What Laws Act on the Mind? Large data, regularities, and illusions

> Kenneth W. Regan¹ University at Buffalo (SUNY)

RKMVERI, 5 Feb. 2019

 What Laws Act on the Mind?

Competitive Chess

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• Burgeoning popularity and participation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.

ション ふゆ マ キャット マックシン

• India has 59 Grandmasters, including several of the youngest ones...

• Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.

ション ふゆ マ キャット マックシン

• India has 59 Grandmasters, including several of the youngest ones...59 more than 40 years ago. (The first was V. Anand in 1988.)

• Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.

うして ふゆう ふほう ふほう ふしつ

• India has 59 Grandmasters, including several of the youngest ones...59 more than 40 years ago. (The first was V. Anand in 1988.) Bangladesh has 5.

• Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.

うして ふゆう ふほう ふほう ふしつ

• India has 59 Grandmasters, including several of the youngest ones...59 more than 40 years ago. (The first was V. Anand in 1988.) Bangladesh has 5. BAN championships now prominent.

• Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.

うして ふゆう ふほう ふほう ふしつ

- India has 59 Grandmasters, including several of the youngest ones...59 more than 40 years ago. (The first was V. Anand in 1988.) Bangladesh has 5. BAN championships now prominent.
- Many schools have adopted programmes in chess.

- Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.
- India has 59 Grandmasters, including several of the youngest ones...59 more than 40 years ago. (The first was V. Anand in 1988.) Bangladesh has 5. BAN championships now prominent.
- Many schools have adopted programmes in chess.
- Over this decade, many more games by amateur players have been preserved and archived in publicly available game collections.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.
- India has 59 Grandmasters, including several of the youngest ones...59 more than 40 years ago. (The first was V. Anand in 1988.) Bangladesh has 5. BAN championships now prominent.
- Many schools have adopted programmes in chess.
- Over this decade, many more games by amateur players have been preserved and archived in publicly available game collections.
- In 2018, I took data from 10.6 million positions in 240,000 games by 58,000 players in tournaments rated by the World Chess Federation (FIDE).

- Burgeoning popularity and participation despite computers having dethroned human champions 22 years ago.
- India has 59 Grandmasters, including several of the youngest ones...59 more than 40 years ago. (The first was V. Anand in 1988.) Bangladesh has 5. BAN championships now prominent.
- Many schools have adopted programmes in chess.
- Over this decade, many more games by amateur players have been preserved and archived in publicly available game collections.
- In 2018, I took data from 10.6 million positions in 240,000 games by 58,000 players in tournaments rated by the World Chess Federation (FIDE).
- This excluded the first 8 moves in any game—"book" openings.

Idea: The *points expectation* E for player P versus opponent(s) O should be a function of the difference(s) in ratings $\Delta = R_P - R_O$ alone.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Idea: The *points expectation* E for player P versus opponent(s) O should be a function of the difference(s) in ratings $\Delta = R_P - R_O$ alone.

$$egin{array}{cccc} \Delta=0 & \Longrightarrow & E=50\% \ \Delta=200 & \equiv & Epprox 75\% \ \Delta
ightarrow+\infty & \Longrightarrow & E
ightarrow 100\%. \end{array}$$
 (one st.dev.)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Idea: The *points expectation* E for player P versus opponent(s) O should be a function of the difference(s) in ratings $\Delta = R_P - R_O$ alone.

$$egin{array}{lll} \Delta=0&\Longrightarrow&E=50\%\ \Delta=200&\equiv&Epprox75\%\ \Delta
ightarrow+\infty&\Longrightarrow&E
ightarrow100\%. \end{array}$$
 (one st.dev.)

Sigmoid curve, such as USCF logistic curve:

$$E=rac{1}{1+\exp(-400\Delta\ln10)}.$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Idea: The points expectation E for player P versus opponent(s) O should be a function of the difference(s) in ratings $\Delta = R_P - R_O$ alone.

$$egin{array}{lll} \Delta = 0 & \Longrightarrow & E = 50\% \ \Delta = 200 & \equiv & E pprox 75\% & (ext{one st.dev.}) \ \Delta o + \infty & \Longrightarrow & E o 100\%. \end{array}$$

Sigmoid curve, such as USCF logistic curve:

$$E=rac{1}{1+\exp(-400\Delta\ln10)}.$$

If your actual score exceeds (falls short of) your expectation then your rating goes up (down).

What Laws Act on the Mind?

Elo Rating Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Bobby Fischer hit 2800 on the US Chess Federation's Elo tabulation, 2785 on the FIDE list in July 1972.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Bobby Fischer hit 2800 on the US Chess Federation's Elo tabulation, 2785 on the FIDE list in July 1972.
- Current world champion Magnus Carlsen broke Garry Kasparov's record of 2851, reached peak of 2882.

ション ふゆ マ キャット マックシン

- Bobby Fischer hit 2800 on the US Chess Federation's Elo tabulation, 2785 on the FIDE list in July 1972.
- Current world champion Magnus Carlsen broke Garry Kasparov's record of 2851, reached peak of 2882. Computers 3300+.

(日) (日) (日) (日) (日) (日) (日) (日)

- Bobby Fischer hit 2800 on the US Chess Federation's Elo tabulation, 2785 on the FIDE list in July 1972.
- Current world champion Magnus Carlsen broke Garry Kasparov's record of 2851, reached peak of 2882. Computers 3300+.

(日) (日) (日) (日) (日) (日) (日) (日)

• Current world #42 has 2703, world #100 has 2652.

- Bobby Fischer hit 2800 on the US Chess Federation's Elo tabulation, 2785 on the FIDE list in July 1972.
- Current world champion Magnus Carlsen broke Garry Kasparov's record of 2851, reached peak of 2882. Computers 3300+.

(日) (日) (日) (日) (日) (日) (日) (日)

- Current world #42 has 2703, world #100 has 2652.
- Formal "Master" designation in US 2200; "FIDE Master" more typical of 2300.

- Bobby Fischer hit 2800 on the US Chess Federation's Elo tabulation, 2785 on the FIDE list in July 1972.
- Current world champion Magnus Carlsen broke Garry Kasparov's record of 2851, reached peak of 2882. Computers 3300+.

- Current world #42 has 2703, world #100 has 2652.
- Formal "Master" designation in US 2200; "FIDE Master" more typical of 2300. Likewise "International Master" \approx 2400, Grandmaster \approx 2500, "strong GM" \approx 2600.

- Bobby Fischer hit 2800 on the US Chess Federation's Elo tabulation, 2785 on the FIDE list in July 1972.
- Current world champion Magnus Carlsen broke Garry Kasparov's record of 2851, reached peak of 2882. Computers 3300+.

- Current world #42 has 2703, world #100 has 2652.
- Formal "Master" designation in US 2200; "FIDE Master" more typical of 2300. Likewise "International Master" \approx 2400, Grandmaster \approx 2500, "strong GM" \approx 2600.
- USCF uses 2000-2199 = "Expert," 1800-1999 = "Class A," 1600-1799 = "Class B" and so on.

- Bobby Fischer hit 2800 on the US Chess Federation's Elo tabulation, 2785 on the FIDE list in July 1972.
- Current world champion Magnus Carlsen broke Garry Kasparov's record of 2851, reached peak of 2882. Computers 3300+.
- Current world #42 has 2703, world #100 has 2652.
- Formal "Master" designation in US 2200; "FIDE Master" more typical of 2300. Likewise "International Master" \approx 2400, Grandmaster \approx 2500, "strong GM" \approx 2600.
- USCF uses 2000-2199 = "Expert," 1800-1999 = "Class A," 1600-1799 = "Class B" and so on.
- Distribution of online players on Chess.com—skewed low:

• Based on quality of your moves not results of games.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.

・ロト ・ 日 ・ モー・ モー・ うへぐ

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

• Programs give values v in units of centipawns (cp).

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- Programs give values v in units of centipawns (cp).
- "Chatur Anga" (Four Strains of the army):

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.

ション ふゆ マ キャット マックシン

- Programs give values v in units of centipawns (cp).
- "Chatur Anga" (Four Strains of the army):
 - Pawn (peon), 100cp

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.

ション ふゆ マ キャット マックシン

- Programs give values v in units of centipawns (cp).
- "Chatur Anga" (Four Strains of the army):
 - Pawn (peon), 100cp
 - Knight, Bishop: 300-350cp

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.

ション ふゆ マ キャット キャット しょう

- Programs give values v in units of centipawns (cp).
- "Chatur Anga" (Four Strains of the army):
 - Pawn (peon), 100cp
 - Knight, Bishop: 300-350cp
 - Rook (boat): 500cp

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.

ション ふゆ マ キャット マックタン

- Programs give values v in units of centipawns (cp).
- "Chatur Anga" (Four Strains of the army):
 - Pawn (peon), 100cp
 - Knight, Bishop: 300-350cp
 - Rook (boat): 500cp
 - Queen (vizier): 900-1,000cp.

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.
- Programs give values v in units of centipawns (cp).
- "Chatur Anga" (Four Strains of the army):
 - Pawn (peon), 100cp
 - Knight, Bishop: 300-350cp
 - Rook (boat): 500cp
 - Queen (vizier): 900-1,000cp.
 - Plus many other numerical measures of position structure...

(日) (日) (日) (日) (日) (日) (日) (日)

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.
- Programs give values v in units of centipawns (cp).
- "Chatur Anga" (Four Strains of the army):
 - Pawn (peon), 100cp
 - Knight, Bishop: 300-350cp
 - Rook (boat): 500cp
 - Queen (vizier): 900-1,000cp.
 - Plus many other numerical measures of position structure...
- One virtue: many more data points of *moves* rather than results of *games*.

- Based on quality of your moves not results of games.
- Judged by chess programs stronger than all human players.
- Programs give values v in units of centipawns (cp).
- "Chatur Anga" (Four Strains of the army):
 - Pawn (peon), 100cp
 - Knight, Bishop: 300-350cp
 - Rook (boat): 500cp
 - Queen (vizier): 900-1,000cp.
 - Plus many other numerical measures of position structure...
- One virtue: many more data points of *moves* rather than results of *games*.

• (Will discuss IPRs later; focus on values now.)
$$E = \frac{1}{1 + \exp(-Bv)}$$

$$E = \frac{1}{1 + \exp(-Bv)}$$

$$egin{aligned} v &= 0 &\Longrightarrow & E = 50\% \ B, v &= 1 &\Longrightarrow & E = rac{1}{1+1/e} = rac{1}{1.368\ldots} pprox 73\% \ v &
ightarrow +\infty &\Longrightarrow & E
ightarrow 100\%. \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$E = \frac{1}{1 + \exp(-Bv)}$$

$$egin{aligned} v &= 0 &\Longrightarrow & E = 50\% \ B, v &= 1 &\Longrightarrow & E = rac{1}{1+1/e} = rac{1}{1.368\ldots} pprox 73\% \ v &
ightarrow +\infty &\Longrightarrow & E
ightarrow 100\%. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Logistic curve, $B = B_R$ depends on the rating R.

$$E = \frac{1}{1 + \exp(-Bv)}$$

$$v = 0 \implies E = 50\%$$

 $B, v = 1 \implies E = \frac{1}{1 + 1/e} = \frac{1}{1.368...} \approx 73\%$
 $v \to +\infty \implies E \to 100\%.$

Logistic curve, $B = B_R$ depends on the rating R.

Refined to include small probability A of blundering away a "completely winning" game, giving a "generalized logistic" (Richards) curve:

$$E=A+rac{1-2A}{1+\exp(-Bv)}.$$

Example For Elo 2000 Rating

・ロト ・個ト ・モト ・モト

ž

<ロト <四ト <注入 < 三ト

ъ

• The slope B_R varies (linearly) with rating R.

- The slope B_R varies (linearly) with rating R.
- Hence mapping from v to E depends on R ("sliding scale").

(日) (四) (日) (日)

- The slope B_R varies (linearly) with rating R.
- Hence mapping from v to E depends on R ("sliding scale").
- Google DeepMind's AlphaZero program uses only *E* in its move deliberations.

(日) (四) (日) (日)

- The slope B_R varies (linearly) with rating R.
- Hence mapping from v to E depends on R ("sliding scale").
- Google DeepMind's AlphaZero program uses only *E* in its move deliberations.

(日)、(四)、(日)、(日)、

• In training by self-play it avoided the sliding-scale issue by "bootstrapping" its own B as it improved.

- The slope B_R varies (linearly) with rating R.
- Hence mapping from v to E depends on R ("sliding scale").
- Google DeepMind's AlphaZero program uses only *E* in its move deliberations.
- In training by self-play it avoided the sliding-scale issue by "bootstrapping" its own B as it improved.
- But I have to model human players of all levels R in my tests.

• The same factor B mediates both the chess program's value scale and the relation to rating.

・ロト ・ 日 ・ モー・ モー・ うへぐ

- The same factor B mediates both the chess program's value scale and the relation to rating.
- Suggests that skill at chess is primarily the scale and vividness of one's perception of (differences in) value.

ション ふゆ マ キャット キャット しょう

- The same factor B mediates both the chess program's value scale and the relation to rating.
- Suggests that skill at chess is primarily the scale and vividness of one's perception of (differences in) value.

• The frequency A of game-blowing blunders also varies with R.

- The *same* factor *B* mediates both the chess program's value scale and the relation to rating.
- Suggests that skill at chess is primarily the scale and vividness of one's perception of (differences in) value.
- The frequency A of game-blowing blunders also varies with R.
- Given the position has value v, ceteris paribus, is it better if it is your turn to move or the opponent's turn?

- The same factor B mediates both the chess program's value scale and the relation to rating.
- Suggests that skill at chess is primarily the scale and vividness of one's perception of (differences in) value.
- The frequency A of game-blowing blunders also varies with R.
- Given the position has value v, ceteris paribus, is it better if it is your turn to move or the opponent's turn? A "Murphy's Law":

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

・ロト ・ 日 ・ モー・ モー・ うへぐ

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

() 0.01, the higher move is played 53-55% of the time.

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **(** 0.01, the higher move is played 53–55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **(**) 0.01, the higher move is played 53-55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- **(** 0.01, the higher move is played 53–55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **0** 0.01, the higher move is played 53-55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **(** 0.01, the higher move is played 53–55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
- Last is not a typo.

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **(** 0.01, the higher move is played 53–55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
 - Last is not a typo. J.R. Capablanca and A. Alekhine had over 1,000 tied-top cases in their 1927 championship match.

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **(** 0.01, the higher move is played 53–55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
 - Last is not a typo. J.R. Capablanca and A. Alekhine had over 1,000 tied-top cases in their 1927 championship match.
 - Almost 60% of the time, they played the move that Stockfish would list *first*—90 years later.

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **0** 0.01, the higher move is played 53-55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
 - Last is not a typo. J.R. Capablanca and A. Alekhine had over 1,000 tied-top cases in their 1927 championship match.
 - Almost 60% of the time, they played the move that Stockfish would list *first*—90 years later. ESP? Precognition?

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **(** 0.01, the higher move is played 53–55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
 - Last is not a typo. J.R. Capablanca and A. Alekhine had over 1,000 tied-top cases in their 1927 championship match.
 - Almost 60% of the time, they played the move that Stockfish would list *first*—90 years later. ESP? Precognition?
 - Similar 58%-42% split seen for any pair of tied moves. What can explain it?

Conditioned on one of the top two moves being played, if their values in pawn units differ by...:

- **(** 0.01, the higher move is played 53–55% of the time.
- \bigcirc 0.02, the higher move is played 58–59% of the time.
- 0.03, the higher move is played 60-61% of the time.
- 0.00, the higher move is played 57-59% of the time.
 - Last is not a typo. J.R. Capablanca and A. Alekhine had over 1,000 tied-top cases in their 1927 championship match.
 - Almost 60% of the time, they played the move that Stockfish would list *first*—90 years later. ESP? Precognition?
 - Similar 58%-42% split seen for any pair of tied moves. What can explain it?
 - Will leave explanation as a "teaser" until the end...

Law of Relative Perceived Differences in Value

Values can be scaled to flatten this out and conform more to E scale.

"Law" of Human Time Budgeting

Error By Move Number in Games

approach ing Move 17-32 between opening

worst of Zeitnot.

Chess and Tests

The _____ of drug-resistant strains of bacteria and viruses has _____ researchers' hopes that permanent victories against many diseases have been achieved.

- vigor . . corroborated
- b feebleness . . dashed

- c proliferation . . blighted
- destruction . . disputed
- e disappearance . . frustrated

(source: itunes.apple.com)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

What Laws Act on the Mind?

Item-Response Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Item-Response Theory

• Students quantified by one aptitude parameter θ ("the" grade).

Item-Response Theory

- Students quantified by one aptitude parameter θ ("the" grade).
- Each test question q determines a curve $E_q(\theta) \equiv$ the likelihood of a person of skill θ getting it right.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Item-Response Theory

- Students quantified by one aptitude parameter θ ("the" grade).
- Each test question q determines a curve $E_q(\theta) \equiv$ the likelihood of a person of skill θ getting it right.
- IRT posits this as always a Richards curve whose slope *B* is the sharpness of level that the question *discriminates*.

Figure 3 Item Characteristic Curves
What Laws Act on the Mind?

Does Chess Conform to IRT?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• The analogue of getting a question right is playing exactly the move the computer judges best.

・ロト ・ 日 ・ モー・ モー・ うへぐ

• The analogue of getting a question right is playing exactly the move the computer judges best.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• Score = "Move-Match Percentage" (MMP or MM%).

- The analogue of getting a question right is playing exactly the move the computer judges best.
- Score = "Move-Match Percentage" (MMP or MM%).
- A second measure is how far off a person's wrong answers are.

- The analogue of getting a question right is playing exactly the move the computer judges best.
- Score = "Move-Match Percentage" (MMP or MM%).
- A second measure is how far off a person's wrong answers are.
- Or whether and how much partial credit is deserved for "close" answers.

- The analogue of getting a question right is playing exactly the move the computer judges best.
- Score = "Move-Match Percentage" (MMP or MM%).
- A second measure is how far off a person's wrong answers are.
- Or whether and how much partial credit is deserved for "close" answers.
- Use difference in value $v_1 v_i$ to judge the *i*th-best move m_i .

- The analogue of getting a question right is playing exactly the move the computer judges best.
- Score = "Move-Match Percentage" (MMP or MM%).
- A second measure is how far off a person's wrong answers are.
- Or whether and how much partial credit is deserved for "close" answers.
- Use difference in value $v_1 v_i$ to judge the *i*th-best move m_i .

うして ふゆう ふほう ふほう ふしつ

• Scale down extreme differences (justified above) to define $\delta_i = \delta(v_1, v_i).$

- The analogue of getting a question right is playing exactly the move the computer judges best.
- Score = "Move-Match Percentage" (MMP or MM%).
- A second measure is how far off a person's wrong answers are.
- Or whether and how much partial credit is deserved for "close" answers.
- Use difference in value $v_1 v_i$ to judge the *i*th-best move m_i .
- Scale down extreme differences (justified above) to define $\delta_i = \delta(v_1, v_i).$
- Score = "Average Scaled Difference" (ASD).

- The analogue of getting a question right is playing exactly the move the computer judges best.
- Score = "Move-Match Percentage" (MMP or MM%).
- A second measure is how far off a person's wrong answers are.
- Or whether and how much partial credit is deserved for "close" answers.
- Use difference in value $v_1 v_i$ to judge the *i*th-best move m_i .
- Scale down extreme differences (justified above) to define $\delta_i = \delta(v_1, v_i).$
- Score = "Average Scaled Difference" (ASD).
- Also gives a *utility function* for possible moves.

 Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.

(日) (日) (日) (日) (日) (日) (日) (日)

 Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.

うして ふゆう ふほう ふほう ふしつ

• Many positions π occur in 1000s of games...

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players.

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.

うして ふゆう ふほう ふほう ふしつ

• Chess.com keeps data on many puzzle positions...

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.
- Chess.com keeps data on many puzzle positions... but it uses its own puzzle-rating system, not chess ratings, and it is even more heavily skewed to levels below 1100.

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.
- Chess.com keeps data on many puzzle positions... but it uses its own puzzle-rating system, not chess ratings, and it is even more heavily skewed to levels below 1100.
- So need to use *novel* positions—ones that are unique, never having occurred before.

(日) (日) (日) (日) (日) (日) (日) (日)

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.
- Chess.com keeps data on many puzzle positions... but it uses its own puzzle-rating system, not chess ratings, and it is even more heavily skewed to levels below 1100.
- So need to use *novel* positions—ones that are unique, never having occurred before. (My cheating tests use *only* these positions.)

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.
- Chess.com keeps data on many puzzle positions... but it uses its own puzzle-rating system, not chess ratings, and it is even more heavily skewed to levels below 1100.
- So need to use *novel* positions—ones that are unique, never having occurred before. (My cheating tests use *only* these positions.)
- Can attempt to *cluster* positions π by similarity of δ_i mapping.

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.
- Chess.com keeps data on many puzzle positions... but it uses its own puzzle-rating system, not chess ratings, and it is even more heavily skewed to levels below 1100.
- So need to use *novel* positions—ones that are unique, never having occurred before. (My cheating tests use *only* these positions.)
- Can attempt to *cluster* positions π by similarity of δ_i mapping.
- Which "shape" produces the highest expectation of error (for any given R)?

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.
- Chess.com keeps data on many puzzle positions... but it uses its own puzzle-rating system, not chess ratings, and it is even more heavily skewed to levels below 1100.
- So need to use *novel* positions—ones that are unique, never having occurred before. (My cheating tests use *only* these positions.)
- Can attempt to *cluster* positions π by similarity of δ_i mapping.
- Which "shape" produces the highest expectation of error (for any given R)? A kind of "Brachistichrone Problem" for chess.

- Would like to do a direct test of the same position π on players of many different rating levels R to see if the curve of the MM% frequency of "solving" π really is sigmoid.
- Many positions π occur in 1000s of games... but they are "book" already known to most players. Like having the answers in advance.
- Chess.com keeps data on many puzzle positions... but it uses its own puzzle-rating system, not chess ratings, and it is even more heavily skewed to levels below 1100.
- So need to use *novel* positions—ones that are unique, never having occurred before. (My cheating tests use *only* these positions.)
- Can attempt to *cluster* positions π by similarity of δ_i mapping.
- Which "shape" produces the highest expectation of error (for any given R)? A kind of "Brachistichrone Problem" for chess.
- Otherwise, use my model's MM% and ASD projections directly.

The MM% Projection, 1600-to-2700 Levels

Function f(x) = 19.654619721630443 + 0.014057033867393376x**R-Squared** $R^2 = 0.99303212012685$ Graph 57.535 55.98 54.425 52.87 51.315 49.76 48,205 46.65 45.095 43.54 1760 1980 2200 2420 2640

< 1[™] >

Now Including 1025–1600, 2725–2800:

Function

f(x) = 21.86511755244366 + 0.013085915894893769x

R-Squared

 $R^2 = 0.97835646846452$

Quadratic Not Linear Law?

Function

 $f(x) = 34.66026963709357 - 0.00024349241455471368x + 0.0000033522002997568x^2$

R-Squared

 $R^2 = 0.99779719205296$

Same With X,Y Axes Flipped...

Function

 $f(x) = -5224.3797654152 + 224.51739158320626x - 1.5285546730040955x^2$

R-Squared

 $R^2 = 0.99814244490643$

...And Extended...

Function

 $f(x) = -5224.3797654152 + 224.51739158320626x - 1.5285546730040955x^2$

R-Squared

 $R^2 = 0.99825130391887$

• Seems ludicrous to think that 100% agreement with the chess program brings an amateur rating about 1950.

• Seems ludicrous to think that 100% agreement with the chess program brings an amateur rating about 1950.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• Rather, an introspective conclusion:

- Seems ludicrous to think that 100% agreement with the chess program brings an amateur rating about 1950.
- Rather, an introspective conclusion: My methods and level of ("Single-PV") data-taking peter out toward Elo 3000.

- Seems ludicrous to think that 100% agreement with the chess program brings an amateur rating about 1950.
- Rather, an introspective conclusion: My methods and level of ("Single-PV") data-taking peter out toward Elo 3000.

うして ふゆう ふほう ふほう ふしつ

• Computers match each other only 70-80% anyway.

- Seems ludicrous to think that 100% agreement with the chess program brings an amateur rating about 1950.
- Rather, an introspective conclusion: My methods and level of ("Single-PV") data-taking peter out toward Elo 3000.
- Computers match each other only 70-80% anyway.
- Most consider 3000 the watershed divide between the "human range" and the "computer range."

- Seems ludicrous to think that 100% agreement with the chess program brings an amateur rating about 1950.
- Rather, an introspective conclusion: My methods and level of ("Single-PV") data-taking peter out toward Elo 3000.
- Computers match each other only 70–80% anyway.
- Most consider 3000 the watershed divide between the "human range" and the "computer range."
- My full model's "Multi-PV" data and equations seem to keep coherence up to about 3100.

- Seems ludicrous to think that 100% agreement with the chess program brings an amateur rating about 1950.
- Rather, an introspective conclusion: My methods and level of ("Single-PV") data-taking peter out toward Elo 3000.
- Computers match each other only 70–80% anyway.
- Most consider 3000 the watershed divide between the "human range" and the "computer range."
- My full model's "Multi-PV" data and equations seem to keep coherence up to about 3100.
- Can be so even if the level of Stockfish to *depth* at least 20 (up to 30 in positions with fewer pieces), i.e., searching 10 up to 15 moves ahead, is under Elo 3000.

- Seems ludicrous to think that 100% agreement with the chess program brings an amateur rating about 1950.
- Rather, an introspective conclusion: My methods and level of ("Single-PV") data-taking peter out toward Elo 3000.
- Computers match each other only 70–80% anyway.
- Most consider 3000 the watershed divide between the "human range" and the "computer range."
- My full model's "Multi-PV" data and equations seem to keep coherence up to about 3100.
- Can be so even if the level of Stockfish to *depth* at least 20 (up to 30 in positions with fewer pieces), i.e., searching 10 up to 15 moves ahead, is under Elo 3000.
- Analogy to catching particles with a river sieve.

Linear Law For ASD Looks Good...But...

Function f(x) = 3298.02376454243 - 10688.627382908597x**R-Squared** $R^2 = 0.99037759880581$ Graph 2662.5 2485 2307.5 2130 1952.5 1775 1597.5 1420 1242.5 1065 0.0735172 0.1102758 0.1470344 0.183793 0.2205516

Quadratic Law Has Higher "Rating of Perfection"

Function

 $f(x) = 3462.663010383108 - 13884.604914850042x + 13415.403252920698x^2$

R-Squared

 $R^2 = 0.99676481397797$

Multiplying By 4pq Recovers Good Linear Fit

Function

f(x) = 20.42277725109287 + 0.013578631028477313x

R-Squared

 $R^2 = 0.99732175601628$

Graph

• The $4p^2q$ fit requires solving cubic equation to recover p.

- The $4p^2q$ fit requires solving cubic equation to recover p.
- Equation becomes real-ly unsolvable when p > 2/3, so $4pq \approx 0.593$.

・ロト ・ 日 ・ モー・ モー・ うへぐ

- The $4p^2q$ fit requires solving cubic equation to recover p.
- Equation becomes real-ly unsolvable when p > 2/3, so $4pq \approx 0.593$.

• Implies rating horizon of 2860, not 3000. Too low?

- The $4p^2q$ fit requires solving cubic equation to recover p.
- Equation becomes real-ly unsolvable when p > 2/3, so $4pq \approx 0.593$.

- Implies rating horizon of 2860, not 3000. Too low?
- Magnus Carlsen had 2860+ rating for 2-1/2 years but did not match 66.7%.

- The $4p^2q$ fit requires solving cubic equation to recover p.
- Equation becomes real-ly unsolvable when p > 2/3, so $4pq \approx 0.593$.

- Implies rating horizon of 2860, not 3000. Too low?
- Magnus Carlsen had 2860+ rating for 2-1/2 years but did not match 66.7%.
- So to re-pose the question: Is MM% quadratic?

- The $4p^2q$ fit requires solving cubic equation to recover p.
- Equation becomes real-ly unsolvable when p > 2/3, so $4pq \approx 0.593$.
- Implies rating horizon of 2860, not 3000. Too low?
- Magnus Carlsen had 2860+ rating for 2-1/2 years but did not match 66.7%.
- So to re-pose the question: Is MM% quadratic?
- Any *non-linearity* can be a "game-changer" for scientific modeling, even if the local effects are small.

- The $4p^2q$ fit requires solving cubic equation to recover p.
- Equation becomes real-ly unsolvable when p > 2/3, so $4pq \approx 0.593$.
- Implies rating horizon of 2860, not 3000. Too low?
- Magnus Carlsen had 2860+ rating for 2-1/2 years but did not match 66.7%.
- So to re-pose the question: Is MM% quadratic?
- Any *non-linearity* can be a "game-changer" for scientific modeling, even if the local effects are small.

• Same questions for the law of ASD to skill.

- The $4p^2q$ fit requires solving cubic equation to recover p.
- Equation becomes real-ly unsolvable when p > 2/3, so $4pq \approx 0.593$.
- Implies rating horizon of 2860, not 3000. Too low?
- Magnus Carlsen had 2860+ rating for 2-1/2 years but did not match 66.7%.
- So to re-pose the question: Is MM% quadratic?
- Any *non-linearity* can be a "game-changer" for scientific modeling, even if the local effects are small.
- Same questions for the law of ASD to skill.
- As currently constituted, my model's IPRs are primarily reflecting *accuracy*—avoidance of blunders.

- The $4p^2q$ fit requires solving cubic equation to recover p.
- Equation becomes real-ly unsolvable when p > 2/3, so $4pq \approx 0.593$.
- Implies rating horizon of 2860, not 3000. Too low?
- Magnus Carlsen had 2860+ rating for 2-1/2 years but did not match 66.7%.
- So to re-pose the question: Is MM% quadratic?
- Any *non-linearity* can be a "game-changer" for scientific modeling, even if the local effects are small.
- Same questions for the law of ASD to skill.
- As currently constituted, my model's IPRs are primarily reflecting *accuracy*—avoidance of blunders.
- Can we reward *depth-of-thinking* directly?

A "classical" decision model predicts the likelihood l_i of a decision outcome m_i, which becomes its forecast probability p_i after normalization, in terms of its utility u_i to the decider.

A "classical" decision model predicts the likelihood l_i of a decision outcome m_i, which becomes its forecast probability p_i after normalization, in terms of its utility u_i to the decider.

• Linear model writes $\ell_i = \alpha + \beta u_i$.

A "classical" decision model predicts the likelihood l_i of a decision outcome m_i, which becomes its forecast probability p_i after normalization, in terms of its utility u_i to the decider.

- Linear model writes $\ell_i = \alpha + \beta u_i$.
- If utility is relative to optimum, so $u_1 = 0$, then $\ell_1 = \alpha$.

• A "classical" decision model predicts the likelihood ℓ_i of a decision outcome m_i , which becomes its forecast probability p_i after normalization, in terms of its utility u_i to the decider.

うして ふゆう ふほう ふほう ふしつ

- Linear model writes $\ell_i = \alpha + \beta u_i$.
- If utility is relative to optimum, so $u_1 = 0$, then $\ell_1 = \alpha$.
- Log-linear model (multinomial logit) puts $\log p_i = \alpha + \beta u_i$.

• A "classical" decision model predicts the likelihood ℓ_i of a decision outcome m_i , which becomes its forecast probability p_i after normalization, in terms of its utility u_i to the decider.

- Linear model writes $\ell_i = \alpha + \beta u_i$.
- If utility is relative to optimum, so $u_1 = 0$, then $\ell_1 = \alpha$.
- Log-linear model (multinomial logit) puts $\log p_i = \alpha + \beta u_i$.
- Largely won 2000 Economics Nobel for Daniel McFadden.

- A "classical" decision model predicts the likelihood ℓ_i of a decision outcome m_i , which becomes its forecast probability p_i after normalization, in terms of its utility u_i to the decider.
- Linear model writes $\ell_i = \alpha + \beta u_i$.
- If utility is relative to optimum, so $u_1 = 0$, then $\ell_1 = \alpha$.
- Log-linear model (multinomial logit) puts $\log p_i = \alpha + \beta u_i$.
- Largely won 2000 Economics Nobel for Daniel McFadden.
- Then p_i is obtained by normalizing the likelihoods (e^{α} drops out)

$$L_i = \exp(eta u_i), \quad ext{so} \quad p_i = rac{\exp(eta u_i)}{\sum_i \exp(eta u_i)}.$$

- A "classical" decision model predicts the likelihood ℓ_i of a decision outcome m_i , which becomes its forecast probability p_i after normalization, in terms of its utility u_i to the decider.
- Linear model writes $\ell_i = \alpha + \beta u_i$.
- If utility is relative to optimum, so $u_1 = 0$, then $\ell_1 = \alpha$.
- Log-linear model (multinomial logit) puts $\log p_i = \alpha + \beta u_i$.
- Largely won 2000 Economics Nobel for Daniel McFadden.
- Then p_i is obtained by normalizing the likelihoods $(e^{\alpha} \text{ drops out})$

$$L_i = \exp(eta u_i), \quad ext{so} \quad p_i = rac{\exp(eta u_i)}{\sum_i \exp(eta u_i)}.$$

• Has its own name: *Softmax*.

- A "classical" decision model predicts the likelihood ℓ_i of a decision outcome m_i , which becomes its forecast probability p_i after normalization, in terms of its utility u_i to the decider.
- Linear model writes $\ell_i = \alpha + \beta u_i$.
- If utility is relative to optimum, so $u_1 = 0$, then $\ell_1 = \alpha$.
- Log-linear model (multinomial logit) puts $\log p_i = \alpha + \beta u_i$.
- Largely won 2000 Economics Nobel for Daniel McFadden.
- Then p_i is obtained by normalizing the likelihoods (e^{α} drops out)

$$L_i = \exp(eta u_i), \quad ext{so} \quad p_i = rac{\exp(eta u_i)}{\sum_i \exp(eta u_i)}.$$

- Has its own name: *Softmax*.
- So which law holds in chess: linear or log-linear?

Evidence for Neither: Needs "LogLogRadical" Model

Log-log-linear equation:

$$\log\log(1/p_i) - \log\log(1/p_1) = eta u_i$$

yields

$$p_i=p_1^{L_i}=p_1^{e^{eta u_i}}.$$

My deployed model inverts β as 1/s where s stands for sensitivity, and makes utility nonlinear with a second parameter c (for consistency):

$$p_i=p_1^{L_i}=p_1^{e^{\left(rac{\delta\left(m_1,m_i
ight)}{s}
ight)^c}}.$$

Triple-decker exponentiation. Is it a natural law?

Evidence for Neither: Needs "LogLogRadical" Model

Log-log-linear equation:

$$\log\log(1/p_i) - \log\log(1/p_1) = eta u_i$$

yields

$$p_i=p_1^{L_i}=p_1^{e^{eta u_i}}.$$

My deployed model inverts β as 1/s where s stands for sensitivity, and makes utility nonlinear with a second parameter c (for consistency):

$$p_i=p_1^{L_i}={p_1^e}^{\left(rac{\delta\left(m_1,m_i
ight)}{s}
ight)^c}.$$

Triple-decker exponentiation. Is it a natural law? Or an unnatural law?

うして ふゆう ふほう ふほう ふしつ

Check of Log-Linear Model: London 1883 Tmt

Rk	ProjVal	Actual	Proj% /	Actual%	z-s	core
1	4870.99	4871.00	47.34%	47.34%	z =	+0.00
2	1123.22	1729.00	10.94%	16.85%	z =	+19.88
3	633.30	951.00	6.21%	9.32%	z =	+13.27
4	459.83	593.00	4.56%	5.88%	z =	+6.44
5	370.58	410.00	3.72%	4.11%	z =	+2.11
6	311.98	295.00	3.16%	2.99%	z =	-0.99
7	270.56	247.00	2.75%	2.51%	z =	-1.46
8	239.36	197.00	2.44%	2.01%	z =	-2.79
9	214.30	169.00	2.19%	1.73%	z =	-3.15
10	193.93	104.00	1.99%	1.07%	z =	-6.57

<ロト 4 個 ト 4 目 ト 4 目 ト 1 目 9 の ()</p>

With LogLog-Radical Model (first line is MM%)

Rk	ProjVal	Sigma	Actual	Proj%	Actual%	z-score
1	4871.02	47.02	4871.00	47.34%	47.34%	z = -0.00
2	1786.89	37.32	1729.00	17.41%	16.85%	z = -1.55
3	929.87	28.60	951.00	9.11%	9.32%	z = +0.74
4	589.93	23.29	593. 0 0	5.85%	5.88%	z = +0.13
5	419.35	19. <mark>8</mark> 4	410.00	4.21%	4.11%	z = -0.47
6	315.24	17.32	295.00	3.19%	2.99%	z = -1.17
7	246.68	15.39	247.00	2.51%	2.51%	z = +0.02
8	198.71	13.85	197.00	2.03%	2.01%	z = -0.12
9	161.54	12.52	169.00	1.65%	1.73%	z = +0.60
10	134.18	11.43	104.00	1.38%	1.07%	z = -2.64
					▲ □ ▶ ▲ 6	

The Deepest Mental Influence?

Values by depth of search:

Move	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nd2	103	093	087	093	027	028	000	000	056	-007	039	028	037	020	014	017	000	006	000
Bxd7	048	034	-033	-033	-013	-042	-039	-050	-025	-010	001	000	-009	-027	-018	000	000	000	000
Qg8	114	114	-037	-037	-014	-014	-022	-068	-008	-056	-042	-004	-032	000	-014	-025	-045	-045	-050
Nxd4	-056	-056	-113	-071	-071	-145	-020	-006	077	052	066	040	050	051	-181	-181	-181	-213	-213

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

• A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.

・ロト ・ 日 ・ モー・ モー・ うへぐ

• A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

• This one caught out Vladimir Kramnik in 2008 loss to Anand.

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).

• The second-listed was more-often viewed as inferior.

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).

- The second-listed was more-often viewed as inferior.
- Computer chess programs use stable sorting—

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).
- The second-listed was more-often viewed as inferior.
- Computer chess programs use *stable* sorting—so it never becomes first unless viewed as strictly superior.

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).
- The second-listed was more-often viewed as inferior.
- Computer chess programs use *stable* sorting—so it never becomes first unless viewed as strictly superior.

• Non-parapsychological explanation of 57–59% phenomenon.

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).
- The second-listed was more-often viewed as inferior.
- Computer chess programs use *stable* sorting—so it never becomes first unless viewed as strictly superior.
- Non-parapsychological explanation of 57–59% phenomenon.
- Dr. Biswas formulated a numerical measure ρ of the swing in value across depths—

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).
- The second-listed was more-often viewed as inferior.
- Computer chess programs use *stable* sorting—so it never becomes first unless viewed as strictly superior.
- Non-parapsychological explanation of 57–59% phenomenon.
- Dr. Biswas formulated a numerical measure ρ of the swing in value across depths—and showed far higher influence than I'd suspected.

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).
- The second-listed was more-often viewed as inferior.
- Computer chess programs use *stable* sorting—so it never becomes first unless viewed as strictly superior.
- Non-parapsychological explanation of 57–59% phenomenon.
- Dr. Biswas formulated a numerical measure ρ of the *swing* in value across depths—and showed far higher influence than I'd suspected.
- And that the depth of exposing mistakes grows linearly with skill rating *R*.

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).
- The second-listed was more-often viewed as inferior.
- Computer chess programs use *stable* sorting—so it never becomes first unless viewed as strictly superior.
- Non-parapsychological explanation of 57–59% phenomenon.
- Dr. Biswas formulated a numerical measure ρ of the *swing* in value across depths—and showed far higher influence than I'd suspected.
- And that the depth of exposing mistakes grows linearly with skill rating *R*. Better players commit deeper errors.

- A move that initially looks best but whose value *swings down* on deeper reflection is a powerful *trap*.
- This one caught out Vladimir Kramnik in 2008 loss to Anand.
- Note also two moves are tied for equal-top value (0.00 difference).
- The second-listed was more-often viewed as inferior.
- Computer chess programs use *stable* sorting—so it never becomes first unless viewed as strictly superior.
- Non-parapsychological explanation of 57–59% phenomenon.
- Dr. Biswas formulated a numerical measure ρ of the *swing* in value across depths—and showed far higher influence than I'd suspected.
- And that the depth of exposing mistakes grows linearly with skill rating *R*. Better players commit deeper errors.
- New model parameter h (for nautical "heave") multiplies ρ .

Interpretations and Modeling

• Operative Q on Depth of Thinking is not "what do you decide?" but

・ロト ・ 日 ・ モー・ モー・ うへぐ
• Operative Q on Depth of Thinking is not "what do you decide?" but

"when and why do you decide to stop thinking?"

• Operative Q on Depth of Thinking is not "what do you decide?" but

"when and why do you decide to stop thinking?"

• So *h* could measure tendency to act prematurely.

• Operative Q on Depth of Thinking is not "what do you decide?" but

"when and why do you decide to stop thinking?"

- So h could measure tendency to act prematurely.
- The "Perceived Utility" equation can be modeled like so:

$$u_i = -rac{\delta(v_1,v_i)+h\cdot
ho(m_i)}{s},$$

(日) (日) (日) (日) (日) (日) (日) (日)

with either or both terms raised to the "radical" power c.

• Operative Q on Depth of Thinking is not "what do you decide?" but

"when and why do you decide to stop thinking?"

- So h could measure tendency to act prematurely.
- The "Perceived Utility" equation can be modeled like so:

$$u_i = -rac{\delta(v_1,v_i)+h\cdot
ho(m_i)}{s},$$

with either or both terms raised to the "radical" power c.

• This formulation makes h give the player's relative attention to the "subjective" value $\rho(m_i)$ versus the objective value v_i .

• Operative Q on Depth of Thinking is not "what do you decide?" but

"when and why do you decide to stop thinking?"

- So h could measure tendency to act prematurely.
- The "Perceived Utility" equation can be modeled like so:

$$u_i = -rac{\delta(v_1,v_i)+h\cdot
ho(m_i)}{s},$$

with either or both terms raised to the "radical" power c.

- This formulation makes h give the player's relative attention to the "subjective" value $\rho(m_i)$ versus the objective value v_i .
- So h < 1 means objective has higher influence, h > 1 subjective.

• Operative Q on Depth of Thinking is not "what do you decide?" but

"when and why do you decide to stop thinking?"

- So h could measure tendency to act prematurely.
- The "Perceived Utility" equation can be modeled like so:

$$u_i = -rac{\delta(v_1,v_i)+h\cdot
ho(m_i)}{s},$$

with either or both terms raised to the "radical" power c.

- This formulation makes h give the player's relative attention to the "subjective" value $\rho(m_i)$ versus the objective value v_i .
- So h < 1 means objective has higher influence, h > 1 subjective.
- Which one wins?

• Operative Q on Depth of Thinking is not "what do you decide?" but

"when and why do you decide to stop thinking?"

- So h could measure tendency to act prematurely.
- The "Perceived Utility" equation can be modeled like so:

$$u_i = -rac{\delta(v_1,v_i)+h\cdot
ho(m_i)}{s},$$

with either or both terms raised to the "radical" power c.

• This formulation makes h give the player's relative attention to the "subjective" value $\rho(m_i)$ versus the objective value v_i .

- So h < 1 means objective has higher influence, h > 1 subjective.
- Which one wins? We're human, right?

• Operative Q on Depth of Thinking is not "what do you decide?" but

"when and why do you decide to stop thinking?"

- So h could measure tendency to act prematurely.
- The "Perceived Utility" equation can be modeled like so:

$$u_i = -rac{\delta(v_1,v_i)+h\cdot
ho(m_i)}{s},$$

with either or both terms raised to the "radical" power c.

- This formulation makes h give the player's relative attention to the "subjective" value $\rho(m_i)$ versus the objective value v_i .
- So h < 1 means objective has higher influence, h > 1 subjective.
- Which one wins? We're human, right? Actually not clear...

• Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.

- Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.
- Whereas fitting by Maximum Likelihood Estimation (MLE) gives h < 0.5.

- Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.
- Whereas fitting by Maximum Likelihood Estimation (MLE) gives h < 0.5.
- Problem is MLE fitting gives diverging s, c values too and badly biases the MM% and ASD estimators.

ション ふゆ マ キャット キャット しょう

- Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.
- Whereas fitting by Maximum Likelihood Estimation (MLE) gives h < 0.5.
- Problem is MLE fitting gives diverging s, c values too and badly biases the MM% and ASD estimators.

ション ふゆ マ キャット キャット しょう

• Equation fitting often gives great cross-check results...

- Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.
- Whereas fitting by Maximum Likelihood Estimation (MLE) gives h < 0.5.
- Problem is MLE fitting gives diverging s, c values too and badly biases the MM% and ASD estimators.
- Equation fitting often gives *great* cross-check results... but also often fails to give a solution at all...

ション ふゆ マ キャット キャット しょう

- Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.
- Whereas fitting by Maximum Likelihood Estimation (MLE) gives h < 0.5.
- Problem is MLE fitting gives diverging s, c values too and badly biases the MM% and ASD estimators.
- Equation fitting often gives *great* cross-check results... but also often fails to give a solution at all... or gives multiple solutions.

ション ふゆ マ キャット キャット しょう

- Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.
- Whereas fitting by Maximum Likelihood Estimation (MLE) gives h < 0.5.
- Problem is MLE fitting gives diverging s, c values too and badly biases the MM% and ASD estimators.
- Equation fitting often gives *great* cross-check results... but also often fails to give a solution at all... or gives multiple solutions.
- Even when it works, the solutions destroy the previous uniform progression of s, c with rating R.

(日) (日) (日) (日) (日) (日) (日) (日)

- Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.
- Whereas fitting by Maximum Likelihood Estimation (MLE) gives h < 0.5.
- Problem is MLE fitting gives diverging s, c values too and badly biases the MM% and ASD estimators.
- Equation fitting often gives *great* cross-check results... but also often fails to give a solution at all... or gives multiple solutions.
- Even when it works, the solutions destroy the previous uniform progression of s, c with rating R.
- The minimization landscape with just the s, c parameters is benign (a "canyon") but adding h creates "badlands" of non-local minima.

- Fitting to equate actual and projected MM% and ASD typically yields h > 1.5.
- Whereas fitting by Maximum Likelihood Estimation (MLE) gives h < 0.5.
- Problem is MLE fitting gives diverging s, c values too and badly biases the MM% and ASD estimators.
- Equation fitting often gives *great* cross-check results... but also often fails to give a solution at all... or gives multiple solutions.
- Even when it works, the solutions destroy the previous uniform progression of s, c with rating R.
- The minimization landscape with just the s, c parameters is benign (a "canyon") but adding h creates "badlands" of non-local minima.
- Currently trying to have s, c touch components of ρ directly and add parameters that preserve the "canyon" shape.

• Logistic-Curve Laws govern *expectation* from both *skill* and *value*.

• Logistic-Curve Laws govern *expectation* from both *skill* and *value*.

• Relative Perception of Value—

• Logistic-Curve Laws govern *expectation* from both *skill* and *value*.

• Relative Perception of Value—allows greater mistakes.

• Logistic-Curve Laws govern *expectation* from both *skill* and *value*.

- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—

• Logistic-Curve Laws govern *expectation* from both *skill* and *value*.

- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!

• Logistic-Curve Laws govern *expectation* from both *skill* and *value*.

- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—

• Logistic-Curve Laws govern *expectation* from both *skill* and *value*.

- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?

• Logistic-Curve Laws govern *expectation* from both *skill* and *value*.

- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

• *Predictive Analytics* is supposed to handle factors like these.

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- *Predictive Analytics* is supposed to handle factors like these.
- But need to self-scrutinize one's modeling-

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?
- *Predictive Analytics* is supposed to handle factors like these.
- But need to self-scrutinize one's modeling—to get it into tune.

(日) (日) (日) (日) (日) (日) (日) (日)

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?
- *Predictive Analytics* is supposed to handle factors like these.
- But need to self-scrutinize one's modeling—to get it into tune.

(日) (日) (日) (日) (日) (日) (日) (日)

• And need to be skeptical of the data used—

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?
- *Predictive Analytics* is supposed to handle factors like these.
- But need to self-scrutinize one's modeling—to get it into tune.
- And need to be skeptical of the data used—to know the validity range of the data.

(日) (日) (日) (日) (日) (日) (日) (日)

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?
- *Predictive Analytics* is supposed to handle factors like these.
- But need to self-scrutinize one's modeling—to get it into tune.
- And need to be skeptical of the data used—to know the validity range of the data.
- Currently-deployed model has conservative fallback settings.

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?
- *Predictive Analytics* is supposed to handle factors like these.
- But need to self-scrutinize one's modeling—to get it into tune.
- And need to be skeptical of the data used—to know the validity range of the data.
- Currently-deployed model has conservative fallback settings.
- Continued research and trials will hopefully give brighter light—

- Logistic-Curve Laws govern *expectation* from both *skill* and *value*.
- Relative Perception of Value—allows greater mistakes.
- Time Management Failings—complicate the modeling task too!
- MM% Agreement Law—linear or nonlinear?
- Value Swings and Decision Stopping Time—how best to model?
- *Predictive Analytics* is supposed to handle factors like these.
- But need to self-scrutinize one's modeling—to get it into tune.
- And need to be skeptical of the data used—to know the validity range of the data.
- Currently-deployed model has conservative fallback settings.
- Continued research and trials will hopefully give brighter light—and sharper guidance for our own mental fitness.