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1 What is Information Extraction?

This volume takes a broad view of information extraction as any method for �l-

tering information from large volumes of text. This includes the retrieval of doc-

uments from collections and the tagging of particular terms in text. In this paper

we shall use a narrower de�nition: the identi�cation of instances of a particular

class of events or relationships in a natural language text, and the extraction of

the relevant arguments of the event or relationship. Information extraction there-

fore involves the creation of a structured representation (such as a data base) of

selected information drawn from the text.

The idea of reducing the information in a document to a tabular structure

is not new. Its feasibility for sublanguage texts was suggested by Zellig Harris

in the 1950's, and an early implementation for medical texts was done at New

York University by Naomi Sager[20]. However, the speci�c notion of information

extraction described here has received wide currency over the last decade through

the series of Message Understanding Conferences [1, 2, 3, 4, 14]. We shall discuss

these Conferences in more detail a bit later, and shall use simpli�ed versions of

extraction tasks from these Conferences as examples throughout this paper.

Figure 1 shows a simpli�ed example from one of the earlier MUC's, involving

terrorist events (MUC-3) [1]. For each terrorist event, the system had to deter-

mine the type of attack (bombing, arson, etc.), the date, location, perpetrator (if

stated), targets, and e�ects on targets. Other examples of extraction tasks are

international joint ventures (where the arguments included the partners, the new

venture, its product or service, etc.) and executive succession (indicating who

was hired or �red by which company for which position).

Information extraction is a more limited task than \full text understanding".

In full text understanding, we aspire to represent in a explicit fashion all the

information in a text. In contrast, in information extraction we delimit in ad-

vance, as part of the speci�cation of the task, the semantic range of the output:

the relations we will represent, and the allowable �llers in each slot of a relation.

2 Why the Interest in Information Extraction?

There has been a growing interest in developing systems for information ex-

traction, of which this volume is just one indication. This interest represents a



19 March | A bomb went o� this morning near a power tower in San Salvador

leaving a large part of the city without energy, but no casualties have been

reported. According to uno�cial sources, the bomb | allegedly detonated by

urban guerrilla commandos | blew up a power tower in the northwestern part

of San Salvador at 0650 (1250 GMT).

INCIDENT TYPE bombing

DATE March 19

LOCATION El Salvador: San Salvador (city)

PERPETRATOR urban guerrilla commandos

PHYSICAL TARGET power tower

HUMAN TARGET -

EFFECT ON PHYSICAL TARGET destroyed

EFFECT ON HUMAN TARGET no injury or death

INSTRUMENT bomb

Fig. 1. A terrorist report and a template of extracted information.

con
uence of need and ability | observing what is possible with current natural

language processing technology, and how the possible may indeed be useful.

An enormous amount of information exists only in natural language form.

If this information is to be automatically manipulated and analyzed, it must

�rst be distilled into a more structured form in which the individual \facts" are

accessible. Most of the world's news, for example, is reported in newspapers,

radio, and TV broadcasts. The best that current commercial technology has to

o�er is to (try to) retrieve relevant passages from a text archive. If we want to

know who has signed contracts over the past year to deliver airplanes or natural

gas, or which jurisdictions have enacted new restrictions on smoking, we must

pour over reams of retrieved documents by hand. Information extraction o�ers

the potential of extracting such data with much greater precision, producing lists

of companies or cities rather than lists of documents. Equal bene�ts would accrue

in processing more technical texts: extracting information from scienti�c journals,

from legal decisions, or from hospital reports. Hospitals and medical researchers,

in particular, are faced with a need to perform a wide range of retrospective

analyses on reports collected primarily in natural language form.

Research groups in the 1950's and 1960's already recognized the potential

value of automatically structuring natural language data, and projects were cre-

ated for tasks such as the transformation of entire encyclopedia entries to struc-

tured form. Such projects, however, faced a broad range of problems in natural

language processing and knowledge representation, many of which still lack ef-

fective solutions. More recently, it has been recognized that by setting a goal of

selective information structuring | i.e., information extraction | we can de�ne

a range of tasks that appears within reach of current technology.

A mature information extraction technology would allow us to rapidly create

extraction systems for new tasks whose performance was on a par with human

performance. We are not there yet, for reasons to be discussed later in this paper.



However, systems with more modest performance (which miss some events and

include some errors) can be of value. They can be used to extract information for

later manual veri�cation.
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They can also be useful in circumstances where there

would not be time to review all the source documents, and incomplete extracted

information is better than no information.

Recent research (stimulated, in part, by the MUC conferences) has shown

that such modest extraction systems can { in some cases { be implemented using

relatively simple natural language analysis methods. Current methods will be

successful if the information to be extracted is expressed directly (so that no

complex inference is required), is predominantly expressed in a relatively small

number of forms, and is expressed relatively locally within the text.

2

The following section describes the structure and components of an informa-

tion extraction system. Then, after a brief discussion of system evaluation, we

examine some of the current issues in trying to advance the state of the art of

information extraction.

3 The Basic Techniques

3.1 The Overall Flow

The process of information extraction has two major parts. First, the system ex-

tracts individual \facts" from the text of a document through local text analysis.

Second, it integrates these facts, producing larger facts or new facts (through

inference). As a �nal step after the facts are integrated, the pertinent facts are

translated into the required output format.

The individual facts are extracted by creating a set of patterns to match the

possible linguistic realizations of the facts. Because of the complexity of natural

language (except in the most restricted of sublanguages), it is not practical to

describe these patterns directly as word sequences. So, as in most natural lan-

guage processing systems, we begin by structuring the input, identifying various

levels of constituents and relations, and then state our patterns in terms of these

constituents and relations. This process typically begins with lexical analysis

(assigning parts-of-speech and features to words and idiomatic phrases through

morphological analysis and dictionary lookup) and name recognition (identifying

names and other special lexical structures such as dates, currency expressions,

etc.). This is followed by a full syntactic analysis (parse), or { in most current sys-

tems { by some form of partial parsing to identify noun groups, verb groups, and

possibly head-complement structures. After all this is done, we use task-speci�c

patterns to identify the facts of interest.

1

A process which may o�er economic bene�ts when compared to purely manual ex-

traction, in the same way that machine translation followed by post-editing may be

more e�cient than manual translation.

2

Bagga and Biermann [7] discuss the relation between the success rate of extraction

systems and the locality of the information in the text, measured in terms of the

number of syntactic relations involved.



The integration phase examines and combines facts from the entire document

or discourse. It resolves relations of coreference, which can range from the use

of pronouns to multiple descriptions of the same event. It may also need to draw

inferences from the explicitly stated facts in the document. The overall 
ow is

shown in Figure 2.

Following the terminology established by the Message Understanding Confer-

ences, we shall call the speci�cation of the particular events or relations to be

extracted a scenario. Thus, we distinguish between a general domain, such as

�nancial news, and a particular scenario, such as international joint ventures or

aircraft sales. We shall refer to the �nal, tabular output format of information

extraction as a template.

3.2 Pattern Matching and Structure Building

In the remainder of this section, we shall look at each of the stages of processing.

As we go through the stages, we shall focus on a simpli�ed version of the MUC-

6 scenario, involving executive succession, and shall follow the progress of the

following brief document

Sam Schwartz retired as executive vice president of the famous hot dog

manufacturer, Hupplewhite Inc. He will be succeeded by Harry Himmel-

farb.

as it is gradually transformed into the two templates shown in Figure 3. The

details we present will be those of our own (New York University Proteus Project)

extraction system

3

[11], but we will note some of the places where they di�er

signi�cantly from those of other systems.

In our system, and many other current extraction systems, most of the text

analysis is performed by matching the text against a set of regular expressions.

If the expression matches a segment of text, the text segment (constituent) is

assigned a label, and possibly one or more associated features. The patterns

are organized in sets, and constituent labels assigned in one pattern set may be

referenced in patterns in subsequent sets. In e�ect, we perform a limited form of

deterministic, bottom-up parsing.

4

3

Although with many simpli�cations from our actual implementation.

4

The overall control of the matching process di�ers substantially among pattern-

matching extraction systems. In the NYU system, each pattern has an associated

set of actions; the main action generally is the tagging of a text segment with a new

label, but other actions may be performed. The pattern sets are applied one at a

time. All the patterns in a set are matched starting at the �rst word of the sentence.

If more than one pattern matches, the one matching the longest segment is selected;

if more than one pattern matches the longest segment, the �rst is taken. The actions

associated with that pattern are executed. If no pattern matched, the patterns are

reapplied starting at the next word of the sentence; if a pattern matched and an action

labeled a text segment, the patterns are reapplied past the end of that segment. This

process continues until the end of the sentence is reached.



document

local text analysis

?

lexical analysis

?

name recognition

?

partial syntactic analysis

?

scenario pattern matching

?

discourse analysis

coreference analysis

?

inference

?

template generation

?

extracted templates

Fig. 2. Structure of an information extraction system.

Associated with some of the constituents in our system are semantic structures

called entities and events. These structures will ultimately be used to construct

the templates.

3.3 Lexical Analysis

The text is �rst divided into sentences and into tokens. Each token is looked up

in the dictionary to determine its possible parts-of-speech and features. The Pro-



EVENT leave job

PERSON Sam Schwartz

POSITION executive vice president

COMPANY Hupplewhite Inc.

EVENT start job

PERSON Harry Himmelfarb

POSITION executive vice president

COMPANY Hupplewhite Inc.

Fig. 3. Events extracted from Hupplewhite text.

teus dictionary includes the Comlex Syntax dictionary (a large, general-purpose

English dictionary

5

) [12] plus various special dictionaries, such as dictionaries

of major place names, major companies, common (American) �rst names, and

company su�xes (such as \Inc."). In our example \Sam" and \Harry" would be

tagged as �rst names; Inc. will be tagged as a company su�x.

6

3.4 Name Recognition

The next phase of processing identi�es various types of proper names and other

special forms, such as dates and currency amounts. Names appear frequently

in many types of texts, and identifying and classifying them simpli�es further

processing; names, furthermore, are important as argument values for many ex-

traction tasks.

Names are identi�ed by a set of patterns (regular expressions) which are

stated in terms of parts-of-speech, syntactic features, and orthographic features

(e.g., capitalization). Personal names, for example, might be identi�ed by a pre-

ceding title

Mr. Herrington Smith

by a common �rst name

Fred Smith

by a su�x

Snippety Smith Jr.

or by a middle initial

Humble T. Hopp

5

Available through the Linguistic Data Consortium.

6

In addition, our system uses a probabilistic part-of-speech tagger from BBN to ex-

clude unlikely part-of-speech assignments; the system can operate without the tagger,

but with slightly degraded performance.



Company names can usually be identi�ed by their �nal token(s), such as

Hepplewhite Inc.

Hepplewhite Corporation

Hepplewhite Associates

First Hepplewhite Bank

However, some major company names (e.g., \General Motors") may be men-

tioned without any such overt clues, so it is important to also have a dictionary

of major companies.

In our example passage, three names will be identi�ed:

[

name type: person

Sam Schwartz] retired as executive vice president of

the famous hot dog manufacturer, [

name type: company

Hupplewhite Inc.]

He will be succeeded by [

name type: person

Harry Himmelfarb].

Name identi�cation typically also includes the processing required to iden-

tify aliases of a name | in e�ect, name coreference. For example, a system

would identify \Larry Liggett" with a subsequent mention of \Mr. Liggett", and

\the Hewlett-Packard Corp." with \HP". Alias identi�cation may also help name

classi�cation. Thus, if we read \Humble Hopp reported ..." we may not know if

\Humble Hopp" is a person or company, but if there is a subsequent reference

to \Mr. Hopp", the ambiguity is resolved.

Name identi�cation has been worked on quite intensively for the past few

years, and has been incorporated into several products which extract classi�ed

name lists from documents. The highest performing systems at present use large

numbers of hand-coded patterns, but the performance of systems which learn

rules from annotated corpora has been steadily improving, and is now only a few

percent below that of the hand-coded systems [8].

3.5 Syntactic Structure

Identifying some aspects of syntactic structure simpli�es the subsequent phase

of fact extraction. After all, the arguments to be extracted often correspond to

noun phrases in the text, and the relationships to be extracted often correspond

to grammatical functional relations. On the other hand, the identi�cation of the

complete syntactic structure of a sentence is a di�cult task. As a result, there is a

great variation in the amount of syntactic structure which is explicitly identi�ed.

The trade-o�s will be discussed further below (section 5.1).

Some systems don't have any separate phase of syntactic analysis. Others

attempt to build a complete parse of a sentence. Most systems fall in between,

and build a series of parse fragments. In general, they only build structures about

which they can be quite certain, either from syntactic or semantic evidence. The

current NYU Proteus system, following the lead of the SRI FASTUS system [6, 5],

builds structures for noun groups (a noun plus its left modi�ers) and for verb

groups (a verb with its auxilliaries); both of these can be built in most cases using

just local syntactic information. In addition, it builds certain larger noun phrase



structures (conjoined noun groups, noun groups with appositional modi�ers) if it

has semantic information to con�rm the correctness of the structure. All of this

is done using the same regular expression pattern matcher; unlike some other

systems, no special procedures are used for parsing.

The �rst set of patterns labels all the basic noun groups as noun phrases (np);

in our example, this includes the three names, the pronoun, and two larger noun

groups. It is followed by a set to label the verb groups (vg). After these patterns

have been applied, the text is labeled as follows:

[

np entity: e1

Sam Schwartz] [

vg

retired] as [

np entity: e2

executive vice

president] of [

np entity: e3

the famous hot dog manufacturer], [

np entity: e4

Hupplewhite Inc.] [

np entity: e5

He] [

vg

will be succeeded] by [

np entity: e6

Harry Himmelfarb].

Associated with each constituent are certain features which can be tested by

patterns in subsequent stages. For vg's these include information on tense (past

/ present / future), voice (active / passive), and the root form of the verb; np's

have information on the root form of the head (including whether or not it is

a name) and syntactic number. In addition, for each np the system creates a

\semantic" entity; for our example, following entities will be created:

entity e1 type: person name: \Sam Schwartz"

entity e2 type: position value: \executive vice president"

entity e3 type: manufacturer

entity e4 type: company name: \Hupplewhite Inc."

entity e5 type: person

entity e6 type: person name: \Harry Himmelfarb"

The sets of patterns which follow build up larger noun phrase structures by

attaching right modi�ers. Because of the syntactic ambiguity of right modi�ers,

7

these patterns incorporate some semantic constraints and therefore, unlike the

noun and verb group patterns, are domain speci�c. These patterns typically coa-

lesce two noun phrases, and possible intervening words, into a larger noun phrase,

and modify the entity associated with the head noun to incorporate information

from the modi�er.

For our example text, the two relevant patterns will recognize the appositive

construction

company-description, company-name,

and the prepositional phrase construction

position of company

7

For example, sequences which look like apposition might instead be part of conjoined

structures; prepositional phrases to the right of a noun might attach to a preceding

verb.



In the second pattern, position represents a pattern element which matches any

np whose entity is of type \position" and company matches any np whose entity

is of type \company". The system includes a small semantic type hierarchy (an

isa hierarchy), and the pattern matching uses the isa relation, so any subtype of

company (such as, in our example, manufacturer) will be matched. In the �rst

pattern, company-name speci�es an np of type company whose head is a name;

company-description speci�es an np of type company whose head is a common

noun. These patterns produce the following labeling

8

[

np entity: e1

Sam Schwartz] [

vg

retired] as [

np entity: e2

executive vice

president of the famous hot dog manufacturer, Hupplewhite Inc.] [

np entity: e5

He] [

vg

will be succeeded] by [

np entity: e6

Harry Himmelfarb].

and the entities are updated as follows:

entity e1 type: person name: \Sam Schwartz"

entity e2 type: position value: \executive vice president" company: e3

entity e3 type: manufacturer name: \Hupplewhite Inc."

entity e5 type: person

entity e6 type: person name: \Harry Himmelfarb"

3.6 Scenario Pattern Matching

All of the processing until now has been in a sense preparatory for the scenario

pattern matching. The role of these patterns is to extract the events or relation-

ships relevant to the scenario. For the example of executive succession we have

been following, there will be two such patterns,

person retires as position

and

person is succeeded by person

where person and position are pattern elements which match np's with the as-

sociated type. \retires" and \is succeeded" are pattern elements which match

active and passive verb groups, respectively. The result is a text labeled with

two clauses, each pointing to an event structure; these event structures point in

turn to the previously created entities:

[

clause event: e7

Sam Schwartz retired as executive vice president of the

famous hot dog manufacturer Hupplewhite Inc.] [

clause event: e8

He will

be succeeded by Harry Himmelfarb].

and the entities / events are updated as follows:

8

In our current system, if a new label subsumes earlier labels, the earlier labels are

no longer visible for subsequent patterns, so we have removed these labels from the

text, and removed entity e4.



entity e1 type: person name: \Sam Schwartz"

entity e2 type: position value: \executive vice president" company: e3

entity e3 type: manufacturer name: \Hupplewhite Inc."

entity e5 type: person

entity e6 type: person name: \Harry Himmelfarb"

event e7 type: leave-job person: e1 position: e2

event e8 type: succeed person1: e6 person2: e5

3.7 Coreference Analysis

Coreference analysis has the task of resolving anaphoric references by pronouns

and de�nite noun phrases. In our little text, the only example is the pronoun

\he" (entity e5). Coreference analysis will look for the most recent previously

mentioned entity of type person, and will �nd entity e1. It will then in e�ect

change references to e5 to refer to e1 instead, leaving us with the following events

and entities:

entity e1 type: person name: \Sam Schwartz"

entity e2 type: position value: \executive vice president" company: e3

entity e3 type: manufacturer name: \Hupplewhite Inc."

entity e6 type: person name: \Harry Himmelfarb"

event e7 type: leave-job person: e1 position: e2

event e8 type: succeed person1: e6 person2: e1

The coreference module also makes use of the isa hierarchy, so that if a

reference to \the company" appeared in the text, it would be properly resolved

to entity e3, the manufacturer.

3.8 Inferencing and Event Merging

In many situations, partial information about an event may be spread over sev-

eral sentences; this information needs to be combined before a template can be

generated. In other cases, some of the information is only implicit, and needs to

be made explicit through an inference process.

In the executive succession domain, we need to determine what the \succeed"

predicate implies, if we wish to ultimately produce templates specifying that

particular individuals got or lost particular positions. For example, if we have

Sam was president. He was succeeded by Harry.

we infer that Harry will become president; conversely, if

Sam will be president; he succeeds Harry.

we infer that Harry was president. Such inferences can be implemented by pro-

duction system rules,

9

such as

9

In fact, these inferences were hard coded in our system for MUC-6, but production

systems with similar rules were used in most of our prior MUC systems [13].



leave-job(X-person,Y-job) & succeed(Z-person,X-person)

) start-job(Z-person,Y-job)

start-job(X-person,Y-job) & succeed(X-person,Z-person)

) leave-job(Z-person,Y-job)

This will leave us with the following events:

entity e1 type: person name: \Sam Schwartz"

entity e2 type: position value: \executive vice president" company: e3

entity e3 type: manufacturer name: \Hupplewhite Inc."

entity e6 type: person name: \Harry Himmelfarb"

event e7 type: leave-job person: e1 position: e2

event e8 type: succeed person1: e6 person2: e1

event e9 type: start-job person: e6 position: e2

which can be translated into the templates shown earlier as Figure 3.

The simple scenario shown here did not require us to take account of the time

of each event. For many scenarios, however, time is important: either explcit

times must be reported, or the sequence of events is signi�cant. In such cases,

time informationmay be derived frommany sources, including absolute dates and

times (\on April 6, 1995"), relative dates and times (\last week"), verb tenses,

and knowledge about the inherent sequence of events. Since time analysis may

interact with other inferences about the discourse, it will normally be performed

as part of this stage of processing.

4 Evaluation

As we noted at the beginning, one of the unusual aspects of information ex-

traction is the degree to which its development over the past decade has been

fostered and shaped by a series of evaluations, the Message Understanding Con-

ferences (MUC). So, in order to understand the discussion which follows about

the progress and problems of information extraction, we need to brie
y describe

the MUC evaluation process.

In a MUC evaluation, participants are initially given a detailed description of

the scenario (the information to be extracted), along with a set of documents and

the templates to be extracted from these documents (the \training corpus"). Sys-

tems developers then get some time (1 to 6 months) to adapt their system to the

new scenario. After this time, each participant gets a new set of documents (the

\test corpus"), uses their system to extract information from these documents,

and returns the extracted templates to the conference organizer. Meanwhile, the

organizer has manually �lled a set of templates (the \answer key") from the test

corpus.

Each system is assigned a variety of scores by comparing the system response

to the answer key. The primary scores are precision and recall. Let N

key

be the

total number of �lled slots in the answer key, N

response

be the total number of



�lled slots in the system response, and N

correct

be the number of correctly �lled

slots in the system response (i.e., the number which match the answer key). Then

precision =

N

correct

N

response

recall =

N

correct

N

key

Sometimes an \F score" is also used as a combined recall-precision score; F =

(2 � precision� recall)=(precision + recall).

5 Design Issues

5.1 To Parse or not to Parse

As we noted above, one of the most evident di�erences among extraction systems

involves the amount of syntactic analysis which is performed. The bene�ts of

syntax analysis were noted above. In particular, the arguments we wish to collect

during scenario pattern matching are usually connected by grammatical relations;

for example, we want to extract the subject and object of verbs such as \hire",

\�re", and \succeed". Thus, if syntactic relations were already correctly marked,

we would expect the scenario patterns to be simpler and more accurate. These

considerations motivated many early extraction systems to perform full syntactic

analysis before looking for scenario patterns.

However, building a complete syntactic structure is not easy. Some decisions,

such as conjunction scope and the attachment of modi�ers, are particularly di�-

cult. In principle, full sentence analyzers should be able to use global constraints

to resolve local ambiguities. In fact, however, because of the inevitable gaps in

grammatical and lexical coverage, full sentence parsers may end up making poor

local decisions about structures in their quest to create a parse spanning the en-

tire sentence. In e�ect, global constraints may make things worse. Furthermore,

full sentence parsers are relatively expensive of computer time | not surprising,

since they have a large space to search. Finally, we should note that for infor-

mation extraction we are only interested in the grammatical relations relevant to

the scenario; correctly determining the other relations may be a waste of time.

As a result, most current high performance extraction systems create only

partial syntactic structures; syntactic structures which can be created with high

con�dence and using local information. Some systems, such as the BBN system

[22], use separate parsing procedures. In our own work, the considerations just

listed led us to shift from a full parsing approach (employed for earlier MUCs) to

the partial parsing described here. Speci�cally, we followed the approach adopted

by FASTUS [6, 5], which brackets noun and verb groups; both of these structures

are quite reliably identi�ed by local information.

10

In addition, as illustrated in

10

The most common ambiguity regarding noun groups involves leading present partici-

ples, as in the classic example \They are 
ying planes." In such cases, we bracket the



our earlier example, we identify some larger noun phrase constituents if there is

semantic evidence to con�rm the correctness of our attachment.

In general, we can say that most current extraction systems parse conserva-

tively | only if there is strong evidence of the correctness of a reduction. This

gains most (though not all) of the bene�ts of a full parse, while not introducing

errors which would block applications of scenario patterns.

Traditional syntactic analysis has the role not only of identifying syntac-

tic structure but also of regularizing syntactic structure. In particular, di�erent

clausal forms, such as active and passive forms, relative clauses, reduced rela-

tives, etc. are mapped into essentially the same structure. This regularization

simpli�es the scenario pattern matching | it need deal with fewer forms of each

scenario pattern.

If we employ a partial parsing approach which does not perform such regu-

larization, we must have separate scenario patterns for each syntactic form, in

e�ect multiplying the number of patterns to be written by a factor of 5 to 10.

For example, we would need separate patterns for

IBM hired Harry

Harry was hired by IBM

IBM, which hired Harry, ...

Harry, who was hired by IBM, ...

Harry, hired by IBM, ...

etc.

To lessen this burden, the SRI FASTUS system [5] and the NYU Proteus system

[11] have recently introduced metarules or rule schemata: methods for writing a

single basic pattern and having it transformed into the patterns needed for the

various syntactic forms of a clause. Thus we might write something like

subject=company verb=hired object=person

and the system would generate the patterns

company hired person

person was hired by company

company, which hired person

person, who was hired by company

person, hired by company

etc.

This approach bears some similarity to the metarules of GPSG [Generalized

Phrase Structure Grammar], which expand a small set of productions into a

larger set involving the di�erent clause-level structures.

Clausal patterns need also to account for modi�ers which can intervene be-

tween the sentence elements of interest. For example, we may �nd between the

subject and verb either sentence modi�ers

minimal noun group, excluding the present participle, and make allowances in subse-

quent patterns for the possibility that there may be an unattached present participle

preceding the noun group.



IBM yesterday promoted Mr. Smith to executive vice president.

or noun modi�ers which are not accounted for by the noun phrase patterns

GE, which was founded in 1880, promoted Mr. Smith to president.

With our partial parsing approach, we would need to include optional pattern

elements separately in each clausal pattern to match such modi�ers. With the

metarule mechanism, we can automatically insert such pattern elements into the

appropriate positions in each clausal pattern. In this way we can regain some of

the bene�ts of syntactically-based clausal analysis.

The widespread use of partial parsing is a re
ection of the current state of

full-sentence parsing technology: experience shows that such parsers are likely

to introduce more errors than they �x for information extraction tasks. How-

ever, this parsing technology is improving rapidly, thanks largely to corpus-based

methods. A few years ago, good hand-coded grammars, operating on newspaper

texts, got recall and precision scores in the range of 60 to 70%.
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Recently, several

parsers trained on large hand-bracketed corpora have gotten recall and precision

scores above 80% [18, 9], and the performance is steadily improving. If the per-

formance gets good enough, it may be worth revisiting the decision about using

full-sentence parsing.

5.2 Portability

One of the barriers to making information extraction a practical technology is

the cost of adapting an extraction system to a new scenario. In general, each

application of extraction will involve a di�erent scenario. If implementing this

scenario requires a few months of e�ort and the skills of the extraction system

designers, the market for extraction systems will remain limited indeed. We need

to have tools which will allow potential users to adapt such a system, and create

an initial system in days or weeks, not months.

The basic question in developing such a customization tool is the form and

level of the information to be obtained from the user (assuming that the goal is

to have the customization performed directly by the user rather than by a expert

system developer). If we are using a \pattern matching" system, most work will

probably be focused on the development of the set of patterns. However, changes

will also be needed to the semantic hierarchy, to the set of inference rules, and

to the rules for creating the output templates.

Unless users have considerable experience with writing patterns (regular ex-

pressions with associated actions) and some familiarity with formal syntactic

structure, they may �nd it di�cult and inconvenient to operate directly on the

patterns. One possibility is to provide a graphical representation of the patterns

(i.e., a �nite state network), but this still exposes many of the details of the
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Using the Parseval metric, which compares the bracketing produced by a system to

that of the University of Pennsylvania Tree Bank.



patterns. Instead, several groups are developing systems which obtain informa-

tion primarily from examples of sentences of interest and the information to be

extracted.

One of the �rst sites to experiment with this approach was the University

of Massachusetts at Amherst. Their system, as developed for MUC-3, relied on

a large number of small, lexically-triggered patterns which built individual con-

cepts; these concepts were then consolidated to create the information needed for

template �lling [17]. For MUC-4, they developed a tool (\AutoSlog") to create

such patterns semi-automatically from the development corpus with its templates

[16, 19]. Given a template slot which is �lled with words from the text, such as

a name, their program would search for these words in the text and would hy-

pothesize a pattern based on the immediate context of these words (for example,

the governing verb of a noun phrase). These patterns would then be presented to

a system developer, who could accept or reject the pattern. More recently, they

have developed a system which uses machine learning techniques and does not

rely on any human review [21, 10]. This system seeks to generalize and merge the

patterns derived from individual examples, checking that the resulting patterns

do not overgenerate (do not match corpus examples which are not marked as

being relevant to the scenario).

Several of the earlier MUCs involved large training corpora, with over a thou-

sand documents and their templates; such corpora encouraged such a corpus-

based approach. However, the centralized preparation of large, consistent train-

ing corpora proved to be an expensive proposition; this suggested that such large

corpora would not be available for most real tasks. Users may only be willing to

prepare a few examples, or at best a few dozen examples, of �lled templates. Ex-

periments with smaller training collections, such as the 100 documents provided

for MUC-6, suggest that fully automated learning techniques, when provided

only with text examples and associated templates, and with minimal automatic

syntactic generalization, may not be able to achieve su�cient coverage [10].

It is possible to compensate in part for the lack of training data by providing

more information about each example. In HASTEN, the system developed by

SRA for MUC-6 [15], the developer builds a structural description of each ex-

ample, marking the type of constituent, the constraints on the constituent, and

the semantic label of each constituent. This approach was able to achieve a good

level of performance on the MUC-6 task, but requires some expertise on the part

of the developer to mark up the examples.

At NYU, we are building an interactive tool for customizing an extraction

system. We believe that this will provide the most e�cient approach to acqui-

sition in situations where the user does not have a large, pre-annotated corpus

(and, in fact, may be re�ning the scenario in response to new examples), and

does not have the expertise to create patterns unaided. The user begins by pro-

viding an example (normally drawn from the corpus) and the fact (template)

to be extracted. The system responds by using the existing patterns to create a

structural description of the example. It then can interact with the user to extend

and generalize the example, both syntactically and semantically. Syntactic gen-



eralizations can be produced through the metarule mechanism discussed above;

semantic generalizations can be produced through the isa hierarchy. In this way,

it is possible to quickly extend a single example into a pattern with broad cover-

age. In addition, by allowing the user to see other examples in the corpus which

match the generated pattern, it is possible to insure that the pattern is not being

overgeneralized.
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5.3 Improving Performance

The other major barrier to the widespread use of extraction systems is the limi-

tation on performance. Any observer of the most recent MUC, MUC-6, would be

struck by the relatively similar level of performance of the top-ranked systems.

Five of the nine systems got F scores in the range of 51 to 56 (re
ecting recall of

43 to 50% and precision of 59 to 70%) [4].

What can account for such a clustering of performance? Any response at

present must be speculative. In part, it re
ects a convergence of technologies;

the top systems are fairly similar in their overall design. However, it probably also

re
ects characteristics of the task itself. It seems reasonable from what we know

of other linguistic phenomena (e.g., the distribution of vocabulary or syntactic

structures) that a large fraction of the relevant facts are encoded linguistically

by a small number of forms (a small number of lexical items, a small number

of syntactic structures, etc.). As a result, it is relatively easy (once a reasonable

framework has been established) to reach some middling level of performance.

Beyond that point, one is working on the \tail" of the distribution of linguistic

phenomena, and further improvement becomes increasingly expensive.

How can we hope to move further along the tail | improve extraction per-

formance | with a �xed investment of labor for each new scenario? Some of the

shortcomings represent scenario-independent phenomena. These include more

complex syntactic structures, such as di�erent types of subordinate clauses, and

more complex anaphoric phenomena, such as anaphors with split antecedents.

Temporal information plays a signi�cant role in many extraction tasks, and most

temporal processing can be made independent of the speci�c scenario. Thus, as

these aspects of the core extraction system are gradually enhanced, we can expect

an improvement in performance across all scenarios.

Other shortcomings in performance re
ect a lack of knowledge relative to a

speci�c scenario, and will be more di�cult to address. As tools for interacting

with users to acquire and generalize patterns improve, we can expect to augment

this knowledge more rapidly. For example, a tool which suggests related lexical

items can broaden lexical coverage beyond what is seen in the training corpus.

In addition, as more extraction scenarios are implemented, we can expect to

see pattern sets which are applicable to families of related scenarios or to entire

domains. For example, patterns for basic actions such as the purchase and sale

of goods may be applicable to many scenarios within the domain of business.
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Such interactive analysis requires a fast extraction system; the current NYU system

can process a typical newspaper article in about 2 seconds on a high-end PC.
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