
CSE199 Activity: Some Data Science Elements Fall 2017

Plotting, Correlation, Regression, and Textual Content Analysis

This activity gives a ‘get-acquainted’ experience with a few elemental data tools and concepts:
plotting, correlation, linear regression, and quantitative analysis of large amounts of text—all using
short programs and modules written in Python. No past programming experience in Python is
needed and the required portion is shorter than last week’s SQL activity. The goals this time are
having fun playing around and discussion of data policy issues. The discussion includes what it
means to build and train a predictive model. Update: This activity needs Chrome or Firefox or
a downloaded Python system; the two browsers seem to work on any platform.

The first part continues the NFL teams example of last week. What factors are correlated with
long playoff win droughts such as the Buffalo Bills have had since 1995? We will explore • the number
of coaching changes since 1990 and • the sizes of the teams’ media markets. Is coaching turnover
symptomatic or causative of playoff failure? Are small-market teams starved for resources needed
to win? Well, this is “small data”—there are only 32 NFL “apples” and we’re not considering the
“oranges” of other sports—but we can see everything going on with just 3 rows of 32 data points.

The second part belongs to a genre whose most immediately recognizable example may be the
mass filtering of communications and webpages for terrorist indications and gauges of threat levels.
“Hot words” and combinations of words are assigned numerical scores in various categories of threats
and implications by the models underlying these filters. Another prominent example is the Google
Ngram Viewer. It counts occurrences of N -word phrases in Google’s entire collection of digitized
books (searchable through 2008) but does not give scores. In the more-refined direction are various
models of stylometry including Signature by Peter Millican of Oxford University.

We will use a recently-released “alpha” version (v0.5) of the Canadian National Research Council
Affect-Intensity Lexicon (NRCAIL). It has almost 6,000 “intense” words scored in the general cate-
gories of anger, fear, joy, and sadness.1 We will use it to make simple measures of the “emotional
temperature” of various webpages. How to choose a set of measures based on scientific justification
rather than personal whim—and to focus what is being modeled—is for discussion at the end. This
also serves as a rudimentary example of “programming the Internet.” Here’s what’s involved:

• Homework to complete individually before your recitation hour, including showing a score on
the game guessthecorrelation.com to a grader in your recitation and reading the short paper
“Word Affect Intensities” by Dr. Saif Mohammad of NRC Canada. Play the game on the device
you bring to recitation because it uses cookies rather than a login.

• Allowing time for troubleshooting Python on individual machines, the running part is short.

• Emphasis is on discussion and interpretation, so again please form groups of 3-or-4.

• The project files are those beginning with NFL and with heat in the
https://www.cse.buffalo.edu/~regan/cse199/ folder.

1 Preparation and Python Setup

The main technical requirement is access to a working Python 3 installation. Updating
previous information, issues with (the free demo level of) the “Python 3 Trinket” site

1You may recognize these from the 2015 Pixar movie Inside Out. Only disgust as played by Mindy Kaling is missing.
They say they will add it soon; doing so ourselves is an optional programming topic at the end. Also note the role of
Google’s Ngrams in their model’s foundation in the reading assignment below.

https://books.google.com/ngrams
https://books.google.com/ngrams
http://www.philocomp.net/humanities/signature.htm
http://guessthecorrelation.com/
https://www.cse.buffalo.edu/~regan/cse199/SaifMohammedword-affect-intensities.pdf
https://www.cse.buffalo.edu/~regan/cse199/
https://en.wikipedia.org/wiki/Inside_Out_(2015_film)


https://trinket.io/python3 have been solved in Chrome and Firefox on Windows and Mac plat-
forms. Hence please download Chrome if you have neither of those browsers (or download and work
with your own Python3 system). For simple Web use, no login or registration apparently needed:

1. Go to https://trinket.io/python3 (“Python 3 Trinket” free demo level). (Alternate page)

2. Copy and paste the NFLtest.py file into the window for “main.py”—no need to change the
filename or add any new files. (Unlike with SQLizer last week, there is no file upload.)

3. Click the triangle “play” button to run.

4. After it runs, slide the vertical divider bar left to widen the output window.

Troubleshooting: If it works for you, leave it alone—often running it a second time has led to
its doing nothing. If it does nothing the first time, wait and try again. While waiting, you can try
making it load NFLTeams.xml directly rather than via HTTP: Hit the ‘+’ sign at upper right to add
a file, name it NFLTeams.xml, and copy and paste the XML file’s contents. Then go back into the
code, comment-out line 95, comment-in line 94 to use a simple filename as the location, and try
again. If it keeps twirling at upper right, try my alternate Trinket page, which is set up for part II
but can be used for the NFL part by just pasting that code over main.py.

If it really doesn’t work (or if the site bogs down from simultaneous use during class), first try
another browser. As a last resort—which you can also use as a first resort—we’ll try the CSE
machines or a Python download. If Python 3 Trinket does work you can skip the rest of the section.

Recommended Option: Setting up your own Python system

It would still ultimately be worth your while to download and install a complete Python3 system
such as Anaconda (https://www.anaconda.com/distribution/) and/or learn to use python3 on the
CSE undergraduate machines if you have an account for CSE115 or another course. Directions will
be given for all three, with Python 3 Trinket first and in full detail.

The libraries html, re, sys, traceback, urllib, xml and their child packages are standard
in Python 3 (3.4 or later). The ones to check, in order of need, are numpy, sklearn, pandas,
matplotlib, and scipy. The last two already have work-arounds in place so are not required for
this activity; numpy is virtually standard and pandas can be worked around. So the onus falls on
sklearn for linear regression—the alternatives in scipy or the less-common statsmodels packages
are more complicated so please verify your access to sklearn beforehand. The lines invoking the
problematic five packages all work in Python 3 Trinket and on the CSE machines:

import numpy as np

import scipy

import mathplotlib

import pandas as pd

from sklearn import linear_model

We’ve put them all in the NFLtest.py file so you can get a one-shot test of everything you’ll
probably need for other courses as well. The installation should take care of all the system paths
you need so that placing NFLtest.py in the base folder for code and entering python NFLtest.py

in a command window is all you need do.

On the CSE machines you can use any folder you like for work. It’s simplest if you first go there
and enter

https://trinket.io/python3
https://trinket.io/python3
https://trinket.io/python3/e949bcacc5
https://www.cse.buffalo.edu/~regan/cse199/NFLTeams.xml
https://trinket.io/python3/e949bcacc5
https://www.anaconda.com/distribution/


cp ~regan/cse199/NFLtest.py .

to copy the file over. Then enter

python3 NFLtest.py

Or you may first load the Python 3 environment directly—as is also possible on the CSE machines
by typing just python3. In that case, you can both load and run the file by entering (at Python’s
own prompt which might be >>>):

from NFLtest import *

Once loaded, repeating that command has no effect, but you can re-run by re-pasting lines of the
top-level code under the comment # main beginning at or after the creation of arrays called X, Y,
and Z. And/or, you can change those lines to use different formulas. . .

The CSE machines will not show the matplotlib color plots, nor might your home system, but
both will save them as PNG pictures XYplot.png and ZYplot.png for separate viewing. My code
also prints crude ASCII plots of the data points, though not the regression lines. The points are
enough to get the “point,” hehe. Python 3 Trinket does show the PNG pictures—a pleasant feature
that usually takes a separate “notebook” setup to see.

2 Pre-Recitation Homework

Besides testing out Python 3, please do the following before your recitation. Some of it may be
shown in class.

1. Play a round or two of the game “Guess the Correlation” to gain some visual context for the
NFL data plots.

2. Please read the webpage “Regression with scikit.learn” (which sklearn further abbreviates).
Be warned that the webpage leaves some Python lines incomplete on purpose and that the
loading syntax is a little different from ours. You’re already familiar with the XML format of
the supplied data file NFLTeams.xml from last week.

3. For the “heat index” part, please skim-read the 7-page “Word Affect Intensities” paper. You
need not understand all the technical bits but should appreciate the following points:

• Even at professional level this kind of work is in early stages.

• This is almost the first lexicon with numerical rather than binary (i.e. 0-1 or yes/no) data
on words for general purposes.

• The numbers were computed (to three decimal places) not by whim but by some kind of
regular scientific procedure based on examining large amounts of data and using “cloud
and crowd” methods.

• The crowd-sourced numbers were checked against human annotators. They were found to
correlate significantly highly with an average of human opinions. The correlation measures
mentioned on page 2 are not the same as the “R2” from the NFL part but are related.

4. Download the project code files from https://www.cse.buffalo.edu/~regan/cse199/ via
web or copy them from ~regan/cse199 on the CSE machines. In full they are:

http://guessthecorrelation.com/
http://napitupulu-jon.appspot.com/posts/regression-ud.html
https://www.cse.buffalo.edu/~regan/cse199/NFLTeams.xml
https://www.cse.buffalo.edu/~regan/cse199/SaifMohammedword-affect-intensities.pdf


NFLtest.py

NFLTeams.xml

heatlib.py

heatindex.py

NRC-AffectIntensity-Lexicon.txt ---download or just let code access

https://www.cse.buffalo.edu/~regan/cse199/deepweb/NRC-AffectIntensity-Lexicon.txt

5. Please finally skim-read the Python code. Note especially the lines with location = in
heatindex.py and with pageStr and uses of re.sub in the heatScore function in heatlib.py,
where there are alternatives to comment in or out.

NSFW and Copyright Notice

The NRCAIL begins with the highest scoring words for anger and includes slurs as well as compounds
of the F-word and its ilk. Well, you don’t have to read it—your (or our) computer will. The word
trigger does not appear while warning scores 0.297 in the fear category.

The copyright is held by Saif M. Mohammad under the aegis of the National Research
Council of Canada. We have written permission from him and his co-worker Pierre Char-
ron to use it in CSE199. In its current v0.5 form it is even freely downloadable at its
http://saifmohammad.com/WebPages/AffectIntensity.htm home page. However, the Terms-of-Use
there include a directive not to redistribute it, and at some point it will be covered by the same
EULA (please view) as the other NRC Lexicons.

Depending on possible network contention for the web-posted copy (1/1/18: link removed) and
how many of you have access to Python on the CSE machines, we will encourage downloading it to
private Python systems but urge it not be circulated further than there.

3 Part 1 (NFL) Activity Directions

The programming part of the activity runs in one shot—nothing more to do. Please, however, take
it slow and discuss the following train of thought in a small group:

1. What factors might cause, affect, and/or be symptomatic of Y = long playoff droughts such as
the Buffalo Bills are woefully experiencing?

2. One might be Z = the size of the local media market. The Bills are a small-market team.
(Unless, that is, we can appeal to Toronto, which in-toto would jump the 2.9 million figure to
over 12 million.)

3. Another could be X = high coaching turnover. It might not just be a symptom of losing
seasons. Frequent changes could upset the “team chemistry” needed to win.

4. Would you expect X to be strongly correlated with Y ?

5. The first linear regression tests Y against X. It gives numbers s and i (for slope and intercept)
that can be interpreted as projecting

y = i + s · x,

where x is the number of coaches any one team has had (since 1990) and y is the predicted
playoff drought.

http://saifmohammad.com/WebPages/AffectIntensity.htm
https://www.cse.buffalo.edu/~regan/cse199/EULA-SentimentLexiconSoldONRCVirtualStoreV82017-03-09.pdf


6. Look at the s and i for the first regression (drought vs. coaches) at the bottom. Do they make
sense? Is it weird for i to be negative? (Well, for the Patriots, the whole drought is zero.)

7. Look at the R2 figure printed at the end for the “number of coaches since 1990” run. Also look
at the printed plot (the crude ASCII plot you can scroll-up for is good enough; if your system
allows making a proper matplotlib plot, all the better) and compare with your “Guess the
Correlation” experience. Would you say the correlation is strong?

8. Now examine the second regression, Y versus Z. Does it show a strong effect? any effect?

9. Eyeball the second plot too. Ummm. . . do the Bills have any excuse?

10. Finally, the third and last line shows the results of regressing Y against both X and Z. That
is, it predicts

y = i + s1 · x + s2 · z,

with two “slope” coefficients. How did the respective slopes and the R2 score change?

For a quick further experiment, look at the coaching-change data point for the Cincinnati Bengals.
They’ve had only 5 coaches since 1990 despite not even making the playoffs again until 2005 and
losing 7 straight first-round games since then. So let’s consider Cincinnati a “bonzo outlier” (look,
they even let us swipe their “Shark Girl” statue). Scrub their data point—either by changing the code
to load http://www.cse.buffalo.edu/ regan/cse199/NFLTeamsNoCIN.xml or by commenting out
the CIN line in your copy of the NFLTeams.xml file. (To do the latter, you need only change the
initial < to <!-- and the final /> to /--> as exemplified by other lines in the file.) Re-run. How
much do the s, i, and especially the R2 figures change?

4 Part 2 (Heat Index) Directions

Again the directions are simple. If using https://trinket.io/python3 (or the alternate Trinket page):

1. Create a new window in your browser to go there.

2. Copy-and-paste heatindex.py into “main.py” there. Again, no need to change the name
main.py and no file upload.

3. Then click the ‘+’ to add a new file, name it heatlib.py, and copy-and-paste the text from
your own download or browser view of heatlib.py.

4. Click the triangle to run. You will be prompted to enter a URL. You can eithe type something
like www.cnn.com right there or copy and paste the URL of any webpage you like. Again you
can widen the output window to see lines whole.

On a home Python3 system or the CSE machines the command options are:

python3 heatindex.py or give a URL argument at the command line, say

python3 heatindex.py www.cnn.com

Or from within the Python environment, enter from heatindex import * on the
first run, and if you quit the menu (but not Python) and want to restart, enter
processUserInput(url,heatDict,mulDict).

https://www.cse.buffalo.edu/~regan/cse199/NFLTeamsNoCIN.xml
https://trinket.io/python3
https://trinket.io/python3/e949bcacc5


1. Play around with a few webpages. You can copy and paste URLs from the browser window.
Twitter pages will give you the person’s last yea-many Tweets.

2. Can you find a webpage with a negative score? Negative means more ‘joy’—

3. Stop—! We need a “coach’s huddle” before we get carried away. . .

The most important thing to know about the numerical results at the very end is that they
are not designed by Dr. Mohammad but rather by me, KWR. This project design performs a
“reduction” on his work. The final number comes from adding up the ‘anger,’ ‘fear,’ and ‘sadness’
scores and subtracting the total ‘joy’ score. Then my code divides by the total number of words
read and—totally arbitrarily for better “eye candy”—multiplies that by 1,000. In spot-tests this
puts the final numbers roughly on a familiar 0-to-10 scale, concentrated more near zero, and possibly
negative—when ‘joy’ outweighs the three other categories. So it has some street sense. But it’s still
doing “push a button and get a number”—which is what everybody wants in order to make their
jobs simpler but which comes with blinkers and dangers.

Put another way, I have slapped a layer of “multipliers” onto his model. The default multipliers
pass the “Occam’s Razor” test of being simple: +1 each for anger, fear, and sadness, and −1 for joy.
The code allows you to change them at will, but they are still arbitrary—that is, not justified by
theoretical considerations and/or empirical testing. They also represent some presumptions about
what we want to model:

• They presume we are trying to model ‘light’-versus-‘dark’ in some way.

• If we want to model intensity of any kind, we should use +1 for joy too.

• At least the +1 multipliers are leaving Dr. Mohammad’s carefully-crafted numbers alone. . .

• But adding them up and dividing by the total number of words is still “reducing” his work.
What is that ratio supposed to represent?

• If we append to the bottom of a page an equal amount of completely neutral text, we will halve
the score. Does this make sense—shouldn’t we give more weight to text at the top? Think
of what “TL-DR” means. (On the other hand, a Twitter sample might be best treated as
uniformly weighted over time.)

• Perhaps ‘anger’ should be regarded as generating more “heat” than ‘fear’ (which is more
passive) and certainly ‘sadness.’ (Indeed, those who have seen Inside Out may recall its upshot
about sadness.)

• Try multipliers of +10 for anger, +6 for fear, +2 for sadness and (really “winging it” now) −5
for joy. Repeat some earlier URLs. Do any scores shift notably? (Note: Just doubling the
multipliers will not double the score, because the code has a further “normalizing” division by
the sum of the absolute values of the multipliers.)

• Try other multipliers too. Each combo constitutes a different model of “webpage intensity.”
Then reflect on the most important question:

From the myriad parameter combinations, how can we determine one that
is correct, best, or at least neutrally justifiable? In particular, how could we
train the model?



Answering this question first requires determining what we want to model and what the purpose
is. Suppose we adopt the “light-versus-dark” purpose. The first thing we might try is to identify
a corpus of pages that represent the “neutral” middle. Then we want to define our scale and train
our multipliers so that those pages get a score of 0. This still does only a quarter of the work we
need—in technical jargon, it leaves three “degrees of freedom” in the four parameters we are fitting.

Further progress needs asking, what are we trying to predict? Here we might come full circle to
the “threat levels” application mentioned at the outset. Suppose we have a corpus of pages that were
reliably associated with the same threat level in past history. Some pages might have more ‘anger,’
others more ‘fear’ and so on. We can train our multipliers to equalize those pages.

A general methodology emerges from the idea that how morose or bubbly a webpage written
today is can predict how morose or bubbly a page written by the same person(s) tomorrow will be.
Or we can apply this prediction idea from sentence to sentence or phrase to phrase. Now we are
in the world of those N -grams. Predicting a probability range on the nature of the (N + 1)st item
from the previous N in a continuing series involves building a so-called Markov model (or Markov
chain, named for the Russian mathematician Andrey Andreyevich Markov). The Markov model M
can use the principle that words continuing the score trend of the previous N are most likely. Its
results thus depend on the scores and hence on the multipliers we choose. The likelihood principle
in this context yields the training policy:

Find the combination of parameters that maximizes the probability that M
projects for the record of what actually happened.

This sounds like “making yourself look good by predicting the past” but the power of this principle
carries into the future. It still, however, takes quite a bit of work to build M and then some computer
muscle to carry out the maximum likelihood estimation (MLE).

5 Final Discussion Points

If you think of Data Science as ‘sexy’ then it has been my purpose to spend a lot of time metaphor-
ically on safety and STDs—and even literally on matters of personal consent and privacy. Instead
of brilliant results with clear correlations, we’ve seen:

• Inconclusive results from small data (when that is all the data that is);

• How to “cheat” with Cincinnati—or rather, how sensitive results can be to one data point;

• How quantities for which there is obvious and immediate demand are currently inchoate;

• How the desire for simplicity induces arbitrary choices that can be fraught with biases;

• How fixing these issues requires lots of attentive hard work.

6 More Fiddling Around (optional)

Note that the Python code is pretty ‘modular’ not only in the library module heatlib.py but even
in the client file—it avoids referencing the four categories by name as much as possible. Thus it is
ready to handle updates of the lexicon to include other categories. Try this yourself by adding the
category disgust and a dozen words like gross and yuck and nausea right to the lexicon file, giving
them scores at-your-whim. Make the few edits needed to heatindex.py and see the results.

https://en.wikipedia.org/wiki/Likelihood_principle

	Preparation and Python Setup
	Pre-Recitation Homework
	Part 1 (NFL) Activity Directions
	Part 2 (Heat Index) Directions
	Final Discussion Points
	More Fiddling Around (optional)

