
Graphs and Trees - And (Non-)Recursive Algorithms, D&C, and Sorting (Ch. 15 into 16)
 
From page 479 onward, the text can be read apart from the particular 2D grid example that was begun 
in earlier chapters.
 
Representing Graphs
 
Abstractly, a graph is an object  where  is a set of vertices, also called nodes, and  is G =  V, E( ) V E

a subset of  that consists of pairs  called edges.  If the graph satisfiesV ×  V u, v( )
 
u, v  ∈  E  ⟺   v, u  ∈  E( ) ( )

 
for all nodes  and , then it is undirected, else it is (properly) directed.  An undirected graph "Is-A" u v

directed graph in which every edge  is accompanied by its reversal , but these classes are u, v( ) v, u( )
most often thought of as separate concepts.  Some standard notational conventions that go with graphs:
 

• Vertices are numbered  to , where .i =  1 n n = |V|

• Edges are numbered  up to .  In a directed graph without self-loops,  can go as high 1 m =  |E| m

as .  In an undirected graph, the max # of edges is half that, i.e.n n - 1  ~ n( ) 2
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• The size of the graph is called  or  according to context.  Sometimes we use  to mean the n m N
"true data size."

 
Often a graph is represented by another structure, such as a matrix or grid.  Here is the 4-cycle graph 
and its adjacency matrix:

A rectangular grid graph has some cells that are "blacked out."  V ⊆  1, … , r × 1, … , s  minus { } { }
Its edges are pairs of cells that are adjacent horizontally or vertically [or diagonally].  The text uses this 
kind of implicit representation of nodes and edges early on.  (Networked computations on various kinds 
of grids is a major research topic of our department associated with Professor Russ Miller and CSE429.)
 
When some other data point(s) are associated with each node or edge, it pays to represent nodes 
and/or edges as explicit objects.  There are several conventions for this.
 

 

 



1. Use a separate Node class and/or Edge class.  This is common in older texts.  Problem: the 
class has public visibility and global scope by default.  Different "Node" classes might name-
clash.  Even if not, the "too many little classes" problem.

2. Nest the  Node class and/or Edge class inside the graph class.  The text does this on pages 478-
479 (though the graph class is less-abstractly called DrawGraph).  This is standard, but in Scala 
there is the technicality that inner classes are subsidiary to the enclosing object, not the 
enclosing class.

3. Special kinds of graphs have recusive definitions that allow "flattening" the concepts of node and 
graph.  

 
We have already seen an example of 3.  A linked list is a graph whose nodes form a single path (or in 
the case of a circularly liked list, a cycle like the one above).  In ISR we have followed the standard 
representation 2.  But the native List type has no notion of "node"---just the data element directly and 
recursion back into List.  The text shows how this is synthesized back in section 12.6 (which I skipped 
then---but the point will reappear at the end of section 16.3).
 
Within representation style 2, the choice is whether to represent edges separately or just use tuples.  
The text on p479 associates data with edges, so it has a separate GEdge class from GNode.  Each 
node holds a set edges of its neighbors as a Set[GEdge].  One technicality is that an undirected 
graph needs to recognize that  is the same edge as .v, u( ) u, v( )
 
GEdge has fields from and to.
 
 
 
Even though representation 2 is usually considered non-recursive, algorithms based on it are often 
recursive.  This can be done with the basic reachability algorithm.  But it is also possible to view it non-
recursively as a form of breadth-first search (BFS).
 
 
Graph Algorithm: Reachability and Search
 
To understand what the text is saying on page 480, it pays to insert the idea of "freshly" reaching into 
the name of the algorithm.  The motivation is to eliminate going-around-in-cycles.  Here is the pure logic:
 
A goal end-node  can be freshly reached from a given node  if:e u

•  ORu =  e

• (  is fresh, i.e. not an already-visited node, ANDu

• there is an edge  to a neighbor  such that---upon declaring  to have been visited, i.e. u, v( ) v u

done-with---we can freshly reach  from .)e v
 
Now we can read the code, using special Scala features (that aren't necessarily recommended):

 

 



 
def canFreshlyReach(u: GNode, visited: mutable.Set[GNode] = new Set[GNode]()) = {

   if (u.equals(endNode)) true

   else if (visited.contains(u)) false

   else {

      visited += u

      u.edges.exists(edge => canFreshlyReach(edge.to, visited))

   }

}

 
 
[ Show animations at https://visualgo.net/en --- under Graph Traversals ]
 
 
Those animations are better described as showing the classic procedural rather than recursive 
reachability algorithms: Breadth-First Search (BFS) and Depth-First Search (DFS).  
 
The idea of BFS is that nodes  are first visited and then (later) expanded.  Expanding  causes all of u u

the fresh neighbors of ---those not previously visited---to be visited.  The node to expand is always the u
earliest-visited node that hasn't been expanded yet.  Earliest means we have a first-in, first-out 
situation, which means using a queue to manage the visited list.  Since we're not putting weights on the 
edges, we can use a simpler node representation where the out-neighbors of , meaning those  u v

such that  is an edge, are kept as a list:u, v( )
 
class Graph[A] {

   class Node(var item: A, val nbhrs: List[Node]) //mutable data, fixed connections

   ...

}

 
The code---if placed inside the Graph[A] class---is:
 
def classicBFS(start: Node, goal: Node): Boolean = {

   if (start == goal) { return true }

   //else

   var visited = new Queue[Node]()   //Scala Queue is mutable by default

   var expanded = new scala.collection.mutable.Set[Node]()

   visited.enqueue(start)    //so queue is nonempty

   while(!visited.isEmpty) {

      val u = visited.pop()

      expanded += u

      for (v <- u.nbhrs) {

         if (v == goal) { 

 

 

https://visualgo.net/en


            return true 

         } else if (!(expanded.contains(v) || visited.contains(v))) {

            visited.enqueue(v)

         }

      }

   } //exit of while loop means no more fresh nodes to visit/expand

   return false

}

 
The algorithm is sound because if it returns true, it means there is a way to get from start to the goal 
node by traversing edges, so goal is reachable from start.  It is comprehensive, and hence correct, 
because whenever goal is reachable from start, in  steps, say, then the BFS process will eventually k

find such a path.  [This actually requires an inductive proof on .]k
 
If this code were outside Graph[A], then we would have the issue of accessing the nested Node 
class.  We could write Graph[...]#Node (with whatever concrete type is used in place of A), and 
since we're only receiving nodes from the object via pop(), we should not have to type-cast them to 
the graph object.  This presumes that Node were made public or package-visible.  But it is more proper 
anyway that the BFS code belong to the class---and Scala's general treatment of the inner Node class 
is hinting that it belongs to the graph object itself.
 
      
Runtime of BFS
 
The runtime analysis is highly instructive.  We can do the analysis in terms of the number  of nodes n

and/or the number  of edges.  The first thing to notice is that there aren't any simple "for i = 1 to n" m
type loops.  But we can make these two observations:
 

• Every iteration of the outer while loop pops a node from the queue and puts it in the expanded 
set---so it can never get back onto the queue.  Thus the outer while look can run for at most  n

iterations, since there are  nodes total.n

• The inner for-loop iterates once for each out-neighbor of , so it runs the degree of  number of u u

times.  The average degree  in a directed graph is just the number of edges divided by , deg u( ) n

i.e. .  (In an undirected graph, where you count each  just once, you get .)m

n
u, v( )

2m

n

 
Thus the total number of iterations of both loops combined is at most .  Another way to view n ⋅  =  m

m

n

this fact is that in BFS, no edge ever gets traversed twice, so the total amount of "traversing" is at most 
the number of edges.  If every individual line of code inside the loops were  time, then you could O 1( )

conclude that BFS runs in  time, which in the worst case of  edges makes  O m( ) m =  𝛩 n2 O n2

time.  
 

 

 



However, the test line (!(expanded.contains(v) || visited.contains(v))) is not elementary.  
Both containers can fill up to  nodes.  Now because expanded is a Set, the contains(.) method 𝛩 n( )

runs in  time at worst [we will see that a hash-table implementation claims  time, but this O n(log ) O 1( )

comes with some fine-print].  But lookup in a Queue doesn't promise better than  time.  O n( )

 
There is a simple way we could avoid that time sink.  We can expand the Node class to include a 
writable flag field, called "touched" say.  Any visit would set the flag true, and popping the node from 
the queue would not unset it.  So---assuming that nodes were all constructed with the flag false---the 
test lines would simply be 
 
         } else if (!v.touched) {

            visited.enqueue(v)

            v.touched = true

                 }
      
Whether we'd need start.touched = true earlier in the code too is a good study question.  Then 
the running time for BFS becomes a clean .  But---note that the infrastructure of the algorithm still O m( )
requires random access of individual elements; it is not streamable.
 
 
Depth-First Search
 
What if we use a Stack instead of a Queue?  We can run exactly the same code (with the "touched" 
update) but just changing the auxiliary data structure:
 
def classicDFS(start: Node, goal: Node): Boolean = {

   if (start == goal) { return true }

   //else

   var visited = new Stack[Node]()   //Scala Stack is mutable by default

   visited.enqueue(start)    //so queue is nonempty

      start.touched = true

   while(!visited.isEmpty) {

      val u = visited.pop()

      for (v <- u.nbhrs) {

         if (v == goal) { 

            return true 

         } else if (!v.touched) {

            visited.push(v)

            v.touched = true

         }

      }

   } //exit of while loop means no more fresh nodes to visit/expand

 

 



   return false

} 

 
The only difference is that now the visited nodes are treated in LIFO order.  The running time analysis is 
entirely similar, because the count of popping from the data structure is the same.
 
The difference between DFS and BFS is IMHO best appreciated by sketching how each works when 
started from the root of a binary tree, with the goal node being one of the leaves.
 

 
BFS works in a slow-but-uniform way from top to bottom and left to right by row.  DFS, however, right 
away jumps down the rightmost path, "barking down tbe wrong tree" so to speak.  After popping the 
leaves 31 and 30 gives no new out-neighbors, the stack gets down to where it can pop and expand 14, 
which explores 28 and 29---again with no goal.  Eventually the stack gets all the way back down to 2, 
expanded via the root, and after some more zigs and zags it finds the goal.
 
 
Divide And Conquer
 
The classic Divide and Conquer (D&C) situation is when it takes  time to combine the results of 𝛩 n( )

two -sized halves of the data set.  Note that for a tree, , so " " and " " are the n

2
m =  n - 1 O m( ) O n( )

same thing.  The height  of a full binary tree is .h O n(log )
 

• If every leaf  stores a value , and we just want to compute the maximum value  in the tree, i xi xT
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then we can recursively compute the max values  in the left subtree of the root and  in the xL xR

right subtree, and combine via .  [If internal nodes store values too, then at x  =  max x , xM ( L R)

the end we get .]  The combination time is only  for this final  x  =  max x , x , xM ( L R root) O 1( ) max
statement, so the recursive time equation is

T n  =  2T  +  O 1( )
n

2
( )

which has solution .  This is just the same as if you just iterate through the  nodes T n = O n( ) ( ) n
of the tree and take the max on the fly.

• Finding the maximum height of a not-necessarily-full binary tree likewise has  combination O 1( )

time, just to add  to the max height of the two subtrees (of the root, or of any non-leaf node 1

recursively speaking), so it gives  time.  Once again, this is a case where D&C is used but O n( )
is not really crucial.

• DFS and BFS can also be done recursively in the two subtrees of the root---then the 
"combination" is just to tell which subtree had the goal and which did not.  So the whole time still 
comes out linear---the recursion did not add much compared to the classic iterative version.

• But Mergesort and Quicksort---those are where D&C really shines.  They have recursive 
equation

,T n  =  2T  +  𝛩 n( )
n

2
( )

whose solution in general is .T n  =  𝛩 n n( ) ( log )
 
The combination step of MergeSort is called merge(L1,L2) where L1 and L2 are the two sequences 
(usually called "lists" but they can be arrays or other containers).  They don't have to be exactly the 
same length.  This is a case where the functioning of the algorithm crucially depends on a logical 
precondition ("PRE") of the arguments, namely that L1 and L2 are individually sorted.  Here is the code 
in the text---where L1 and L2 are each an immutable List: and comp is an Int comparison function 
just like specified for the ISR classes (which we will code this for next):
 
def merge1[A](L1: List[A], L2: List[A], comp: (A,A) => Int): List[A] 

= (L1,L2) match {

   case (_, Nil) => L1

   case (Nil, _) => L2

   case (x1::rest1, x2::rest2) => if (comp(x1,x2) <= 0) {

      x1::merge1(rest1,L2,comp)

   } else {

      x2::merge1(L1,rest2,comp)

   }

}

 
 
The text points out on p483 that this version is not tail recursive---which is because the outermost 
operation in the "if" and "else" cases is :: rather than the recursive call.  The danger it notes is that 

 

 



with very long lists, the recursion could generate a lot of stack frames and slow execution even if stack-
overflow were avoided. It gives a non-recursive version of merge.  There is, however, a fairly standard 
way to make this kind of code tail-recursive using an accumulator parameter (the comp part is skipped 
for simplicity):
 
def merge2[A](L1: List[A], L2: List[A], acc: List[A] = List[A]()): List[A]

= (L1,L2) match {

   case (Nil, Nil) => acc.reverse   //the base case for everything

   case (Nil, x2::rest2) => merge2(Nil, rest2, x2::acc)

   case (x1::rest1, Nil) = > merge2(rest1, Nil, x1::acc)

   case (x1::rest1, x2::rest2) => if (comp(x1,x2) < = 0) {

      merge2(rest1, L2, x1::acc) 

   } else { 

      merge2(L1, rest2. x2::acc)

   }

}

 
Now the outermost operation on every recursive branch (not counting the base case) is the recursive 
call to merge2, so this is tail-recursive.  For reasons similar to the text's version, the target list has to be 
reversed at the end.  Even if the call to reverse needs  units of time, this merely adds to the  𝛩 n( ) 𝛩 n( )
time of the merge process itself.
 
Both versions of merge are almost identical to analogous code in the programming language ML.  ML 
compilers by-and-large automatically convert the first version code into the second.  The point of tail-
recursion is that the compiler is then able to avoid recursion completely, converting everything to an 
iterative version.  Which you could have written to begin with...but the case-match based rendition is 
arguably cleaner.  
 
Instead of what the text has atop page 483, let's see an iterative version of merge using the "first-class 
iterators" of the ISR trait.  The second "B" generic parameter is needed for a client to tailor the code for 
the particular containers used.
 
/** REQ: L1 and L2 are sorted in nondescending order and traversed that way.

    NOTE: Will not compile because Iter with () was not included in the ISR trait.

 */

def merge[A, B <: ISR[A] with ClassTag](L1: ISR[A], L2: ISR[A]): B = {

   var ret = new B()     //ClassTag enables this

   var bend = ret.end

   var itr1 = L1.begin

   var itr2 = L2.begin

   while (itr1.hasNext && itr2.hasNext) {

      if (itr1().comp(itr2()) <= 0) {          //ah, this does need () in the trait

 

 



         bend = ret.insert(itr1.next(), bend)  //advances itr1

      } else {

         bend = ret.insert(itr2.next(), bend)  //advances itr2

      }

      bend.next()  //to put "bend" on the end again; maybe ret.end is not O(1) time

   }

   if (!itr1.hasNext) {   //do rest of list 2

      while (itr2.hasNext) { bend = ret.insert(itr2.next(), bend); bend.next() }

   } else {

      while (itr1.hasNext) { bend = ret.insert(itr1.next(), bend); bend.next() }

   }

   return ret

}

 
Regardless of which version of merge one uses, the code for mergeSort is the same---only needing a 
method to split the list into two nearly-equal halves.  Since merge runs in  time, it is fine for the 𝛩 n( )
halving method to take that much time, so the text's "L.splitAt(L.length/2)" is AOK.  You could 
also code a similar halves method with the iterator counting up to L.length/2.
 
def mergeSort[A](L: List[A])(comp: (A,A) => Int): List[A] = {  //or same "B" trick

   if (L.length < = 1) { return L }  //else

   val tup = L.halves

   return merge(mergeSort(tup._1)(comp), mergeSort(tup._2)(comp))

}

 
This is not tail-recursive because merge not mergeSort is outermost, but that's OK because the depth
 of a D&C recursion by itself is only .  So there is little danger of stack-overflow here.O n(log )
 

One thing about all three versions: The merged list is a copy of the two given lists.  Copies are made of 
all the data at each depth of the recursion, so  copying is done in all.  And even with 𝛩 n n( log )
immutable data, it is real copying: the bottom depths of mergeSort ultimately break the lists into so 
many little pieces that there is no gain in reusing cells---not like when we were just changing a few cells 
at the head of a list while making a nominal copy (back in Week 2!).  Although it does not affect the 
theoretical asymptotic  running time (incidentally, mergeSort is never better than that, even 𝛩 n n( log )
on nearly-already-sorted inputs), in practice this copying can be accompanied by a lot of "thrashing."  
This is so even though---as the text notes on the bottom of pages 483 into 484---you don't need 

 physical memory to implement it because you can copy back-and-forth between two 𝛩 n n( log )
memory banks at odd and even depth phases.  And that brings us to a question not considered by the 
text:
 

Is MergeSort stream-friendly?
 

 

 



The answer depends on whether there is a penalty for streams being "paused" for variable time 
periods.  The pause of L1 can be long if a long block of next-lowest elements comes from L2, and vice-
versa.  
 
 
QuickSort
 
 

 

 


