 0.135% natural frequency.

z = 4.00: 1-in-31,574 odds, 3.167/100,000 natural frequency.

z = 5.00: 1-in-3,486,914 odds, 2.87/10,000,000 natural freq.

But face-value odds need to be tempered against Bayesian priors,
the look-elsewhere effect, and possible selection bias.

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
https://en.wikipedia.org/wiki/Selection_bias


Data Science Lessons From a Predictive Chess Model

Using Z-Scores

Golf-shot analogy for why one uses the whole tail.

The common “sigma” units allow combining z-scores of disparate
events.

The z-value gives “Face-Value odds” against the null hypothesis of
the deviation occurring by natural chance.

z = 2.00: 1-in-44 odds, 2.275% natural frequency.

z = 3.00: 1-in-741 odds, 0.135% natural frequency.

z = 4.00: 1-in-31,574 odds, 3.167/100,000 natural frequency.

z = 5.00: 1-in-3,486,914 odds, 2.87/10,000,000 natural freq.

But face-value odds need to be tempered against Bayesian priors,
the look-elsewhere effect, and possible selection bias.

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
https://en.wikipedia.org/wiki/Selection_bias


Data Science Lessons From a Predictive Chess Model

Extremes, Dependence, and Adjustments

Going back to our homes-and-flooding example:

All 100 homes being flooded gives z = 18. Beyond astronomical.

But what if all 100 homes are together and a big storm comes?

Problem is the home risks not being independent.

Chess “homes” are like spaced 10km apart in a straight line from
Kyushu to Hokkaido.

“Sparse dependence” with exponential decay within a game.

Book between games is removed already.

Can approximate effect of covariance by adjusting z 10–15%
downward.

These are my adjusted z-scores.

Both determined and vetted by millions of resampling
trials—emphasizing 4-game, 9-game, and 16-game sets.
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Data Science Lessons From a Predictive Chess Model

Sensitivity, Soundness, and Safety

Model is sensitive if whenever there is a high deviation in fact, the
model registers a high z-score.

Also termed: the model avoids false negatives / avoids type-2 errors.

Model is sound if whenever it measures a high z-score there is a
factual high deviation.

Aka.: avoids false positives / avoids type-1 errors.

Model is safe if in the absence of systematic deviations, the z-scores
it gives follow a normal distribution—or at least are conservatively
within the z ≥ 2 high end of the standard bell curve.

It is possible for models to be safe without being sensitive.

My model has preserved safety while improving sensitivity.

Safe models can still give false positives in (normally rare) cases.
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Data Science Lessons From a Predictive Chess Model

Example Application and Reasoning

Suppose one gets a z-score of 4.00.

The primary meaning is that the performance has a natural
frequency of about 1-in-31,574, for that quality or higher.
Let’s round that to what I call “Face-Value Odds” of 30,000-to-1.
This needs to be rectified according to various factors:

The prior likelihood of cheating. In-person: 1-in-5,000 to
1-in-10,000? Online: 1-in-50 to 1-in-100. :-(
The look-elsewhere effect: How many others could you have
tested? How many in the tournament? How many others playing
comparable-level chess that weekend? week? month? year?

Presence of other, non-quality evidence offsets these matters.
OTB, divide 30,000 by 10,000 leaves just a “balance of probability.”
Insufficient. Need z ≥ 5 for comfort.
Online, dividing by 100 leaves 300-to-1 “reckoned odds” against the
null hypothesis of fair play.
Interpret 100-1 to 1,000-1 as range of comfortable satisfaction
per CAS Lausanne.
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Data Science Lessons From a Predictive Chess Model

Cancer and Covid (= in-person and online chess)

Say you take a test that is 98% accurate for a cancer that affects
1-in-5,000 people...

...and get a positive. What are the odds that you have the cancer?

Not the same as the odds that any one test result is wrong.

Consider giving the test to 5,000 people, including yourself.

Among them, 1 has the cancer; expect that result to be positive.
But we can also expect about 100 false positives.
All you know at this point is: you are one of 101 positives.

So the odds are still 100-1 against your having the cancer.

The test result knocked down your prior 5,000-to-1 odds-against by
a factor of 50, but not all the way. Need a “Second Opinion.”

IMPHO, 1-in-5,000 ≈ frequency of cheating in-person.

A positive from a “98%” test is like getting z = 2.05. Not enough.

In a 500-player Open, you should see ten such scores.
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Data Science Lessons From a Predictive Chess Model

The 99.993% Test

Suppose our cancer test were 600 times more accurate:
1-in-30,000 error.

That’s the face-value error rate claimed by a z = 4 result.

Still 1-in-6 chance of false positive among 5,000 people.

(This is really how a “second opinion” operates in practice.)

If the entire world were a 500-player Open, then 1-in-60 chance of
the result being natural.

Still not comfortable satisfaction of the result being unnatural.

IMPHO, the interpretation of CAS comfortable-satisfaction range
of final odds determination is 99%–99.9% confidence.

Target confidence should depend on gravity of consequences. (CAS)

Sweet spot IMHO is 99.5%, meaning 1-in-200 ultimate chance of
wrong decision. Same criterion used by Decision Desk HQ to
“call” US elections.

Higher stringency cuts against timely public service.
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Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?
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Data Science Lessons From a Predictive Chess Model

Back to Chess...

Suppose we get z = 4 in online chess with adult cheating rate 2%.

Out of 30,000 people:
1 false positive result.
600 factual positives.
So 600-1 odds against the null hypothesis on the z = 4 person.

A z = 3.75 threshold leaves about 200-1 odds. OK here, but not if
factual rate is under 1%.

This analysis does not depend on how many of the factual positives
gave positive test results.

If test is only 10% sensitive, then we will have only about 60
positive results. It sounds like the 1-in-60 case. But the chance of
getting a z = 4 result on the 1 brilliant player also generally goes
down to 1-in-10. The confidence ratio is 60/0.10 = 600-to-1 even so.

Sensitivity and soundness generally remain separate criteria.

This is relevant insofar as I often get a lot of 3.00–4.00 range results.
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Data Science Lessons From a Predictive Chess Model

Interpretations II: Multiple Factors

Online platforms collect data on player behavior: clicks, changes in
window focus, timing of moves.

Independence is relative to profiled tendencies.

For repeated actions, CLT applies, so deviations can be expressed
via z-scores.

If you get z1 from quality metrics and z2 from the interface
(“telemetry”), weight these factors equally, and consider them
independent, then the overall z-score is

z =
z1 + z2√

2
.

(If you give weights w1, w2 then the formula is z = w1z1+w2z2√
w2

1+w2
2

.)

E.g., if both z1 and z2 are 3.5 then z = 7.0
1.414... ' 4.95.

Face-value odds about 1 in 2.7 million, enough for “any” prior.
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Data Science Lessons From a Predictive Chess Model

Interpretations III: Other Distinguishing Marks

Suppose we have one of thse two situations with player giving z = 4:

(a) Player found with cellphone on person.

(b) Player stowed cellphone in bag under chair, switched off [but it still
rang].

In (a), there do not exist 31,574 or even 500 players who do this
normally (in any year).

Can sanction for violation of rule in any event.

Far more likely that z = 4 means cheating. The false-positive guy
under this combination won’t arise in 60 years.

Logic goes for z = 3 and z = 2.75 and even z = 2.5 (1-in-161
frequency).

But in situation (b), it matters how many players do it, and whether it
is neutral or material.
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Data Science Lessons From a Predictive Chess Model

Distinguishing Marks, continued

If (b) is also material (or otherwise “covariant”) with cheating, then
I argue the face-value odds from the z-score become true odds,
same as in situation (a).

Even if (b) is neutral, still a problem if:

the behavior is infrequent, and
we are not keeping a large catalogue of arbitrary/impertinent
behaviors.

Suppose only 1,000 players do (b) in any year.

Then the false-positive guy for z = 4 ∧ (b) comes only once per 31.5
years.

So 30-to-1 odds against this year—especially if this is the first year
of the policy.

Not enough for comfortable satisfaction, but z = 4.265 gives
1-in-100, z = 4.42 gives 1-in-200 (round number z = 4.5).
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Data Science Lessons From a Predictive Chess Model

Distinguishing Marks, continued

Suppose it’s (b′): player wears green sneakers.

Less frequent but completely neutral, arbitrary, impertinent.

Judging based on that would be selection bias.

How about (b′′): player wears heavy sweater in hot June weather?

Together with z = 3.29, how the case alluded to in my “Doomsday
Argument in Chess” article stood.

The low frequency—maybe at most 10 players per year do
this?—does influence whether material.

But even if neutral, at 1-in-2,000 face-value odds, the false positive
for this combination comes once every 200 years.

If we have a catalogue of 10 things like this, we err once in 20 years.

(As it happens, my sharper August 2019 model gave some z > 5
readings, then more games were found which made z > 6 overall.)

https://rjlipton.wpcomstaging.com/2020/06/07/the-doomsday-argument-in-chess/
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