Data and AI and Society Resources and Dangers and Opportunities

Kenneth W. Regan

(Includes material from Kenneth A. Joseph and some other past CSE199 units.)

CSE199, Fall 2025

Main Problem...

THIS IS YOUR BRAIN

(Brain scan source, 1987 PSA source)

Data and AI and Society

1 How has the advent of the Internet altered—

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?
 - —our cognitive functions?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?
 - —our cognitive functions?
 - —our organization of life experiences?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?
 - —our cognitive functions?
 - —our organization of life experiences?
- In an Ocean of Data, will we develop "gills"?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?
 - —our cognitive functions?
 - —our organization of life experiences?
- In an Ocean of Data, will we develop "gills"?
- 3 How much Greater than Gutenberg?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?
 - —our cognitive functions?
 - —our organization of life experiences?
- ² In an Ocean of Data, will we develop "gills"?
- 3 How much Greater than Gutenberg?
 - The Time-Life Top 100 Events of the Last Millennium placed Gutenberg's circa-1450 invention of the printing press at #1.

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?
 - —our cognitive functions?
 - —our organization of life experiences?
- ² In an Ocean of Data, will we develop "gills"?
- 3 How much Greater than Gutenberg?
 - The Time-Life Top 100 Events of the Last Millennium placed Gutenberg's circa-1450 invention of the printing press at #1.
- What ingredients and tools have enabled erecting all of this in only the past 30+ years?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?
 - —our cognitive functions?
 - —our organization of life experiences?
- In an Ocean of Data, will we develop "gills"?
- 3 How much Greater than Gutenberg?
 - The Time-Life Top 100 Events of the Last Millennium placed Gutenberg's circa-1450 invention of the printing press at #1.
- What ingredients and tools have enabled erecting all of this in only the past 30+ years?
- What tools enable us to understand it?

- 1 How has the advent of the Internet altered—
 - —our ecology of personhood?
 - —our communal relationships?
 - —opportunity and equity in society?
 - —our cognitive functions?
 - —our organization of life experiences?
- In an Ocean of Data, will we develop "gills"?
- 3 How much Greater than Gutenberg?
 - The Time-Life Top 100 Events of the Last Millennium placed Gutenberg's circa-1450 invention of the printing press at #1.
- What ingredients and tools have enabled erecting all of this in only the past 30+ years?
- What tools enable us to understand it? We will cover some: probabilistic modeling, regression, simulation, preference aggregation, causal graphs, other data analytics...

• Books existed long before the printing press.

- Books existed long before the printing press.
- The scroll form dominated until the codex was invented around the time of Julius Caesar.

- Books existed long before the printing press.
- The scroll form dominated until the codex was invented around the time of Julius Caesar.
- The Herculaneum scrolls were the private library of the Roman poet/philosopher Philodemus and heirs before Mt. Vesuvius carbonized them in 79 CE.

- Books existed long before the printing press.
- The scroll form dominated until the codex was invented around the time of Julius Caesar.
- The Herculaneum scrolls were the private library of the Roman poet/philosopher Philodemus and heirs before Mt. Vesuvius carbonized them in 79 CE.
- In what senses were those books "Brain Extenders"?

- Books existed long before the printing press.
- The scroll form dominated until the codex was invented around the time of Julius Caesar.
- The Herculaneum scrolls were the private library of the Roman poet/philosopher Philodemus and heirs before Mt. Vesuvius carbonized them in 79 CE.
- In what senses were those books "Brain Extenders"?
- As opposed to **Cognition Extenders** as we have today...

- Books existed long before the printing press.
- The scroll form dominated until the codex was invented around the time of Julius Caesar.
- The Herculaneum scrolls were the private library of the Roman poet/philosopher Philodemus and heirs before Mt. Vesuvius carbonized them in 79 CE.
- In what senses were those books "Brain Extenders"?
- As opposed to Cognition Extenders as we have today...
- Midway: Imagination Extenders.

- Books existed long before the printing press.
- The scroll form dominated until the codex was invented around the time of Julius Caesar.
- The Herculaneum scrolls were the private library of the Roman poet/philosopher Philodemus and heirs before Mt. Vesuvius carbonized them in 79 CE.
- In what senses were those books "Brain Extenders"?
- As opposed to Cognition Extenders as we have today...
- Midway: Imagination Extenders. (The writing of *Don Quixote* circa 1605 is #96 on the Time–Life list.)

- Books existed long before the printing press.
- The scroll form dominated until the codex was invented around the time of Julius Caesar.
- The Herculaneum scrolls were the private library of the Roman poet/philosopher Philodemus and heirs before Mt. Vesuvius carbonized them in 79 CE.
- In what senses were those books "Brain Extenders"?
- As opposed to Cognition Extenders as we have today...
- Midway: Imagination Extenders. (The writing of *Don Quixote* circa 1605 is #96 on the Time–Life list.)
- One major impact of Gutenberg's mass democritization of affordable books was spreading political and cultural ideas in waves.

- Books existed long before the printing press.
- The scroll form dominated until the codex was invented around the time of Julius Caesar.
- The Herculaneum scrolls were the private library of the Roman poet/philosopher Philodemus and heirs before Mt. Vesuvius carbonized them in 79 CE.
- In what senses were those books "Brain Extenders"?
- As opposed to Cognition Extenders as we have today...
- Midway: Imagination Extenders. (The writing of *Don Quixote* circa 1605 is #96 on the Time–Life list.)
- One major impact of Gutenberg's mass democritization of affordable books was spreading political and cultural ideas in waves.
- How does that compare (in speed and mass) to "Memes" and viral content today?

• Not just Facts and Ideas and Data but also Computation.

- Not just Facts and Ideas and Data but also Computation.
- Compare using GPS to using a physical map...

- Not just Facts and Ideas and Data but also Computation.
- Compare using GPS to using a physical map...
- [Discuss "8 Hours Without Internet" essays.]

- Not just Facts and Ideas and Data but also **Computation**.
- Compare using GPS to using a physical map...
- [Discuss "8 Hours Without Internet" essays.]
- I [KWR] deal with a special kind of "brain extension": catching those cheat at human chess games by illicitly accessing computer input on which next move to make.

- Not just Facts and Ideas and Data but also **Computation**.
- Compare using GPS to using a physical map...
- [Discuss "8 Hours Without Internet" essays.]
- I [KWR] deal with a special kind of "brain extension": catching those cheat at human chess games by illicitly accessing computer input on which next move to make.
- Since Deep Blue defeated Garry Kasparov in 1997, computers have grown to be far better than us at finding the *best next moves*.

- Not just Facts and Ideas and Data but also Computation.
- Compare using GPS to using a physical map...
- [Discuss "8 Hours Without Internet" essays.]
- I [KWR] deal with a special kind of "brain extension": catching those cheat at human chess games by illicitly accessing computer input on which next move to make.
- Since Deep Blue defeated Garry Kasparov in 1997, computers have grown to be far better than us at finding the *best next moves*.
- Large Language Models such as ChatGPT operate by finding the best next words.

- Not just Facts and Ideas and Data but also Computation.
- Compare using GPS to using a physical map...
- [Discuss "8 Hours Without Internet" essays.]
- I [KWR] deal with a special kind of "brain extension": catching those cheat at human chess games by illicitly accessing computer input on which next move to make.
- Since Deep Blue defeated Garry Kasparov in 1997, computers have grown to be far better than us at finding the *best next moves*.
- Large Language Models such as ChatGPT operate by finding the best next words.
- Do we already invest them with **personhood**?

- Not just Facts and Ideas and Data but also Computation.
- Compare using GPS to using a physical map...
- [Discuss "8 Hours Without Internet" essays.]
- I [KWR] deal with a special kind of "brain extension": catching those cheat at human chess games by illicitly accessing computer input on which next move to make.
- Since Deep Blue defeated Garry Kasparov in 1997, computers have grown to be far better than us at finding the *best next moves*.
- Large Language Models such as ChatGPT operate by finding the best next words.
- Do we already invest them with **personhood**? Management too?

- Not just Facts and Ideas and Data but also Computation.
- Compare using GPS to using a physical map...
- [Discuss "8 Hours Without Internet" essays.]
- I [KWR] deal with a special kind of "brain extension": catching those cheat at human chess games by illicitly accessing computer input on which next move to make.
- Since Deep Blue defeated Garry Kasparov in 1997, computers have grown to be far better than us at finding the *best next moves*.
- Large Language Models such as ChatGPT operate by finding the best next words.
- Do we already invest them with **personhood**? Management too?
- Will they—and other forms of **AI** in general—soon supersede us?

- Not just Facts and Ideas and Data but also Computation.
- Compare using GPS to using a physical map...
- [Discuss "8 Hours Without Internet" essays.]
- I [KWR] deal with a special kind of "brain extension": catching those cheat at human chess games by illicitly accessing computer input on which next move to make.
- Since Deep Blue defeated Garry Kasparov in 1997, computers have grown to be far better than us at finding the *best next moves*.
- Large Language Models such as ChatGPT operate by finding the best next words.
- Do we already invest them with **personhood**? Management too?
- Will they—and other forms of **AI** in general—soon supersede us?
- Now: Elon Musk's **Neuralink** brain implant as used to play chess.

• E.M. Forster, 1909 short story "The Machine Stops."

- E.M. Forster, 1909 short story "The Machine Stops."
- Arguably a critique of H.G. Wells's 1905 novel A Modern Utopia.

- E.M. Forster, 1909 short story "The Machine Stops."
- Arguably a critique of H.G. Wells's 1905 novel A Modern Utopia.
- Dystopian sci-fi: humanity forced to rely on a giant machine regulating an underground biosphere and all aspects of life.

- E.M. Forster, 1909 short story "The Machine Stops."
- Arguably a critique of H.G. Wells's 1905 novel A Modern Utopia.
- Dystopian sci-fi: humanity forced to rely on a giant machine regulating an underground biosphere and all aspects of life.
- Actual reality: the July 19, 2024 CrowdStrike Crash.

• The root cause of the Crowdstrike crash was an attempted read from a null pointer in C++ code.

- The root cause of the Crowdstrike crash was **an attempted read from a null pointer** in C++ code.
- We will see other low-level bugs that caused famous breaches.

- The root cause of the Crowdstrike crash was an attempted read from a null pointer in C++ code.
- We will see other low-level bugs that caused famous breaches.
- "No Code" Software Development is not-here-yet and limited.

- The root cause of the Crowdstrike crash was an attempted read from a null pointer in C++ code.
- We will see other low-level bugs that caused famous breaches.
- "No Code" Software Development is not-here-yet and limited.
- Our existing code base is code-based anyway.

- The root cause of the Crowdstrike crash was an attempted read from a null pointer in C++ code.
- We will see other low-level bugs that caused famous breaches.
- "No Code" Software Development is not-here-yet and limited.
- Our existing code base is code-based anyway.
- Analogy: Venice was founded on about 10 million tree logs that were pile-driven into Adriatic Sea shallows.
 - The engineers of 1,100 years ago knew the logs wouldn't rot in that water.

- The root cause of the Crowdstrike crash was an attempted read from a null pointer in C++ code.
- We will see other low-level bugs that caused famous breaches.
- "No Code" Software Development is not-here-yet and limited.
- Our existing code base is code-based anyway.
- Analogy: Venice was founded on about 10 million tree logs that were pile-driven into Adriatic Sea shallows.
 - The engineers of 1,100 years ago knew the logs wouldn't rot in that water.
- Does Code Rot?

- The root cause of the Crowdstrike crash was an attempted read from a null pointer in C++ code.
- We will see other low-level bugs that caused famous breaches.
- "No Code" Software Development is not-here-yet and limited.
- Our existing code base is code-based anyway.
- Analogy: Venice was founded on about 10 million tree logs that were pile-driven into Adriatic Sea shallows.
 - The engineers of 1,100 years ago knew the logs wouldn't rot in that water.
- Does Code Rot? Does it slowly sink?

- The root cause of the Crowdstrike crash was an attempted read from a null pointer in C++ code.
- We will see other low-level bugs that caused famous breaches.
- "No Code" Software Development is not-here-yet and limited.
- Our existing code base is code-based anyway.
- Analogy: Venice was founded on about 10 million tree logs that were pile-driven into Adriatic Sea shallows.
 - The engineers of 1,100 years ago knew the logs wouldn't rot in that water.
- Does Code Rot? Does it slowly sink?
- Your further CS education will show how to build systems from the ground up.

• Increasingly more of our lives is governed by "Algorithms."

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm."

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions
 - parole decisions

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions
 - parole decisions
- The key ingredient is the data on which the models are trained.

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions
 - parole decisions
- The key ingredient is the data on which the models are trained.
- I've built a predictive model trained on high level chess games.

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions
 - parole decisions
- The key ingredient is the data on which the models are trained.
- I've built a predictive model trained on high level chess games.
- The model can be buggy.

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions
 - parole decisions
- The key ingredient is the data on which the models are trained.
- I've built a predictive model trained on high level chess games.
- The model can be buggy. (Some people think mine is.)

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions
 - parole decisions
- The key ingredient is the data on which the models are trained.
- I've built a predictive model trained on high level chess games.
- The model can be buggy. (Some people think mine is.)
- The data can be buggy.

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions
 - parole decisions
- The key ingredient is the data on which the models are trained.
- I've built a predictive model trained on high level chess games.
- The model can be buggy. (Some people think mine is.)
- The data can be buggy. (Covid greatly skewed chess ratings.)

- Increasingly more of our lives is governed by "Algorithms."
- Not quite what our CS courses mean by "algorithm." Often it's the operation of a **predictive model.**
- Some examples:
 - bank loan applications
 - medical treatment decisions
 - credit scoring
 - college admissions
 - parole decisions
- The key ingredient is the data on which the models are trained.
- I've built a predictive model trained on high level chess games.
- The model can be buggy. (Some people think mine is.)
- The data can be buggy. (Covid greatly skewed chess ratings.)
- Datasets from the past have large racial and socioeconomic biases.

The Ocean of Language Information Data

Before we can talk about **Misinformation**, we must note how **Claude Shannon** in 1947 essentially defined *information* merely as *data*.

The information I(x) in a datum x equals the minimum length of a program that **generates** x.

This *opposes* our human idea of information because:

The Ocean of Language Information Data

Before we can talk about **Misinformation**, we must note how **Claude Shannon** in 1947 essentially defined *information* merely as *data*.

The information I(x) in a datum x equals the minimum length of a program that **generates** x.

This *opposes* our human idea of information because:

• Anything with lots of **structure** is defined by a relatively short set of rules that generate it, hence has *low* information.

The Ocean of Language Information Data

Before we can talk about **Misinformation**, we must note how **Claude Shannon** in 1947 essentially defined *information* merely as *data*.

The information I(x) in a datum x equals the minimum length of a program that **generates** x.

This *opposes* our human idea of information because:

• Anything with lots of **structure** is defined by a relatively short set of rules that generate it, hence has *low* information. Example:

Data Versus Information—continued

The digits of π are another low-info example. Whereas:

Data Versus Information—continued

The digits of π are another low-info example. Whereas:

• Completely random data has no rules, so no way to abbreviate, which means *high* (but useless!–?) information.

In over 75 years since Shannon, no one has pinned down what "Structured Information" should mean.

The digits of π are another low-info example. Whereas:

• Completely random data has no rules, so no way to abbreviate, which means *high* (but useless!—?) information.

In over 75 years since Shannon, no one has pinned down what "Structured Information" should mean.

• Key impasse in my main professional field of **Computational Complexity**, including the infamous **P Versus NP** question.

The digits of π are another low-info example. Whereas:

• Completely random data has no rules, so no way to abbreviate, which means *high* (but useless!-?) information.

In over 75 years since Shannon, no one has pinned down what "Structured Information" should mean.

- Key impasse in my main professional field of **Computational Complexity**, including the infamous **P Versus NP** question.
- Also the #2 question in my field: **Are pseudorandom generators secure?**

The digits of π are another low-info example. Whereas:

• Completely random data has no rules, so no way to abbreviate, which means *high* (but useless!–?) information.

In over 75 years since Shannon, no one has pinned down what "Structured Information" should mean.

- Key impasse in my main professional field of **Computational Complexity**, including the infamous **P Versus NP** question.
- Also the #2 question in my field: **Are pseudorandom generators secure?** If P=NP, then *no*.

The digits of π are another low-info example. Whereas:

• Completely random data has no rules, so no way to abbreviate, which means *high* (but useless!—?) information.

In over 75 years since Shannon, no one has pinned down what "Structured Information" should mean.

- Key impasse in my main professional field of **Computational Complexity**, including the infamous **P Versus NP** question.
- Also the #2 question in my field: **Are pseudorandom generators secure?** If P=NP, then *no*.
- How about using GPT4 to generate lots of code from your problem spec?

The digits of π are another low-info example. Whereas:

• Completely random data has no rules, so no way to abbreviate, which means *high* (but useless!-?) information.

In over 75 years since Shannon, no one has pinned down what "Structured Information" should mean.

- Key impasse in my main professional field of Computational Complexity, including the infamous P Versus NP question.
- Also the #2 question in my field: **Are pseudorandom generators secure?** If P=NP, then *no*.
- How about using GPT4 to generate lots of code from your problem spec? (This leverages the **huge** but **fixed** background data that was used to train GPT4.)

Upshot: Any notion of *information* beyond (size-of-) data must involve extra criteria specific to its *sender* and *receiver*.

The digits of π are another low-info example. Whereas:

• Completely random data has no rules, so no way to abbreviate, which means *high* (but useless!-?) information.

In over 75 years since Shannon, no one has pinned down what "Structured Information" should mean.

- Key impasse in my main professional field of Computational Complexity, including the infamous P Versus NP question.
- Also the #2 question in my field: **Are pseudorandom generators secure?** If P=NP, then *no*.
- How about using GPT4 to generate lots of code from your problem spec? (This leverages the **huge** but **fixed** background data that was used to train GPT4.)

Upshot: Any notion of *information* beyond (size-of-) data must involve extra criteria specific to its *sender* and *receiver*. **Subjective?**

The digits of π are another low-info example. Whereas:

• Completely random data has no rules, so no way to abbreviate, which means *high* (but useless!-?) information.

In over 75 years since Shannon, no one has pinned down what "Structured Information" should mean.

- Key impasse in my main professional field of Computational Complexity, including the infamous P Versus NP question.
- Also the #2 question in my field: **Are pseudorandom generators secure?** If P=NP, then *no*.
- How about using GPT4 to generate lots of code from your problem spec? (This leverages the **huge** but **fixed** background data that was used to train GPT4.)

Upshot: Any notion of *information* beyond (size-of-) data must involve extra criteria specific to its *sender* and *receiver*. **Subjective? Biased?**

• Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.
- Queries are formulated using Boolean logic, numerics, and other built-in or user-created predicates.

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.
- Queries are formulated using Boolean logic, numerics, and other built-in or user-created predicates.
- Queries are addressed to a particular database.

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.
- Queries are formulated using Boolean logic, numerics, and other built-in or user-created predicates.
- Queries are addressed to a particular database.
- Internet search, on the other hand, can address the whole searchable web

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.
- Queries are formulated using Boolean logic, numerics, and other built-in or user-created predicates.
- Queries are addressed to a particular database.
- Internet search, on the other hand, can address the whole searchable web—as opposed to the dark web.

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.
- Queries are formulated using Boolean logic, numerics, and other built-in or user-created predicates.
- Queries are addressed to a particular database.
- Internet search, on the other hand, can address the whole searchable web—as opposed to the dark web.
 - (I maintain gigabytes of deep-web textual data...

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.
- Queries are formulated using Boolean logic, numerics, and other built-in or user-created predicates.
- Queries are addressed to a particular database.
- Internet search, on the other hand, can address the whole searchable web—as opposed to the dark web.
 - (I maintain gigabytes of deep-web textual data... tracking chess tournaments for possible cheating.)

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.
- Queries are formulated using Boolean logic, numerics, and other built-in or user-created predicates.
- Queries are addressed to a particular database.
- Internet search, on the other hand, can address the whole searchable web—as opposed to the dark web.
 - (I maintain gigabytes of deep-web textual data... tracking chess tournaments for possible cheating.)
- A step further is apps that make *inferences* from data. This is where we begin to speak of **Machine Learning**.

- Many "Apps"—and what you call your "Algorithms"—are mainly ways of **querying** data stored in The Cloud.
- GPS is an example of mostly passive information.
- Apps built atop the **Structured Query Language** (SQL, pronounced that way or as "Sequel") allow interactive queries.
- Queries are formulated using Boolean logic, numerics, and other built-in or user-created predicates.
- Queries are addressed to a particular database.
- Internet search, on the other hand, can address the whole searchable web—as opposed to the dark web.
 - (I maintain gigabytes of deep-web textual data... tracking chess tournaments for possible cheating.)
- A step further is apps that make *inferences* from data. This is where we begin to speak of **Machine Learning**.
- Whether the info and inferences are **true** is secondary!

Outline For Remaining Lectures

- Some further remarks about Data as time allows in this lecture.
- ² Our Global Data Village
- 3 Data Analytics, Search, and AI
- 4 AI, continued—Project Ideas
- 5 Societal Computing and Fairness
- 6 Synthesis.

• That is, How Big Is the Internet?

- That is, How Big Is the Internet?
- World Wide Web Size.

- That is, How Big Is the Internet?
- World Wide Web Size.
 - One terabyte = 1,000 gigabytes.

- That is, How Big Is the Internet?
- World Wide Web Size.
 - One terabyte = 1,000 gigabytes.
 - One petabyte = 1,000 terabytes. "Big Data"

- That is, How Big Is the Internet?
- World Wide Web Size.
 - One terabyte = 1,000 gigabytes.
 - One petabyte = 1,000 terabytes. "Big Data"
 - One exabyte = 1,000 petabytes.

- That is, How Big Is the Internet?
- World Wide Web Size.
 - One terabyte = 1,000 gigabytes.
 - One petabyte = 1,000 terabytes. "Big Data"
 - One exabyte = 1,000 petabytes.
 - One zettabyte = 1,000 exabytes.

- That is, How Big Is the Internet?
- World Wide Web Size.
 - One terabyte = 1,000 gigabytes.
 - One petabyte = 1,000 terabytes. "Big Data"
 - One exabyte = 1,000 petabytes.
 - One zettabyte = 1,000 exabytes.
 - Next level is called yottabyte.

- That is, How Big Is the Internet?
- World Wide Web Size.
 - One terabyte = 1,000 gigabytes.
 - One petabyte = 1,000 terabytes. "Big Data"
 - One exabyte = 1,000 petabytes.
 - One zettabyte = 1,000 exabytes.
 - Next level is called yottabyte.
- Google now holds about 15 exabytes.

- That is, How Big Is the Internet?
- World Wide Web Size.
 - One terabyte = 1,000 gigabytes.
 - One petabyte = 1,000 terabytes. "Big Data"
 - One exabyte = 1,000 petabytes.
 - One zettabyte = 1,000 exabytes.
 - Next level is called yottabyte.
- Google now holds about 15 exabytes. Oops—10?

- That is, How Big Is the Internet?
- World Wide Web Size.
 - One terabyte = 1,000 gigabytes.
 - One petabyte = 1,000 terabytes. "Big Data"
 - One exabyte = 1,000 petabytes.
 - One zettabyte = 1,000 exabytes.
 - Next level is called yottabyte.
- Google now holds about 15 exabytes. Oops—10? OOPS—just 5??

• How much data is being added per minute?

- How much data is being added per minute?
- This widget quickly counts up 1TB added data.

- How much data is being added per minute?
- This widget quickly counts up 1TB added data.
- This graphic shows how all the burgeoning data divides into categories.

- How much data is being added per minute?
- This widget quickly counts up 1TB added data.
- This graphic shows how all the burgeoning data divides into categories.
 - One vast category partly weaves through the graphic, but is largely off it.

- How much data is being added per minute?
- This widget quickly counts up 1TB added data.
- This graphic shows how all the burgeoning data divides into categories.
 - One vast category partly weaves through the graphic, but is largely
 off it.
 - Once estimated here as comprising 30% of all Internet traffic.

- How much data is being added per minute?
- This widget quickly counts up 1TB added data.
- This graphic shows how all the burgeoning data divides into categories.
 - One vast category partly weaves through the graphic, but is largely
 off it.
 - Once estimated here as comprising 30% of all Internet traffic.
 - The musical "Avenue Q" says the Internet was made for it...

- How much data is being added per minute?
- This widget quickly counts up 1TB added data.
- This graphic shows how all the burgeoning data divides into categories.
 - One vast category partly weaves through the graphic, but is largely
 off it.
 - Once estimated here as comprising 30% of all Internet traffic.
 - The musical "Avenue Q" says the Internet was made for it...
 - Is it Data? OK, not for the rest of these lectures...

- How much data is being added per minute?
- This widget quickly counts up 1TB added data.
- This graphic shows how all the burgeoning data divides into categories.
 - One vast category partly weaves through the graphic, but is largely
 off it.
 - Once estimated here as comprising 30% of all Internet traffic.
 - The musical "Avenue Q" says the Internet was made for it...
 - Is it Data? OK, not for the rest of these lectures...
 - There is a virtual handout (not assigned HW this year, was so previously) to read "before or after" the next lecture.

- How much data is being added per minute?
- This widget quickly counts up 1TB added data.
- This graphic shows how all the burgeoning data divides into categories.
 - One vast category partly weaves through the graphic, but is largely
 off it.
 - Once estimated here as comprising 30% of all Internet traffic.
 - The musical "Avenue Q" says the Internet was made for it...
 - Is it Data? OK, not for the rest of these lectures...
 - There is a virtual handout (not assigned HW this year, was so previously) to read "before or after" the next lecture.
- How can the Net's architecture absorb this expansion?

• Data physically resides on "hard media" in computer systems.

- Data physically resides on "hard media" in computer systems.
- Data Centers

- Data physically resides on "hard media" in computer systems.
- Data Centers
 - Often service governments—hopefully with redundancy.

- Data physically resides on "hard media" in computer systems.
- Data Centers
 - Often service governments—hopefully with redundancy.
 - Service multiple agencies and companies...

- Data physically resides on "hard media" in computer systems.
- Data Centers
 - Often service governments—hopefully with redundancy.
 - Service multiple agencies and companies...
 - ...as opposed to a data warehouse organized by one company or partnership.

- Data physically resides on "hard media" in computer systems.
- Data Centers
 - Often service governments—hopefully with redundancy.
 - Service multiple agencies and companies...
 - ...as opposed to a data warehouse organized by one company or partnership.
- Largest floor space is China Telecom—Inner Mongolia. Over 10M sq. ft., bigger than the Pentagon. (Note what first paragraph says about expectation of Google search.)

- Data physically resides on "hard media" in computer systems.
- Data Centers
 - Often service governments—hopefully with redundancy.
 - Service multiple agencies and companies...
 - ...as opposed to a data warehouse organized by one company or partnership.
- Largest floor space is China Telecom—Inner Mongolia. Over 10M sq. ft., bigger than the Pentagon. (Note what first paragraph says about expectation of Google search.)
- Nevada SuperNAP Reno: 6.2M sq. ft.

- Data physically resides on "hard media" in computer systems.
- Data Centers
 - Often service governments—hopefully with redundancy.
 - Service multiple agencies and companies...
 - ...as opposed to a data warehouse organized by one company or partnership.
- Largest floor space is China Telecom—Inner Mongolia. Over 10M sq. ft., bigger than the Pentagon. (Note what first paragraph says about expectation of Google search.)
- Nevada SuperNAP Reno: 6.2M sq. ft.
- Chicago Lakeside Technology Center, former champ at 1.1M sq. ft.

But for many users, where it lives virtually is in the Cloud.

• The Cloud fits under the heading of data management services.

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;
 - governing access to data;

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;
 - governing access to data;
 - security mechanisms against unauthorized access...

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;
 - governing access to data;
 - security mechanisms against unauthorized access...
 - ...and also improper usage;

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;
 - governing access to data;
 - security mechanisms against unauthorized access...
 - ...and also improper usage;
 - compatibility and interoperability;

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;
 - governing access to data;
 - security mechanisms against unauthorized access...
 - ...and also improper usage;
 - compatibility and interoperability;
 - algorithmic services.

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;
 - governing access to data;
 - security mechanisms against unauthorized access...
 - ... and also improper usage;
 - compatibility and interoperability;
 - algorithmic services.
- Many data centers are augmented with server farms to do the processing.

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;
 - governing access to data;
 - security mechanisms against unauthorized access...
 - ... and also improper usage;
 - compatibility and interoperability;
 - algorithmic services.
- Many data centers are augmented with **server farms** to do the processing. Could even be for users training their own AI models.

- The Cloud fits under the heading of data management services.
- Can be called an internetwork with common structures.
- Services are contracted to subscribers of all kinds: from individuals to huge consortia.
- Responsible for:
 - physical maintenance of data;
 - recoverability in event of mutation or loss;
 - governing access to data;
 - security mechanisms against unauthorized access...
 - ... and also improper usage;
 - compatibility and interoperability;
 - algorithmic services.
- Many data centers are augmented with server farms to do the processing. Could even be for users training their own AI models.
- Nontrivial portion of world energy consumption. (Segue to next unit.)